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(some of) The experimental particle physics landscape
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In this talk I’ll try to cover
some commaon issues...
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# The Good: Your own calibrations = basically | 2 GLINT EASTWOOD
statistical ?

) The Bad: Using other peoples results, poorly

modelled data or analysis technique, model
assumptions, ...

#® The Ugly: Different theoretical estimates,
theory with limited number of terms, ...

*Pekka Sinervo - PHYSTAT 2003




Sources of systematic uncertainty

Huge array of sources of systematic uncertainty in particle physics experiments (see individual talks for details)...

* Dark matter experiments : Systematics of direct Dark Matter signals experiments and models — Knut Moraa

* Searches at the LHC : Systematics at LHC for event selection, discovery and limits — Lukas Heinrich

* Precision measurements at colliders & beam expts. : Precision measurements — Alexander Glazov

* Neutrino oscillation experiments : Systematics in a selection of neutrino oscillation experiments — Christophe Bronner
* Searches and measurements in flavour physics : Flavour Physics — Thomas Blake

* Uncertainties in Theory calculations : Theory uncertainties — Frank Tackmann
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Sources of systematic uncertainty

Huge array of sources of systematic uncertainty in particle physics experiments (see individual talks for details)...

* Dark matter experiments : Systematics of direct Dark Matter signals experiments and models — Knut Moraa

* Searches at the LHC : Systematics at LHC for event selection, discovery and limits — Lukas Heinrich

* Precision measurements at colliders & beam expts. : Precision measurements — Alexander Glazov

* Neutrino oscillation experiments : Systematics in a selection of neutrino oscillation experiments — Christophe Bronner
* Searches and measurements in flavour physics : Flavour Physics — Thomas Blake

* Uncertainties in Theory calculations : Theory uncertainties — Frank Tackmann

p(data|0) = /// dzgdzpdz, p(data|z) p(z4|lzrn) P(2r|2p) D(2,|0)

Lukas Heinrich

detector stochastic

hard process

detector readout ; , .
interaction evolution 6


https://indico.cern.ch/event/1051224/contributions/4534928/attachments/2337067/3984405/PHYSTAT_Systematics.pdf
https://indico.cern.ch/event/1051224/contributions/4534927/attachments/2336995/3983357/Moraa_PhystatSystematics.pdf
https://indico.cern.ch/event/1051224/contributions/4534928/attachments/2337067/3984405/PHYSTAT_Systematics.pdf
https://indico.cern.ch/event/1051224/contributions/4534929/attachments/2337007/3983392/stat21.pdf
https://indico.cern.ch/event/1051224/contributions/4534931/attachments/2337168/3983723/NeutrinoExperiments.pdf
https://indico.cern.ch/event/1051224/contributions/4534932/attachments/2337188/3983766/tblake_systematics.pdf
https://indico.cern.ch/event/1051224/contributions/4534935/attachments/2337620/3985299/2021-11-02_PHYSTAT_theory_unc_FT.pdf

Systematic Recipes

Typically (broadly) two strategies for including systematic uncertainties in limits,

measurements, ... Thomas Blake
- Error propagation
—> Change a single parameter of the model [ swap out the nominal model ' assign RMS

for an alternate one representing a systematic shift from particular source:
One Parameter at a Time (OPAT)

—> Throw random toys representing systematic variations to determine
spread of results 2 MC method

- Difference in result(s) (measurement) quoted as systematic
uncertainty due to that source(s)



https://indico.cern.ch/event/1051224/contributions/4534932/attachments/2337188/3983766/tblake_systematics.pdf

Systematic Recipes

Typically (broadly) two strategies for including systematic uncertainties in limits,
measurements, ...
- Error propagation
— Change a single parameter of the model / swap out the nominal model
for an alternate one representing a systematic shift from particular source: o
One Parameter at a Time (OPAT)
—> Throw random toys representing systematic variations to determine
spread of results 2 MC method

- Difference in result(s) (measurement) quoted as systematic
uncertainty due to that source(s)

- Likelihood based approach

—> Systematic uncertainties encoded as Nuisance Parameters in
probability density model

—> Constraints / Priors for nuisance parameters often derived from one or
more “Preliminary analysis”

—> Construct likelihood for “Primary analysis” and profile/marginalize over
nuisance parameters

| leave the proper discussion of these approaches to Sara Algeri’s
(Statistician’s view) talk!

(ed 'g)T < (&g ‘'g)T



Error propagation

OPAT : One Parameter At a Time

Uncertainty due to source “s;”” on measurement “u;”” determined as Alexander Glazov

[ = pi(s) + 6s)) — pi(s?)

For independent sources, sum in quadrature (over i) to get total uncertainty on each measurement.

Good for simplicity of implementation but need to be careful about keeping track of signs
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Error propagation

OPAT : One Parameter At a Time

Uncertainty due to source “s;”” on measurement “u;”” determined as Alexander Glazov

0 0
Fz] — /J,(Sj T 55]) o :uz(Sj)
For independent sources, sum in quadrature (over i) to get total uncertainty on each measurement.

Good for simplicity of implementation but need to be careful about keeping track of signs

Discussion points:

Mc method * ‘“Is providing
Prepare random samples of systematic shifts S,- — SQ + 7 '5S ) covariance enough?”
according to some distribution (e.g r~N(0,1) ) J JUET

Repeat measurements for each sample and estimate

N
: ) 1 - —
uncertainty according to \ ou; = ﬁ E ('u;_’ _'uf)Z.
4 k=1

10
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Alexander Glazov

AT L A S d i ff eren ti a I ,,, Central Electron Reconstruction ALA
Z—>eex "; ﬂ

o ||
X-sections .
o p - |-| |— r-
Z—>ee £2 f
8
. : L ||I
MC variations also used to determine -
correlation between reconstruction i’ . e
. . Zsee §E
efficiency measurements

- Differential Z&W boson cross-

sections rely on detailed W e .
understanding of correlations across ;:i h ;:.' h
different rapidity regions

Forward Forward Cen I Central | Central
Z peak high mas: Iwm Z peak highmss

ATLAS, EPJC 77 (2017) 367

Correlation
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Nuisance parameters

Nuisance parameters v “built into” statistical model (probability density)
p(data|d) — p(datald, v)
— Need to parameterize effects of nuisance parameters on density

—A
E.g let o A"e

n!

Build nuisance parameter effects from shifting source and calculating
size of effecton A

Av) = Xo(1 + k)"

interpolated to
"unseen" NP value

.

~
.
]

|

run simulator
at fixed NP values>

\Y



Nuisance parameters

Vo A
Nuisance parameters v “built into” statistical model (probability density)
p(data|d) — p(datald, v) ® <
— Need to parameterize effects of nuisance parameters on density
A" —A o @ o—
E.g let o € 1
b n! 1
N 4
Suppose we want to model the effect of multiple nuisance parameters?
Typical choice is to factorize effects as multiplicative terms

)\(V) — )\0(1 —+ kl)yl (1 —+ ]CQ)VQ

Discussion points:
* ‘“How good is this factorisation assumption?”
* “How can we effectively test it when we have O(100) nuisance

parameters?” Lukas Heinrich
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Adinda De Wit

Template morphing

Visualization of bin-by-bin linear interpolation of distribution Linear interpolation* between p(x|a) at fixed values
of a yields empirical parameterisation.

s . 14
* Note, much more common to use polynomial interpolation (see backup)
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Template morphing

Visualization of bin-by-bin linear interpolation of distribution

Cannot always rely on this approach (vertical
interpolation) = e.g very typical in large shifts of the
mean

* Note, much more common to use polynomial interpolation (see backup)

Adinda De Wit

Linear interpolation* between p(x|a) at fixed values
of a yields empirical parameterisation.

Limitations of piece-wise linear interpolation

¢ Bin-by-bin interpolation looks spectacularly easy and simple,
but be aware of its limitations

— Same example, but with larger ‘mean shift’ between templates

Note double peak structure around |a|=0.5

2l

Bvents / ().325 X 0.03.)

200 (00D

L1
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Non-Gaussian effects

Precision measurements need precision modeling

Often use fixed points (-10, 00, +10) for interpolation
Assume Gaussian behavior2c0=2 x 10

Not necessarily true that this holds for all kinds of
uncertainties

« Eg Av)=Xo(14+dv) vs A(v) = Ao(1 +0)

Rel. difference [%] Rel. difference [%]

10

-10
10

-10

- ATLAS -
: i ;FEEE_ ﬂﬁ_ﬁ; j‘
! -16 40 i
N 20 50 ]
. LogNormal assumption 30 _
" anti-k, jets, R=0.6 | 7
[ |y| <0.5 ]
I . - :j 1
S=alas i T
i ml [——1___7
B ?L_
- Gaussian assumption 7
2x10° 10° |
p_[GeV]

Alexander Glazov JHEP 02 (2015) 153
16
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Non-Gaussian effects

Precision measurements need precision modeling
» Often use fixed points (-10, 00, +10) for interpolation
* Assume Gaussian behavior26 =2 x 10
* Not necessarily true that this holds for all kinds of
uncertainties
i Eg )\(V) = )\0(1 + 5V) VS )\(l/) = )\0(1 + (5)7/

Discussion points:

* “Should we sample many different parameter values to
build suitable parameterisation?”

* “Are there smarter ways (eg GPs/ML?) to automate?”

1 ‘Y‘Y‘YY’V\ CESSEONN .
Lt “""véé"‘ﬁ“ 5 1 KX /I/ ol
1.33~ g LA AAARTH X 7
23 A “““""“‘h' e "l”//'{'lo ///{4

Christophe Bronner

10

-10

10

Rel. difference [%] Rel. difference [%)]

-10

Alexander Glazov

- ATLAS B
Oﬁ: EA - ;f = |-|| |=ﬁr=:I
i 10 40 _
N 20 50 ]
. LogNormal assumption -3 0 i
" anti-k, jets, R=0.6 | "
 ly] < 0.5 ]
of [ = = al I
= = L_ 1] -
%EI{— 1 H] T
i | 1 7
B ?__

- Gaussian assumption 7
2%102 10° |
p_[GeV]

JHEP 02 (2015) 153
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Monte Carlo statistics uncertainties

Adinda De Wit

Events

Barlow-Beeston method
Comput. Phys. Comun 77 (1993) 219

Often rely heavily on Monte Carlo event simulation to estimate
probability densities and construct likelihoods

Generating MC can be CPU expensive so need to account for limited
MC sample size when performing statistical analysis

Statistical in nature = in principle easy to model (need to account
for weights in MC which are not always equal for a given sample)

Tricks such as the Barlow-Beeston method help reduce impact on

statistical analysis CPU time due to flood of additional nuisance
parameters

18
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Simulation statistics

Nominal distributions (probability density) often determined using Monte Carlo Simulated events

Events per Bin

—> Also use simulation directly to determine variation in different bins of some observable

e.g energy scale for momentum distribution in T2K

SK FHC 1R,

w— I ] T I T T T I T T T I T T T I T =
7= =
6F- ﬁ MC stat E
B uncertainty A
5 =
aE 3
3 s
2f =
IF =
O 1 I 1 1 1 I 1 1 1 I 1 1 1 | 1 1 1 | 1 1 1 :

02 04 0.6 0.8 1.0 12
Erec [GeV]

momentum distribution

i

\_/'

Shift energy scale in simulation and calculate

migration between neighboring bins

for a certain angle bin |
(before scaling)

| 1 1 ] 1 1 ] L5

pj pj+1 momentum (
Z_VL'H
prhr R
p ’
\ I fp-sca/e %
Pj+1

1 ] ] ] ] ] ] 1 L >

pp-scale « , N(Ap;AB) momentum

Jumps in X2 due to events jumping between

bins

Ay?

12

10

Christophe Bronner

14— 1 I roT ]
- 500 MC events =
Z_ 5k MC events _3
- 50k MC events -
8|~ =
o -
a4 =
2F -
0: | | | I R T R N .

0.9 95 1 1.05 1.1

Energy scale

19
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Simulation statistics

Nominal distributions (probability density) often determined using Monte Carlo Simulated events

Events per Bin

—> Also use simulation directly to determine variation in different bins of some observable

e.g energy scale for momentum distribution in T2K

SK FHC 1R,
T T T T I T

F T T T T T T T T T T 3 momentum distribution
7= —  for a certain angle bin L

C MC stat ] (before scaling)
o = —

C uncertalnty .
~ =

s ] 1 1 1 ] 1 1 ] L5
4 3 Pp Pyt momentum (MeV/c)
3 f_ _f Z_VL'H
2 E_ _E (after scaling) KVJ_’I

- 1 eslad L e

il 1 -scale «
1: . i Pj+1
O 1 I 1 1 1 I 1 1 1 I 1 1 1 | 1 1 1 | 1 1 1 : I l I I I I I I I I >

02 04 0.6 0.8 1.0 1.2
) N(Ap.ABO momentum (MeV/c)
Erec [GCV] ¢ p-scale D, (Ap;A6)

i

\_/'

Shift energy scale in simulation and calculate
migration between neighboring bins

Christophe Bronner

20
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Simulation statistics

Nominal distributions (probability density) often determined using Monte Carlo Simulated events
—> Also use simulation directly to determine variation in different bins of some observable

Events per Bin

Xi
«—
e.g energy scale for momentum distribution in T2K R o E Christophe Bronner
T T T rec "
bini bin i+1
SK FHC 1R(J ; distributi (\1>< 14 1 T T T T T T T T T T T T T T ]
= T L T T T ™ momentum aistripution

7= | | I | | | —  for a certain angle bin 1 < L 3
= . (before scaling) 12— 500 MC events -]
- MC stat ] - ]
61— ﬁ R - 5k MC events .
- uncertainty - 10 50k MC events -
sE e i ]
u 3 1 1 1 1 1 1 ] 1 n ]
C ] ' = -
4 - Pp Pyt momentum | 8 ]
3 = G 61 —
’ E_ _E (after scaling) KVJ_’I B ]
- 1 N(p'48) I 4 .
= = X -scale N ]

1 P .
= ] J+1 2 —
) e Y I P E IR B d 1 1 1 1 1 1 1 1 1] > L ]
02 0.4 06 0.8 1.0 12 p— ——e b L A

E... [GeV] fp-scale ., 0Pt 0.9 1 1.05 1.1

i

\_/' \—/

Shift energy scale in simulation and calculate Regularisation can help smooth out these effects: e.g
migration between neighboring bins distribute events across-bins (assign ”width” to each

event) 2

Energy scale
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Discrete choices

In some cases, not obvious how to construct parameterization
of a systematic uncertainty - Two point systematic

—> Typically related to a model choice : eg Pythia vs Herwig for
Parton shower model

How do we account for this uncertainty ?

—> Bayesian might assign equal prior to each and marginalize,
Frequentist might construct “average model”



Discrete choices

In some cases, not obvious how to construct parameterization
of a systematic uncertainty - Two point systematic

—> Typically related to a model choice : eg Pythia vs Herwig for
Parton shower model

How do we account for this uncertainty ?

—> Bayesian might assign equal prior to each and marginalize,
Frequentist might construct “average model”

—> Average model might not necessarily correspond to
something meaningful

Phillip Litchfield two lane traffic example



Discrete choices

In some cases, not obvious how to construct parameterization LHCHW62022003

. . . . 1] T T T v | ¢ T & T & -

of a systematic uncertainty - Two point systematic S 025 ATLAS PPS8 fibb T
—> Typically related to a model choice : eg Pythia vs Herwig for - C e F=={CNIS PP8 tibb .
Parton shower model g 02== T ATLAS PRBT =
£ - CMS PP i ]

for th o 0.151 | =

How do we account for this uncertainty ? - — ATLAS = CHS .
0.1 — Generator Level ]

. . . . T o | (s=13 TeV, 2 4b, > 4] .

—> Bayesian might assign equal prior to each and marginalize, - s Dilepton channel .
S 0.05 — -
Frequentist might construct “average model” - .
o ]

—> Average model might not necessarily correspond to R '8 1.2F o
. . [ I - -
something meaningful Lq 1= =
o< - ]

= - ]

- E.G tt+HF background in ttH(=>bb) measurements includes L~ s i e

-

0.5 15 2 25
uncertainties from comparing treatment of b-quark in parton
density functions
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Background function choice

Ad-hoc parameterization of background function for peak-fitting is a source of uncertainty

—> Without clear motivation for one parameter or another, different choices result in different

measured values of parameter of interest

N
(o)
o

Events / GeV
N
3

150

100

50

— Laurent
— Exponential
— Power Law
— Polynomial

IIII|lIII|IIII|IIII|IIII|IIII|IIII|IIII

10

115

120 125 130 135 140 145 150

m,, (GeV)

< 220

218}

216

214

212

210

208

206

204

- T T T

IIIIII[IlIIIIIIIIIIIII

— Laurent
— Exponential
— Power Law

— Polynomial

-05 0 0.5 1 1.5

2 25
u

25



Background function
choice

Include potential bias from using wrong function as additional
source of uncertainty in likelihood = parameterised as a Gaussian
constrained nuisance parameter

* Generate toys from the red (”true”) function with known
signal strength

* Fit those toys with the green background function +
measuring the amount of signal

* Bias in the amount of fitted signal induced by fitting with the
green function instead of the red > distribution of fitted
signal - injected signal

* Include as additional component when measuring signal

H- Si(?) —> U- Si(?) + bi?s . ebias

Nevents bias T
Unit gaussian

 Alternative approach (discrete profiling): JINST (2015) 10 Po4015

Events/( 0.5)

250

200

150

100

50—

Throw toys from this

Adinda De Wit

Fit toy with this function

~ distribution
B 1 1 I I 1 1 1 1 1 1 1 1 1
% 100 110 120 130 140 150
X
35— " .
-  fitted = injected
o 1
30— 1
~ 1
- |
25— 1
- 1
20 - 1
~ 1
o 1
15— 1
10—
- 1
= 1
5— 1
: 1
01 L Inl l[_l] L 1 l 1 L L I 1 1 1 l 1 L L I 1 1 L . 1 1 I:I_‘_Il ﬂ I
-120 -100 -80  -60 -40  -20 0 20 N4o 60
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How do we know what
matters?

Diagnostic tools help to quantify which sources of systematic
uncertainty are most relevant in particular measurement

—> e.g measurement “impact” defined as

A(p) = (0 = 0 + AG) — u(6 = 0)

—> Note similarity to OPAT = nuisance parameters can be
varied one at a time to assess effect on measurement

Pre-fit impact on u:

0="0+A0  0=108-10
Post-fit impact on p:
Wo="0+A0 116="08-48

—e— Nuis. Param. Pull

tt+>1b: SHERPASF vs. nominal
tt+>1b: SHERPA4F vs. nominal
tt+>1b: PS & hadronization
tt+>1b: ISR/ FSR

ttH: PS & hadronization
b-tagging: mis-tag (light) NP |
k(tt+>1b) = 1.24 + 0.10

Jet energy resolution: NP |
ttH: cross section (QCD scale)
tt+=1b: tt+=3b normalization
tt+>1c: SHERPASF vs. nominal
tt+>1b: shower recoil scheme
tt+>1c: ISR/ FSR

Jet energy resolution: NP 11
tt+light: PS & hadronization
Wit: diagram subtr. vs. nominal
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How do we know what
matters?

Diagnostic tools help to quantify which sources of systematic
uncertainty are most relevant in particular measurement

—> e.g measurement “impact” defined as

A(p) = (0 = 0 + AG) — u(6 = 0)

—> Note similarity to OPAT = nuisance parameters can be
varied one at a time to assess effect on measurement

Discussion points:

« ‘“Are we ok that our tt analysis fit updates our knowledge of

Jet Energy Resolution?”
* “Is there a better way to include uncertainty due to model
choice than taking difference between (eg) simulations?”

Pre-fit impact on u:
0=0+A0 | 6=10-10

Post-fit impact on p:
Mo =08+A8 1106="08-18

—e— Nuis. Param. Pull

Au
-1 =05 0 0.5 1

rrrypyrrrrprrrrryprrrryprrrryprrd
I I I | [

ATLAS
{s=13TeV, 36.1 fb

tt+=>1b: SHERPASF vs. nominal

tf+>1b: SHERPA4F vs. nominal

tt+>1b: PS & hadronization
tt+>1b: ISR/ FSR

ttH: PS & hadronization
b-tagging: mis-tag (light) NP |
k(tt+>1b) = 1.24 + 0.10

Jet energy resolution: NP |

ttH: cross section (QCD scale)
tt+=1b: tt+=3b normalization
tt+>1c: SHERPASF vs. nominal
tt+>1b: shower recoil scheme
tt+>1c: ISR/ FSR

Jet energy resolution: NP Il
tt+light: PS & hadronization
Wit: diagram subtr. vs. nominal
b-tagging: efficiency NP |
b-tagging: mis-tag (c) NP |
ET"*: soft-term resolution

b-tagging: efficiency NP Il
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Can we avoid what doesn’t matter all

together?

Machine learning methods to “learn” the

variation of probability density wrt
systematic variations >3 = p(f(X)1Z2=0)

—> E.g Use adversarial methods to teach ML 25

classifiers to reduce effect of systematic
uncertainties on observable distribution!

—> See example : recent CMS LLP tagger
using this approach "A deep neural
network to search for new long-lived

particles decaying to jets"

—> Lots of overlap with discussions around
LFI/SBI [1] for PP applications (see session
this afternoon)

arxiv:1611.01046

[1] See arXiv:1907.10621 for a good review

adversarial training

Jowuel) oAy
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https://arxiv.org/abs/1912.12238
https://indico.cern.ch/event/1051224/contributions/4534940/attachments/2338808/3986931/PhyStat-systematics-ML-2021.pdf
https://arxiv.org/abs/1907.10621

Communicating what we did

Particle physics experiments involve extremely complex likelihoods (many
different regions in data and many hundreds of nuisance parameters)
- Communicating this to statisticians & preservation of statistical model a

challenge!
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Communicating what we did

Particle physics experiments involve extremely complex likelihoods (many
different regions in data and many hundreds of nuisance parameters)
- Communicating this to statisticians & preservation of statistical model a

challenge!

Recent paper to (finally) push
for publication of these models!

SciPost Physics [arxiv:2109.04981]

Publishing statistical models: Getting the most out of particle
physics experiments

Kyle Cranmer 1*, Sabine Kraml 2i, Harrison B. Prosper 38 (editors),

Philip Bechtle 4, Florian U. Bernlochner 4, Itay M. Bloch 5, Enzo Canonero 6, Marcin
Chrzaszcz 7, Andrea Coccaro 8, Jan Conrad 9, Glen Cowan 10, Matthew Feickert 11,
Nahuel Ferreiro Iachellini ®'%'3 Andrew Fowlie ®*, Lukas Heinrich ®'°, Alexander Held ®,
Thomas Kuhr 13’16, Anders Kvellestad 17, Maeve Madigan 18, Farvah Mahmoudi 15’19,
Knut Dundas Mora 20, Mark S. Neubauer 11, Maurizio Pierini 15, Juan Rojo 8, Sezen
Sekmen 22, Luca Silvestrini 23, Veronica Sanz 24’25, Giordon Stark 26, Riccardo Torre 8,

Robert Thorne 27, Wolfgang Waltenberger 28, Nicholas Wardle 29, Jonas Wittbrodt ®3°

SciPost Phys. 12, 037 (2022)
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https://arxiv.org/abs/2109.04981

Summary of my Summary

Particle physics experiments deal with a vast array of sources of systematic uncertainties
—> A particle physicist might spend most of their time on dealing with these for a publication!

Discussion items (or Q’s for a statistician):

* When reporting uncertainties in OPAT is providing covariance
enough?

* When modelling systematic uncertainties using nuisance
parameters, Should we sample many different parameter values to
build suitable parameterisation and are there smarter ways (eg
GPs/ML?) to automate this?

* Are we ok that our fit updates our knowledge of certainty nuisance
parameters?

* Is there a better way to include uncertainties due to model choice
than taking difference between (eg) simulations? Or approaches
such as inflating uncertainty to cover potential bias / discrete profile
method?

Y ‘ \
CLINT EASTWOOD
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Thanks for your Attention!
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Errors on Errors?

Uncertainty on parameterization model
due to limited MC samples could be
addressed by including errors on the
parameterization (errors on errors)

— exact

4 - asymptotic

---------- Bartlett corrected

68.3% CL interval half-width

Eur. Phys. J. € (2019) 79:133

Statistical Models with Uncertain Error Parameters

Glen Cowan

Physics Department, Royal Holloway, University of London, Egham, TW20 0EX, U.K.
Received: date / Revised version: date

Abstract. In a statistical analysis in Particle Physics, nuisance parameters can be introduced to take into
account various types of systematic uncertainties. The best estimate of such a parameter is often modeled
as a Gaussian distributed variable with a given standard deviation (the corresponding “systematic error”).
Although the assigned systematic errors are usually treated as constants, in general they are themselves
uncertain. A type of model is presented where the uncertainty in the assigned systematic errors is taken
into account. Estimates of the systematic variances are modeled as gamma distributed random variables.
The resulting confidence intervals show interesting and useful properties. For example, when averaging
measurements to estimate their mean, the size of the confidence interval increases for decreasing goodness-
of-fit, and averages have reduced sensitivity to outliers. The basic properties of the model are presented
and several examples relevant for Particle Physics are explored.

PACS. 02.50.T't Inference methods — 02.70.Rr General statistical methods

Typical test-statistics can be modified to maintain good
asymptotic properties

‘\\/ Alessandra Brazzale

r =relative error on error 35


file:///Eur.%20Phys.%20J.%20C%20(2019)%2079/13
https://indico.cern.ch/event/1051224/contributions/4540321/attachments/2337195/3983787/PhyStatSyst_Brazzale%5b7%5d.pdf

Theory uncertainties Frank Tackmann

@ The theory uncertainty is due to the fact that in many cases the formula
itself is not fully exact (e.g. derived in some approximation)

» |t is notthe inexact knowledge of parameters needed in the (otherwise
exact) formula (like the length of the pendulum)

= co + a(po) c1 + az(uo) C2 + -
Co —|— (X(LL) C1 -|- \az(p,)(cl bo ln[,l,/l,l,o —|—(32) _|-

q
|

J

neglected .

_ ATLAS Preliminary (139 fb™) 7

= O I Ao 281 I ’

. . . . . — 26 T _:
Aim to.estlmate uncertafnty‘ ‘due to CO.ntI.’IbU’EI,OH of neglected terms 2 N'LO L ANLO ]
* Typical strategy of using “scale variations” not always guaranteed _ 24F NSLLANNLO
. 'S - .

to cover most accurate calculation Qo0 ' =

, e : : i NNLO .

* Not obvious what to assume for distribution - is Ac the width of a ch - Avonum | NNLL+NLO .
Gaussian? 20 . A sesum ® Ao .
—~=FO -

* How to correlate different sources (scale parameters are not real 18E | (1o gg— H —~~ (13 TeV)
parameters of the model) 16L TBRT, m = 32 e



https://indico.cern.ch/event/1051224/contributions/4534935/attachments/2337620/3985299/2021-11-02_PHYSTAT_theory_unc_FT.pdf

Theory uncertainties Frank Tackmann

@ The theory uncertainty is due to the fact that in many cases the formula
itself is not fully exact (e.g. derived in some approximation)

» It is notthe inexact knowledge of parameters needed in the (otherwise
exact) formula (like the length of the pendulum)

o =co + a(u) c1 + az(uo)Cz —I—

[TTTATTTT [ |||||||| |||||||||||||||[l(|[
- pp — Z (13TeV) -

Q:mz,YIO :

Instead identify the actual source of uncertainty and =3 NLL/(0 + 2)
parameterize our knowledge of the structure of missing terms = | — NNLL/(0+2) ]
* Introduce “Theory nuisance parameters” = genuine S N e .
parameterization of missing terms NG
e

* Appeal to CLT for total theory uncertainty = Gaussian 1]
distribution well motivated

‘ Example Z- pT dlstrlbutlon
A T T T T T T I

0 5 10 15 20 25 30 35 40
pr [GeV] 37



https://indico.cern.ch/event/1051224/contributions/4534935/attachments/2337620/3985299/2021-11-02_PHYSTAT_theory_unc_FT.pdf

LIKELIHOODS s

SEARCH DATA CALIBRATION /CONSTRAINTS

L(s,6,, 04) = Lii(5, 0y, 0) X Loal(0) X L ()

- cuoo
COUNTING o — LIKELIHOODS o
cgSCi(S’ QS’ Hb) - c93@(‘5'9 esa 0 b) =

Poisson(N,; | (0 ) + u(s, 6., 0 ,)) Poisson(N, I,Ltb(g)b) + p(s, ES)’ g)b)) X

T Poisson(N,; | a X pp(0))

LIKELIHOODS

ZL (S, 5;, 5),,) = [Poisson(Ni | /tb’i(?b) + py (S, 5;, 7,))]

i=1 Knut Moraa

UNBINNED
LIKELIHOODS

—_ —

NS
Zi(s, 0, 0 ) = Poisson(N | ,ub(?b) + u(s, 5;, ?b)) X H [ s
i=1

H — —
. fs(xi|S, QS, b)+

(%1 6)
Hs + Hp Pty

Z (0 ;) typically on the same form, while &, (8 ,) contains ancillary measurements— often
Gaussian terms like Gaussian(; | ;, 5,) but sometimes more complex functions, e.g. with correlations

or with a different likelihood shape




Template morphing

Knut Moraa
Photon Recombination Mismodelling
Yield Fluctuation term
Multiple bins in one or more 3000 o :-' i '_:'  et ":"'

observables (shape) analysis
requires “template morphing”

E.G Rn220 calibration data: = AT
electron-recoil model parameters “= 1000 -*
varied % , :

SRO+SR1 B
calibration data _|

SRO+SR1 A8 SRO+SR1 °
— =-0010 -

r!ﬁ' calibration data ®  .libration data
L —— PY=—1.000 —— RF=-20

1

arr

> How to map systematic 10 quantiles
variations in predicted

distribution onto a nuisance 300 —— PY=0000 | —— RF=00 h o = 0.000
parameter? . = PY =1.000 v == RE=2.0 . o =0.010
I | | | | 1 I 1 | 1 1 1 I 1 | 1 | |
310 20 30 40 50 60 310 20 30 40 50 60 3 10 20 30 40 50 6
cS1 [pe] cS1 [pe] cS1 [pe]
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https://indico.cern.ch/event/1051224/contributions/4534927/attachments/2336995/3983357/Moraa_PhystatSystematics.pdf

h o I o @ 2-5-
Shape interpolations s
X 2+
The effects of correlated systematic uncertainties on n,are ) I .
modelled using quadratic(linear) interpo(extrapo)lation — Nominal
function :: =
5 \
1 £
0 c 1
f18) = 11 - wr= | | i (85) S
Fo) L :
J = 05
Q Alternates
F(8) = > f1(9) i
% "4 3 -2 -1 0 1 2 3 4 5
o
-l _ 1
55]'((5]' p— I)K’Ij — (53 — 1)((5]' -+ 1) i 5(5](53 -+ 1)&}3 for |6]| <1
Jei _ | 1 .
pr;(65) = 4 5(3&}Lj+h:1j)—2 6j—§(nfj+n1j)+2 for §; > 1
[ | T | 1 -
\ 2—5(3@]-—{—&}3-) 53'—5(&}3--1-&”)4-2 for 0; < —1
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Caveats for shape interpolations!

Procedure relies on smooth templates to extract polynomial coefficients
—> Limited sample sizes in Monte Carlo or data used to determine alternative
templates can lead to unphysical shapes !

120

1 6=0
8=+1
100 | 1 6=-1 ]

TT[TTTT[ATTIT[TTYT
/
g
.
y
.
/
5
’ .
. B
. .
/ .
. .
/ .
. .
/ .
/ .
’ .
B .
’ .
g .
/

80 |

60

Events

40
M. Defranchis

IIII|IIII|IIII|IIIIIII

1 05 0o 05 1

20

: . : : . : : How to account for uncertainties
%.0 2.5 5.0 7.5 10.0 125 15.0 17.5 20.0 . .
X in alternative templates?

- See G. Cowan Eur. Phys. J. C (2019) 79:133 for more “uncertainties on uncertainties”

. L H » _(5 ) | 2. This approach assumes we can factorize effects on the
F((S) I3\"] shape from different parameters

i M

Nicholas Wardle


https://arxiv.org/abs/1809.05778

On shape-changing systematics

Evts

—

* Are shape-changing effects genuine? _ 0
e Don't want to model "noise" e

* Consider the example given earlier
* Looks like the changes are large! sE

C IIIIIIIIIIIIIIII|IIII
0 10 20 30 40 0 60 70 80 90 100

* Now let's also look at the uncertainties \ change in shape only e

2.—

:9:
18 5=+ 1
160=-1 J

1.4F

Ratio to nominal

12— I

1E

0.8

0.6

0.4

0.2
E 42
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Adinda De Wit

Background function
choice

- A
216 No Correction
Alternative - treat choice of functional form as a nuisance 214\
parameter in the fit [\
* Label each function with a discrete index and treat that 212"—\‘*
index as a nuisance parameter
* Minimise likelihood across all choices of index to obtain 210
profiled likelihood -
» Correct for # parameters -> -2Alogl = -2AlogL + cNpys 208~ \ 6 parameter
- function
Requires detailed studies of coverage and tune of “c” 206 '
rameter :
paramete 204:_ \\
- N
https://arxiv.org/abs/1408.6865 (JINST) 202 R o 6-par_ameter
Cot o Dvg o boy p [ en PET e g oy ¢ NGHON
-1 -0.5 0 0.5 1 LS 2 2.5
u
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https://indico.cern.ch/event/1051224/contributions/4534936/attachments/2337533/3985575/AdeWit_PHYstat_2021.pdf
https://arxiv.org/abs/1408.6865

Smarter interpolation?

Gaussian processes offer an appealing solution to this interpolation problem
—> Particularly nice that Bayesian picture offers route to estimate uncertainty on interpolation
itself (see later errors on errors!)
—> Other interpolation thoughts in Tudor Manole’s talk

Example: Template Interpolation base on variable set of input templates

10.0 delta constraints i alpha constraint Evaluations Per Bin channels concatenated
: < 70 4

75 1 interp varied
60 4

70
60 - ——

«+1 Wwithin uncert.

% s e ca
. . \
A

40 1 " D 40 1 \
w R
20 1

interp. uncertainty 5.0\

05
25 \ g
o Yo

@ B3
0.0 1 :oom:'ooooououz:no 00 mean

25 %eee® %e 2 1 interpolation
05

-5 0 20 1

=1 =" 10 - 10

10 o T 1 5 0 L T Ll L 0 T 4 L) L T

0 5 0 15 20 -1 / 15 0 5 10 15 20 0 5 0 15 20

actual simul. interpolation

oints targets .
P = Lukas Heinrich
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https://indico.cern.ch/event/1051224/contributions/4534928/attachments/2337067/3984405/PHYSTAT_Systematics.pdf
https://indico.cern.ch/event/1051224/contributions/4569120/attachments/2337900/3985125/Manole_Phystat2021%5b53%5d.pdf

Goodness of Fit (toy example)

Compatibility of data and prediction in distributions used for combined measurements —
No alternate hypothesis 2 how to make a likelihood test?

Make use of the saturated likelihood : compare likelihood at “best-fit” under model with
that of best possible fit to data ...

~ d.:
. . , v Generate toys under f;to
2 Z fZ(H) d’L + d’L lIl f@ (é) caIcuIatte ;—\Yalue t

X

1

— - htemp
g B B } Entries 1000
~ - 50— Mean 10.26
% 25— N Std Dev  4.771
o L
L

20

15—

10—

5

O_IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

0 1 2 3

Bin Number

Nicholas Wardle 45



Published likelihoods

ATLAS-PHYS-PUB-2019-029

Measurement: :PrintXML()

Can publish full likelihoods - eg.using pyHF

JSON based (ROOT/XML free) encoded workspaces g cle

pyhf xleJson
containing full likelihood model iV 1 EJ
pyhf wz_)rkspace
Example: ATLAS search for sbottom production TR
b1 b1 productlon b‘—>b;(2—>bhxO m(x) 60 GeV ATLAS-CONF-2019-11
: . - . Sy C T T T [ G & W& ae [ ]
Likelihood validated against ROOT 3 1600 éTLAS Preliminary 7
i = B 13 TeV, 139.0 fb™ 2
based (experimental) results by S . F aimmeel :
. . g 1400— --- - Expected Limit roundtrlpl 1(+1 o ]
comparing exclusion contours F o el i loven (L1 7 .
[ 27 Olzewed Limit urzc}tn / -
12001~ Gpseved pmit (ROGT)” e
Can swap out components of 10003_ _
likelihood directly inside workspaces! i ]
800[— =]
- With care, one can build joint 600 -
(combined) likelihoods from these P =
inputs : -
200 L PR Gt e TR | |

400 600 800 1000 1200 1400 _ 1600

m(b,) [GeV]
Similar tool HepLike : https://github.com/mchrzasz/HEPLike

Nicholas Wardle
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