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PHYSTAT-Systematics Workshop

https://indico.cern.ch/event/1051224/

A remote Workshop devoted to the way 
systematic uncertainties are incorporated 
in data analyses in Particle Physics. 

1st – 3rd November 2021: Three afternoons 
presentations/discussions/responses. 
Contributions from Physicists & Statisticians

All contributions & session recordings 
available at : 
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https://indico.cern.ch/event/1051224/
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(some of) The experimental particle physics landscape

Energy frontier (my area)  

Flavor physics

Dark sector

Neutrino physics

Astroparticle/cosmology

In this talk I’ll try to cover 
some common issues …



The Good: Your own calibrations à basically 
statistical 

The Bad: Using other peoples results, poorly 
modelled data or analysis technique, model 
assumptions, …

The Ugly: Different theoretical estimates, 
theory with limited number of terms, …

*Pekka Sinervo – PHYSTAT 2003

The Good, The Bad and The Ugly* 
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Sources of systematic uncertainty
Huge array of sources of systematic uncertainty in particle physics experiments (see individual talks for details)…

• Dark matter experiments : Systematics of direct Dark Matter signals experiments and models – Knut Moraa
• Searches at the LHC : Systematics at LHC for event selection, discovery and limits – Lukas Heinrich
• Precision measurements at colliders & beam expts. : Precision measurements – Alexander Glazov
• Neutrino oscillation experiments : Systematics in a selection of neutrino oscillation experiments – Christophe Bronner
• Searches and measurements in flavour physics : Flavour Physics – Thomas Blake
• Uncertainties in Theory calculations : Theory uncertainties – Frank Tackmann
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https://indico.cern.ch/event/1051224/contributions/4534927/attachments/2336995/3983357/Moraa_PhystatSystematics.pdf
https://indico.cern.ch/event/1051224/contributions/4534928/attachments/2337067/3984405/PHYSTAT_Systematics.pdf
https://indico.cern.ch/event/1051224/contributions/4534929/attachments/2337007/3983392/stat21.pdf
https://indico.cern.ch/event/1051224/contributions/4534931/attachments/2337168/3983723/NeutrinoExperiments.pdf
https://indico.cern.ch/event/1051224/contributions/4534932/attachments/2337188/3983766/tblake_systematics.pdf
https://indico.cern.ch/event/1051224/contributions/4534935/attachments/2337620/3985299/2021-11-02_PHYSTAT_theory_unc_FT.pdf
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Lukas Heinrich 

Huge array of sources of systematic uncertainty in particle physics experiments (see individual talks for details)…

• Dark matter experiments : Systematics of direct Dark Matter signals experiments and models – Knut Moraa
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Systematic Recipes

- Error propagation 
à Change a single parameter of the model / swap out the nominal model 

for an alternate one representing a systematic shift from particular source: 
One Parameter at a Time (OPAT) 
à Throw random toys representing systematic variations to determine 

spread of results à MC method
à Difference in result(s) (measurement) quoted as systematic 

uncertainty due to that source(s) 

Typically (broadly) two strategies for including systematic uncertainties in limits, 
measurements, …  Thomas Blake

7

https://indico.cern.ch/event/1051224/contributions/4534932/attachments/2337188/3983766/tblake_systematics.pdf


Systematic Recipes

- Error propagation 
à Change a single parameter of the model / swap out the nominal model 

for an alternate one representing a systematic shift from particular source: 
One Parameter at a Time (OPAT) 
à Throw random toys representing systematic variations to determine 

spread of results à MC method
à Difference in result(s) (measurement) quoted as systematic 

uncertainty due to that source(s) 

- Likelihood based approach
à Systematic uncertainties encoded as Nuisance Parameters in 

probability density model 
à Constraints / Priors for nuisance parameters often derived from one or 

more “Preliminary analysis” 
à Construct likelihood for “Primary analysis” and profile/marginalize over 

nuisance parameters 

Typically (broadly) two strategies for including systematic uncertainties in limits, 
measurements, …  

I leave the proper discussion of these approaches to Sara Algeri’s
(Statistician’s view) talk!

profile
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Error propagation

Uncertainty due to source “sj” on measurement “μi” determined as  

For independent sources, sum in quadrature (over i) to get total uncertainty on each measurement. 

Good for simplicity of implementation but need to be careful about keeping track of signs

OPAT : One Parameter At a Time
Alexander Glazov
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Error propagation

Uncertainty due to source “sj” on measurement “μi” determined as  

For independent sources, sum in quadrature (over i) to get total uncertainty on each measurement. 

Good for simplicity of implementation but need to be careful about keeping track of signs

OPAT : One Parameter At a Time

MC method

Prepare random samples of systematic shifts
according to some distribution ( e.g r ~ N(0,1)  ) 

Alexander Glazov

Repeat measurements for each sample and estimate 
uncertainty according to 
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Discussion points:
• “Is providing 

covariance enough?”

https://indico.cern.ch/event/1051224/contributions/4534929/attachments/2337007/3983392/stat21.pdf


Alexander Glazov

MC variations also used to determine 
correlation between reconstruction 
efficiency measurements

à Differential Z&W boson cross-
sections rely on detailed 
understanding of correlations across 
different rapidity regions

ATLAS differential 
X-sections 
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Nuisance parameters

Nuisance parameters ν “built into” statistical model (probability density)

à Need to parameterize effects of nuisance parameters on density

Ε.g let 

Build nuisance parameter effects from shifting source and calculating 
size of effect on λ

p =
�ne��

n!
<latexit sha1_base64="W5BwMybNnVQhwGiXWbXPsdjThTY=">AAACDnicbVA7T8MwGHR4lvIKMLIYqkosVElBggWpgoWxSPQhNWnluE5r1XEi20GqrPwCFv4KCwMIsTKz8W9w2wzQcpKl8913sr8LEkalcpxva2l5ZXVtvbBR3Nza3tm19/abMk4FJg0cs1i0AyQJo5w0FFWMtBNBUBQw0gpGNxO/9UCEpDG/V+OE+BEacBpSjJSRenY5uYJeKBDWHjOpPupqnpGuPs2vWab5UdazS07FmQIuEjcnJZCj3rO/vH6M04hwhRmSsuM6ifI1EopiRrKil0qSIDxCA9IxlKOISF9P18lg2Sh9GMbCHK7gVP2d0CiSchwFZjJCaijnvYn4n9dJVXjpa8qTVBGOZw+FKYMqhpNuYJ8KghUbG4KwoOavEA+RKUeZBoumBHd+5UXSrFbcs0r17rxUu87rKIBDcAxOgAsuQA3cgjpoAAwewTN4BW/Wk/VivVsfs9ElK88cgD+wPn8AuJ+ciw==</latexit>

�(⌫) = �0(1 + k)⌫
ν

λp(data|✓) ! p(data|✓, ⌫)
<latexit sha1_base64="DM4A8Vu92SJVTVLqc4oKkTlFEtc=">AAACJ3icbVBNSwMxFMz6WetX1aOXYBEUpOxWQU9S9OKxglWhu5S3adoGs9kleauUtf/Gi3/Fi6AievSfmNY9aO1AYJiZR96bMJHCoOt+OlPTM7Nz84WF4uLS8spqaW390sSpZrzBYhnr6xAMl0LxBgqU/DrRHKJQ8qvw5nToX91ybUSsLrCf8CCCrhIdwQCt1CodJzt+BNjTUdYGhMG9jz2OsOtr0e0haB3f0cmRPV+lu61S2a24I9D/xMtJmeSot0ovfjtmacQVMgnGND03wSADjYJJPij6qeEJsBvo8qalCiJugmx054BuW6VNO7G2TyEdqb8nMoiM6UehTQ4XNuPeUJzkNVPsHAWZUEmKXLGfjzqppBjTYWm0LTRnKPuWANPC7kpZDzQwtNUWbQne+Mn/yWW14u1XqucH5dpJXkeBbJItskM8ckhq5IzUSYMw8kCeyCt5cx6dZ+fd+fiJTjn5zAb5A+frG5e3p5c=</latexit>
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Nuisance parameters

p(data|✓) ! p(data|✓, ⌫)
<latexit sha1_base64="DM4A8Vu92SJVTVLqc4oKkTlFEtc=">AAACJ3icbVBNSwMxFMz6WetX1aOXYBEUpOxWQU9S9OKxglWhu5S3adoGs9kleauUtf/Gi3/Fi6AievSfmNY9aO1AYJiZR96bMJHCoOt+OlPTM7Nz84WF4uLS8spqaW390sSpZrzBYhnr6xAMl0LxBgqU/DrRHKJQ8qvw5nToX91ybUSsLrCf8CCCrhIdwQCt1CodJzt+BNjTUdYGhMG9jz2OsOtr0e0haB3f0cmRPV+lu61S2a24I9D/xMtJmeSot0ovfjtmacQVMgnGND03wSADjYJJPij6qeEJsBvo8qalCiJugmx054BuW6VNO7G2TyEdqb8nMoiM6UehTQ4XNuPeUJzkNVPsHAWZUEmKXLGfjzqppBjTYWm0LTRnKPuWANPC7kpZDzQwtNUWbQne+Mn/yWW14u1XqucH5dpJXkeBbJItskM8ckhq5IzUSYMw8kCeyCt5cx6dZ+fd+fiJTjn5zAb5A+frG5e3p5c=</latexit>

⌫2
<latexit sha1_base64="yJVE2sHZtD9PKb8TmuuSEH0YN2M=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lqQY9FLx4r2A9oQ9lsJ+3SzSbsboQS+iO8eFDEq7/Hm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJaPZpqgH9GR5CFn1Fip05fpIKvNBuWKW3UXIOvEy0kFcjQH5a/+MGZphNIwQbXueW5i/Iwqw5nAWamfakwom9AR9iyVNELtZ4tzZ+TCKkMSxsqWNGSh/p7IaKT1NApsZ0TNWK96c/E/r5ea8MbPuExSg5ItF4WpICYm89/JkCtkRkwtoUxxeythY6ooMzahkg3BW315nbRrVe+qWnuoVxq3eRxFOINzuAQPrqEB99CEFjCYwDO8wpuTOC/Ou/OxbC04+cwp/IHz+QNO74+M</latexit>

⌫1
<latexit sha1_base64="DmcmdWeGWyrw+xD1xgvk2VsZa4I=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lqQY9FLx4r2A9oQ9lsJ+3SzSbsboQS+iO8eFDEq7/Hm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJaPZpqgH9GR5CFn1Fip05fpIPNmg3LFrboLkHXi5aQCOZqD8ld/GLM0QmmYoFr3PDcxfkaV4UzgrNRPNSaUTegIe5ZKGqH2s8W5M3JhlSEJY2VLGrJQf09kNNJ6GgW2M6JmrFe9ufif10tNeONnXCapQcmWi8JUEBOT+e9kyBUyI6aWUKa4vZWwMVWUGZtQyYbgrb68Ttq1qndVrT3UK43bPI4inME5XIIH19CAe2hCCxhM4Ble4c1JnBfn3flYthacfOYU/sD5/AFNao+L</latexit>

Nuisance parameters ν “built into” statistical model (probability density)

à Need to parameterize effects of nuisance parameters on density

Ε.g let 

Suppose we want to model the effect of multiple nuisance parameters? 
Typical choice is to factorize effects as multiplicative terms

Discussion points: 
• “How good is this factorisation assumption?” 
• “How can we effectively test it when we have O(100) nuisance 

parameters?”

p =
�ne��

n!
<latexit sha1_base64="W5BwMybNnVQhwGiXWbXPsdjThTY=">AAACDnicbVA7T8MwGHR4lvIKMLIYqkosVElBggWpgoWxSPQhNWnluE5r1XEi20GqrPwCFv4KCwMIsTKz8W9w2wzQcpKl8913sr8LEkalcpxva2l5ZXVtvbBR3Nza3tm19/abMk4FJg0cs1i0AyQJo5w0FFWMtBNBUBQw0gpGNxO/9UCEpDG/V+OE+BEacBpSjJSRenY5uYJeKBDWHjOpPupqnpGuPs2vWab5UdazS07FmQIuEjcnJZCj3rO/vH6M04hwhRmSsuM6ifI1EopiRrKil0qSIDxCA9IxlKOISF9P18lg2Sh9GMbCHK7gVP2d0CiSchwFZjJCaijnvYn4n9dJVXjpa8qTVBGOZw+FKYMqhpNuYJ8KghUbG4KwoOavEA+RKUeZBoumBHd+5UXSrFbcs0r17rxUu87rKIBDcAxOgAsuQA3cgjpoAAwewTN4BW/Wk/VivVsfs9ElK88cgD+wPn8AuJ+ciw==</latexit>

�(⌫) = �0(1 + k1)
⌫1(1 + k2)

⌫2

Lukas Heinrich
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Template morphing
Linear interpolation* between p(x|α) at fixed values 
of α yields empirical parameterisation. 

* Note, much more common to use polynomial interpolation (see backup)

Adinda De Wit
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Template morphing
Linear interpolation* between p(x|α) at fixed values 
of α yields empirical parameterisation. 

* Note, much more common to use polynomial interpolation (see backup)

Cannot always rely on this approach (vertical 
interpolation) à e.g very typical in large shifts of the 
mean 

Adinda De Wit
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https://indico.cern.ch/event/1051224/contributions/4534936/attachments/2337533/3985575/AdeWit_PHYstat_2021.pdf


Non-Gaussian effects

Alexander Glazov
16

Precision measurements need precision modeling 
• Often use fixed points (-1σ, 0σ, +1σ) for interpolation 
• Assume Gaussian behavior 2σ = 2 x 1σ
• Not necessarily true that this holds for all kinds of 

uncertainties 
• E.g vs �(⌫) = �0(1 + �⌫) �(⌫) = �0(1 + �)⌫

https://indico.cern.ch/event/1051224/contributions/4534929/attachments/2337007/3983392/stat21.pdf


Non-Gaussian effects

Alexander Glazov

Precision measurements need precision modeling 
• Often use fixed points (-1σ, 0σ, +1σ) for interpolation 
• Assume Gaussian behavior 2σ = 2 x 1σ
• Not necessarily true that this holds for all kinds of 

uncertainties 
• E.g vs 

Discussion points: 
• “Should we sample many different parameter values to 

build suitable parameterisation?”
• “Are there smarter ways (eg GPs/ML?) to automate?”

�(⌫) = �0(1 + �⌫) �(⌫) = �0(1 + �)⌫

ν1
ν2Ch
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https://indico.cern.ch/event/1051224/contributions/4534929/attachments/2337007/3983392/stat21.pdf
https://indico.cern.ch/event/1051224/contributions/4534931/attachments/2337168/3983723/NeutrinoExperiments.pdf


Monte Carlo statistics uncertainties

Adinda De Wit

Often rely heavily on Monte Carlo event simulation to estimate 
probability densities and construct likelihoods 

Generating MC can be CPU expensive so need to account for limited 
MC sample size when performing statistical analysis 

Statistical in nature à in principle easy to model (need to account 
for weights in MC which are not always equal for a given sample)

Tricks such as the Barlow-Beeston method help reduce impact on 
statistical analysis CPU time due to flood of additional nuisance 
parameters
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Simulation statistics

Christophe Bronner

Nominal distributions (probability density) often determined using Monte Carlo Simulated events 
à Also use simulation directly to determine variation in different bins of some observable 

e.g energy scale for momentum distribution in T2K  

Shift energy scale in simulation and calculate 
migration between neighboring bins 

MC stat 
uncertainty

Jumps in χ2 due to events jumping between 
bins 19
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Simulation statistics

Christophe Bronner

Nominal distributions (probability density) often determined using Monte Carlo Simulated events 
à Also use simulation directly to determine variation in different bins of some observable 

e.g energy scale for momentum distribution in T2K  

Shift energy scale in simulation and calculate 
migration between neighboring bins 

MC stat 
uncertainty

20

https://indico.cern.ch/event/1051224/contributions/4534931/attachments/2337168/3983723/NeutrinoExperiments.pdf


Simulation statistics
Nominal distributions (probability density) often determined using Monte Carlo Simulated events 
à Also use simulation directly to determine variation in different bins of some observable 

e.g energy scale for momentum distribution in T2K  

Shift energy scale in simulation and calculate 
migration between neighboring bins 

MC stat 
uncertainty

Regularisation can help smooth out these effects: e.g
distribute events across-bins (assign ”width” to each 
event)

Christophe Bronner
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Discrete choices

In some cases, not obvious how to construct parameterization 
of a systematic uncertainty  - Two point systematic 
à Typically related to a model choice : eg Pythia vs Herwig for 
Parton shower model

How do we account for this uncertainty ?

à Bayesian might assign equal prior to each and marginalize, 
Frequentist might construct “average model”

22



Discrete choices

In some cases, not obvious how to construct parameterization 
of a systematic uncertainty  - Two point systematic 
à Typically related to a model choice : eg Pythia vs Herwig for 
Parton shower model

How do we account for this uncertainty ?

à Bayesian might assign equal prior to each and marginalize, 
Frequentist might construct “average model”

à Average model might not necessarily correspond to 
something meaningful 

Phillip Litchfield two lane traffic example 
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Discrete choices

In some cases, not obvious how to construct parameterization 
of a systematic uncertainty  - Two point systematic 
à Typically related to a model choice : eg Pythia vs Herwig for 
Parton shower model

How do we account for this uncertainty ?

à Bayesian might assign equal prior to each and marginalize, 
Frequentist might construct “average model”

à Average model might not necessarily correspond to 
something meaningful 

à E.G tt+HF background in ttH(àbb) measurements includes 
uncertainties from comparing treatment of b-quark in parton
density functions 
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LHCHWG-2022-003

https://cds.cern.ch/record/2812088


Background function choice
Ad-hoc parameterization of background function for peak-fitting is a source of uncertainty 
à Without clear motivation for one parameter or another, different choices result in different 
measured values of parameter of interest

25



Background function 
choice

Adinda De Wit

Include potential bias from using wrong function as additional 
source of uncertainty in likelihood à parameterised as a Gaussian 
constrained nuisance parameter

• Generate toys from the red (”true”) function with known 
signal strength

• Fit those toys with the green background function + 
measuring the amount of signal

• Bias in the amount of fitted signal induced by fitting with the 
green function instead of the red à distribution of fitted 
signal - injected signal

• Include as additional component when measuring signal

• Alternative approach (discrete profiling): JINST (2015) 10 P04015
26
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How do we know what 
matters? 
Diagnostic tools help to quantify which sources of systematic 
uncertainty are most relevant in particular measurement 

à e.g measurement “impact” defined as 

à Note similarity to OPAT à nuisance parameters can be 
varied one at a time to assess effect on measurement

�(µ) = µ̂(✓ = ✓̂ +�✓)� µ̂(✓ = ✓̂)
<latexit sha1_base64="VeOcyEvHXv8IUuGSC4GVkOWTIsw=">AAACQXicfZC7SwNBEMb3fBtfUUubxSAkiOFOBW0EUQtLBaOBXAhzm4lZ3HuwOyeEI/+ajf+Bnb2NhSK2Nm5yKXzhwMJvvvmG3f2CRElDrvvojI1PTE5Nz8wW5uYXFpeKyyuXJk61wJqIVazrARhUMsIaSVJYTzRCGCi8Cm6OB/OrW9RGxtEF9RJshnAdyY4UQFZqFev+CSqCsh+mFX7A/S6QxbJPXSQ4GLRZzn2+yXNv3lf41n/uSqtYcqvusPhv8EZQYqM6axUf/HYs0hAjEgqMaXhuQs0MNEmhsF/wU4MJiBu4xobFCEI0zWyYQJ9vWKXNO7G2JyI+VL9uZBAa0wsD6wyBuubnbCD+NWuk1NlvZjJKUsJI5Bd1UsUp5oM4eVtqFKR6FkBoad/KRRc0CLKhF2wI3s8v/4bL7aq3U90+3y0dHo3imGFrbJ2Vmcf22CE7ZWesxgS7Y0/shb06986z8+a859YxZ7Szyr6V8/EJgCGvtQ==</latexit>
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How do we know what 
matters? 

Discussion points: 
• “Are we ok that our tt analysis fit updates our knowledge of 

Jet Energy Resolution?”
• “Is there a better way to include uncertainty due to model 

choice than taking difference between (eg) simulations?”

Diagnostic tools help to quantify which sources of systematic 
uncertainty are most relevant in particular measurement 

à e.g measurement “impact” defined as 

à Note similarity to OPAT à nuisance parameters can be 
varied one at a time to assess effect on measurement

�(µ) = µ̂(✓ = ✓̂ +�✓)� µ̂(✓ = ✓̂)
<latexit sha1_base64="VeOcyEvHXv8IUuGSC4GVkOWTIsw=">AAACQXicfZC7SwNBEMb3fBtfUUubxSAkiOFOBW0EUQtLBaOBXAhzm4lZ3HuwOyeEI/+ajf+Bnb2NhSK2Nm5yKXzhwMJvvvmG3f2CRElDrvvojI1PTE5Nz8wW5uYXFpeKyyuXJk61wJqIVazrARhUMsIaSVJYTzRCGCi8Cm6OB/OrW9RGxtEF9RJshnAdyY4UQFZqFev+CSqCsh+mFX7A/S6QxbJPXSQ4GLRZzn2+yXNv3lf41n/uSqtYcqvusPhv8EZQYqM6axUf/HYs0hAjEgqMaXhuQs0MNEmhsF/wU4MJiBu4xobFCEI0zWyYQJ9vWKXNO7G2JyI+VL9uZBAa0wsD6wyBuubnbCD+NWuk1NlvZjJKUsJI5Bd1UsUp5oM4eVtqFKR6FkBoad/KRRc0CLKhF2wI3s8v/4bL7aq3U90+3y0dHo3imGFrbJ2Vmcf22CE7ZWesxgS7Y0/shb06986z8+a859YxZ7Szyr6V8/EJgCGvtQ==</latexit>
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Can we avoid what doesn’t matter all 
together?

Machine learning methods to “learn” the 
variation of probability density wrt
systematic variations 

à E.g Use adversarial methods to teach ML 
classifiers to reduce effect of systematic 
uncertainties on observable distribution!

à See example : recent CMS LLP tagger 
using this approach "A deep neural 
network to search for new long-lived 
particles decaying to jets"

à Lots of overlap with discussions around 
LFI/SBI [1] for PP applications (see session 
this afternoon)

Kyle Cranm
er 

29[1] See arXiv:1907.10621 for a good review 

https://arxiv.org/abs/1912.12238
https://indico.cern.ch/event/1051224/contributions/4534940/attachments/2338808/3986931/PhyStat-systematics-ML-2021.pdf
https://arxiv.org/abs/1907.10621


Communicating what we did
Particle physics experiments involve extremely complex likelihoods (many 
different regions in data and many hundreds of nuisance parameters)
à Communicating this to statisticians & preservation of statistical model a 
challenge!
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Communicating what we did
Particle physics experiments involve extremely complex likelihoods (many 
different regions in data and many hundreds of nuisance parameters)
à Communicating this to statisticians & preservation of statistical model a 
challenge!

Recent paper to (finally) push 
for publication of these models!

SciPost Phys. 12, 037 (2022) 
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https://arxiv.org/abs/2109.04981


Summary of my Summary
Particle physics experiments deal with a vast array of sources of systematic uncertainties 

à A particle physicist might spend most of their time on dealing with these for a publication!

Discussion items (or Q’s for a statistician):
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• When reporting uncertainties in OPAT is providing covariance 
enough?

• When modelling systematic uncertainties using nuisance 
parameters, Should we sample many different parameter values to 
build suitable parameterisation and are there smarter ways (eg
GPs/ML?) to automate this?

• Are we ok that our fit updates our knowledge of certainty nuisance 
parameters?

• Is there a better way to include uncertainties due to model choice 
than taking difference between (eg) simulations? Or approaches 
such as inflating uncertainty to cover potential bias / discrete profile 
method?



Summary of my Summary
Particle physics experiments deal with a vast array of sources of systematic uncertainties 

à A particle physicist might spend most of their time on dealing with these for a publication!

Thanks for your Attention! 

Discussion items (or Q’s for a statistician):
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• When reporting uncertainties in OPAT is providing covariance 
enough?

• When modelling systematic uncertainties using nuisance 
parameters, Should we sample many different parameter values to 
build suitable parameterisation and are there smarter ways (eg
GPs/ML?) to automate this?

• Are we ok that our fit updates our knowledge of certainty nuisance 
parameters?

• Is there a better way to include uncertainties due to model choice 
than taking difference between (eg) simulations? Or approaches 
such as inflating uncertainty to cover potential bias / discrete profile 
method?



Backup Slides 
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Errors on Errors?
Eur. Phys. J. C (2019) 79:133

Uncertainty on parameterization model 
due to limited MC samples could be 
addressed by including errors on the 
parameterization (errors on errors)

Alessandra Brazzale

Typical test-statistics can be modified to maintain good 
asymptotic properties 

= relative error on error 35

file:///Eur.%20Phys.%20J.%20C%20(2019)%2079/13
https://indico.cern.ch/event/1051224/contributions/4540321/attachments/2337195/3983787/PhyStatSyst_Brazzale%5b7%5d.pdf


Theory uncertainties Frank Tackmann

Aim to estimate uncertainty due to contribution of neglected terms 
• Typical strategy of using “scale variations” not always guaranteed 

to cover most accurate calculation 
• Not obvious what to assume for distribution – is Δσ the width of a 

Gaussian?
• How to correlate different sources (scale parameters are not real 

parameters of the model) 36

https://indico.cern.ch/event/1051224/contributions/4534935/attachments/2337620/3985299/2021-11-02_PHYSTAT_theory_unc_FT.pdf


Theory uncertainties Frank Tackmann

Instead identify the actual source of uncertainty and 
parameterize our knowledge of the structure of missing terms
• Introduce “Theory nuisance parameters” à genuine 

parameterization of missing terms
• Appeal to CLT for total theory uncertainty à Gaussian 

distribution well motivated Example Z-pT distribution

37

https://indico.cern.ch/event/1051224/contributions/4534935/attachments/2337620/3985299/2021-11-02_PHYSTAT_theory_unc_FT.pdf


Knut Moraa
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Template morphing
Knut Moraa

Multiple bins in one or more 
observables (shape) analysis 
requires “template morphing”

E.G Rn220 calibration data: 
electron-recoil model parameters 
varied 

à How to map systematic 
variations in predicted 
distribution onto a nuisance 
parameter?

1σ quantiles

3σ quantiles

39

https://indico.cern.ch/event/1051224/contributions/4534927/attachments/2336995/3983357/Moraa_PhystatSystematics.pdf


The effects of correlated systematic uncertainties on nI are 
modelled using quadratic(linear) interpo(extrapo)lation
function 

Shape interpolations
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Caveats for shape interpolations!

41Nicholas Wardle

Procedure relies on smooth templates to extract polynomial coefficients 
à Limited sample sizes in Monte Carlo or  data used to determine alternative 

templates can lead to unphysical shapes !

2. This approach assumes we can factorize effects on the 
shape from different parameters 

à See G. Cowan Eur. Phys. J. C (2019) 79:133 for more “uncertainties on uncertainties”

M. Defranchis

A. Popov
Ηοw to account for uncertainties 
in alternative templates?

θ

https://arxiv.org/abs/1809.05778
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Adinda De WitBackground function 
choice

Alternative - treat choice of functional form as a nuisance 
parameter in the fit 
• Label each function with a discrete index and treat that 

index as a nuisance parameter
• Minimise likelihood across all choices of index to obtain 

profiled likelihood
• Correct for # parameters -> -2ΔlogL à -2ΔlogL + cNpars

Requires detailed studies of coverage and tune of “c” 
parameter

https://arxiv.org/abs/1408.6865 (JINST)
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https://indico.cern.ch/event/1051224/contributions/4534936/attachments/2337533/3985575/AdeWit_PHYstat_2021.pdf
https://arxiv.org/abs/1408.6865


Smarter interpolation?

Lukas Heinrich

Gaussian processes offer an appealing solution to this interpolation problem 
à Particularly nice that Bayesian picture offers route to estimate uncertainty on interpolation 
itself (see later errors on errors!)
à Other interpolation thoughts in Tudor Manole’s talk 
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https://indico.cern.ch/event/1051224/contributions/4534928/attachments/2337067/3984405/PHYSTAT_Systematics.pdf
https://indico.cern.ch/event/1051224/contributions/4569120/attachments/2337900/3985125/Manole_Phystat2021%5b53%5d.pdf
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Goodness of Fit (toy example) 
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Compatibility of data and prediction in distributions used for combined measurements –
No alternate hypothesis à how to make a likelihood test?

Make use of the saturated likelihood : compare likelihood at “best-fit” under model with 
that of best possible fit to data …

f i

Generate toys under fi to 
calculate p-valuex = 2

X

i

fi(✓̂)� di + di ln
di

fi(✓̂)
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