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Machine Learning Is Used Across HEP Data Ana

ySis :
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Questions of Concern ;

Is there uncertainty from using the ML Model?

What kinds of uncertainty?
What if the ML model did not “perfectly” fit the data?

When does it matter? This Talk

How to deal with HEP Systematic Uncertainties when using ML Models?

Tommaso’s Talk

Also nice discussion in: PDG review of ML in HEP



https://pdg.lbl.gov/2021/reviews/rpp2021-rev-machine-learning.pdf

Supervised Learning Setup .

Training Data:
*D = {x;,y;} = features and target

*x,y ~p(x,y)

Family of Functions

f w ( x) ftrue ( x)

Goal:

*Learn f,(x) =9
*w = model weights

“True” Function

Learning:
. _ Optimization: Get as close as
*w =arg mul/n L possible to f14€ (x)

= arg min - % L, fiy ()



Types of Uncertainties in ML

Aleatoric Uncertainty: Epistemic Uncertainty:

Inherent variations in data, e.g. Due to lack of knowledge, lack of

due to randomness of the process data, incomplete information
Uncertainty induced by ® Measured Temperature

noise of the data : aleatoric e 45 o — Predictions
Uncertainties

} Interval
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Uncertainty due to lack
of data : epistemic

Image Credit: N. Brunel



Types of Uncertainties in ML

Epistemic Uncertainty:
Due to lack of knowledge, lack of
data, incomplete information

Aleatoric Uncertainty:

Inherent variations in data, e.g.
due to randomness of the process

Uncertainty induced by ® Measured Temperature
noise of the data : al{ 4, — E;ec‘gftg?:tstes
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Aleatoric Uncertainty :

Often called “Statistical Uncertainty” and considered “Irreducible”

Variability in outcome of experiment due to inherently random effects

*Example: y = f(x) + ¢ where e~N(0,0) —» y~N(f(x), o)
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https://arxiv.org/abs/1711.02692
https://openreview.net/forum?id=rJl8BhRqF7

Epistemic Uncertainty ;

Lack of knowledge about best model

Family of Functions

“True” Function

Estimated Model

Main origins in ML

true
. . X
e Estimation error: ‘f (x)
Training data just asampleof | /7 TN v
possible observations
Best Model

* Approximation error:
no model (in model class) can
capture unknown true model

Optimization:
Get as close as
Often considered “reducible” with possible to 7€ (x)

more data or more complex model



Domain / Distribution / Dataset Shift ;

Image: 1903.12261

PresT(X,Y) # Prrain (X, Y)

Training distribution different from
distribution model is applied to

Shift intensity


https://arxiv.org/abs/1903.12261

Domain / Distribution / Dataset Shift

10

presT(X,Y) # DrRAIN (X, Y)

Training distribution different from
distribution model is applied to

Similar to Systematic Uncertainties
* Simulation used to train model
* But Simulation not perfect model of data

* ML model trained on simulation may act
differently in data

Image: 1903.12261

Severity = 4 Severity = 5

p(f)

A

Psim (/) Ppara(f)



https://arxiv.org/abs/1903.12261

What Kind of Model Are We Talking About? i

Discriminator

[
¢

Physics Model in Simulator Machine Learning Model
Model data generation process Fit to data, relatively little inductive
using Physics Knowledge bias in model design and optimization
Epistemic Uncertainty: Epistemic Uncertainty:
* Lack of knowledge of data generation * Often assumes training data = test data
Process * Lack of knowledge about which are the
* Leads to data/simulation mismatch best parameters of model after training

* Systematic Uncertainties

Also see PDG review of ML in HEP



https://pdg.lbl.gov/2021/reviews/rpp2021-rev-machine-learning.pdf

When are ML Model Uncertainties Needed? 2
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* § = physics parameters of interest

* A(+) = parameters of probability density
e.g. mean of Poisson / Gaussian density

EPJC 80 (2020) 942

T Ignoring Systematics for the moment


https://link.springer.com/article/10.1140/epjc/s10052-020-8223-0?wt_mc=Internal.Event.1.SEM.ArticleAuthorIncrementalIssue&utm_source=ArticleAuthorIncrementalIssue&utm_medium=email&utm_content=AA_en_06082018&ArticleAuthorIncrementalIssue_20201015

When are ML Model Uncertainties Needed? s
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* Did ML get best reconstruction or event selection? &

* Effects definition of discriminating variables, but
doesn’t affect compatibility with data
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When are ML Model Uncertainties Needed? y
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Questions of correctness:

* Did ML learn an accurate fast simulation?
* Did ML learn a good background estimate?
* Effects statistical model & compatibility with data!

EPJC 80 (2020) 942

T Ignoring Systematics for the moment


https://link.springer.com/article/10.1140/epjc/s10052-020-8223-0?wt_mc=Internal.Event.1.SEM.ArticleAuthorIncrementalIssue&utm_source=ArticleAuthorIncrementalIssue&utm_medium=email&utm_content=AA_en_06082018&ArticleAuthorIncrementalIssue_20201015

ML Model Uncertainty can look like Systematic Uncertainties

Example:

Simulation not a perfect model of data
* Calibration procedure using control data

Fit ML model as simulator surrogate

ML Surrogate not a perfect model of
simulator or data

What to do:

* Estimate epistemic / model uncertainty?

* Calibrate surrogate with control data
& estimate systematic uncertainty?

p(x)

A

Psim (x)

P (X)

Ppara(x)
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Uncertainty Estimation Approaches in Deep Learning



Uncertainty Estimation Approaches in Deep Learning .

o Gradient Metrices'

e Additional Network
for Uncertainty?

e Distance to Training

Data’

e Augmentation
Policies™

 Prior Networks*

e Evidential Neural
Networks®

o Gradient penalties’

© Sub-Ensembles™
e Batch-Ensembles®

e Application of
Variational Inference®

e Stochastic Vaniational
Inference”

« Normalizing flows'®

o Monte-Carlo
Dropout!?

\.

«Model Pruning®
 Distillation®

 Original works'?

e Diagonal Information

Stochastic MCMC" Matrix * e i
:Thcorctic Advances™ « Kronecker- P S ln!lmllxaza!md
E S e Data Shuffling
Sactonz[a;m } «Bagging/ Boosting "
» h:::: o ormation «Single Training Run™

A Survey of Uncertainty in Deep Neural Networks, J. Gawlikowski et al,,
arXiv:2107.03342


https://arxiv.org/abs/2107.03342

Modeling Aleatoric Uncertainty

18

Intrinsic randomness in data — Typically described by probability distributions
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Modeling Aleatoric Uncertainty 19

Intrinsic randomness in data — Typically described by probability distributions

wa ()

wi(z1)
oy(z1)
oy(x1)

Density Networks —

I‘l('ml) /“.’('ml)

Define density Do (ylx) with params ¢ wi(@1) (1) 01(2) wa(@) pa(@r)o2 (1)

Y

Train neural network to predict
per-example parameters

fx) = ¢(x)

Mixture density network

Image Credit: Bishop, Pattern Recognition and Machine Learning



Modeling Aleatoric Uncertainty 20

Intrinsic randomness in data — Typically described by probability distributions

Generative ML Models
Approximate density p(x) by learning to transform noise z into data

z~p(z)
X = fuw(2)

p(X) = Pagra(x)
f ( Z) Invegr(tible

< Tractable X
Normalizing flows use Jacobian x
invertible functions with

tractable Jacobian s.t.

S J
Y
Many simple layers
composed to produce f

Approximates
desired dist.

0 -1
px(x) = p,(2) |det =

Easily sampled



Modeling Aleatoric Uncertainty ’

Intrinsic randomness in data — Typically described by probability distributions

Generative ML Models
Approximate density p(x) by learning to transform noise z into data

z~p(2)
X = fw (Z) Example: Learning et e~ — 3j Matrix Elements
A ~ = |
p (x) ~ pdata (x) : <_ g(_c:ocrolor | Learned distribution |
L ‘ g color spectator with learning color
M- ?-Z >’ < cos ¥ of decaying fermion with beam
Normathng fIOWS use ! ‘ IIMI — " 4 of decaying fermion with beam

invertible functions with
tractable Jacobian s.t.

3 4 I ' <+ cos V¥ of decay

i llfiilﬁl ¢ of decay

: §!EJ E!\E <+ propagator of decaying fermion
WH W ERRE

@) ,§m Iﬁ)\kyl ﬁ ll g < multichannel
JHE Bl leE
DRENPET H%@@ 5

Gao, et. al, 2001.05486, Gao, et. al, 2001.10028

Dx(x) = Dy

o@)v



https://arxiv.org/abs/2001.05486v1
https://arxiv.org/abs/2001.10028

Epistemic Uncertainty 2

Uncertainty from lack of knowledge about best model
* E.g. from only have finite training stats.

Often framed as :

“What networks could | have fit to my data?”

Or

“What are the uncertainties on the network weights that | fit to data?”



Epistemic Uncertainty with Deep Ensembles 2

Ensembling:

* Retrain network from multiple initializations

Can be coupled with Bootstrapping

* Randomly sample data, with replacement,
to define each model’s training set

Lakshminarayanan, Pritzel, Blundell, 1612.01474,

Nixon, Lakshminarayanan, Tran, 2020
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https://arxiv.org/abs/1612.01474
https://openreview.net/forum?id=dTCir0ceyv0

Model Uncertainty in ML-based Background Estimation

High-Dimensional “ABCD” method with NN'’s S|4 5 | £
e Learn weighting using classifiers: w(x) = z“gg : t> S
B c >

 Estimate background: pp(x) = w)pc(x) @ . ° 1 ‘ g
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https://cds.cern.ch/record/2811390

Bayesian Methods

25

1
p(71%,D) = [ pOylx, wipwID)dw =+ > pylx,w)

Aleatoric Uncertainty:
Density Model

N
(1=1...N
wi~p(w|D)

Model Uncertainty:
Posterior on weights




Bayesian Methods

26

1
pO1%D) = [ pOylewpWwID)dw ~ % > plylx,w)

p(w|D) =

N
(1=1...N
wi~p(w|D)

p(D|w)p(w)

| p(DIw)p(w)dw .

Prior on weights

Intractable Integral




Approximating the Posterior .

p(w|D) is multi-modal and complex in NN — approximation methods

|

Space of solutions Space of solutions
Local approximations Sampling
e Locally, covering one mode well e Summarize using samples
e.g. with a simpler distribution q(w; A) o MCMC
o Variational inference o Hamiltonian Monte Carlo
o Laplace approximation o Stochastic Gradient Langevin

Dynamics
Slide credit: B. Lakshminarayanan



Bayesian Methods for HEP Generative Models

28

Model Uncertainty on ML models for Event Generators

“Bayesian Normalizing Flow”
* Density Model: Normalizing Flow

* Model Uncertainty:
Variational Posterior over weights

Bellagente et. al, 2104.04543
Butter et. al, 2110.13632
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https://arxiv.org/abs/2104.04543
https://arxiv.org/abs/2110.13632
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Wrapping Up



Summary %0

Uncertainty when using ML in HEP - How and Where?
* Lots of ML research on estimating Data uncertainty & Model Uncertainty
* Must examine each application & how well calibrated the methods are?

Many areas where Model Uncertainty may be important (not all discussed today)
* ML-based Simulation and Background estimation
* Fast ML in the Trigger - Uncertainty in real-time decision making
* Simulation-based inference - Uncertainty on approximate LR or calibration procedure?
* Anomaly Detection

Are current ML Uncertainty Quantification methods sufficient for our needs?



Backup



Domain / Distribution / Dataset Shift

32

prest (X6, V) # Prrain (X, V)

Examples:
* Covariate Shift:  p(y|x) fixed but prger (%) # prean (%)
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* Concept Shift: p(y) fixed but prgsr(x|y) # Drraiv (x]y)
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https://arxiv.org/abs/1903.12261

What Kind of Model Are We Talking About?

Perhaps a more important distinction between the perspective of physicists and machine
learning researchers has to do with the use of the term “model” and what exactly is
uncertain. In physics, the systematic and epistemic uncertainty is typically associated to our
understanding of the underlying physics and “the model” usually refers to the physics
model, detector model encapsulated in a simulation. In contrast, for machine learning
research, “the model” usually refers to the trained model f € F used as described in
Section 41.2.1 (or the class of functions F itself). This makes sense if we recall that in the
bulk of machine learning research, one has little insight into the process that generated the
data (e.g. images of cats and dogs, natural language, etc.). In that sense, the epistemic
uncertainty in machine learning is usually associated to uncertainty in the model
parameters @ after training, which would be reduced if one could collect more training
data (see Ref. [328] for this point of view).

From talk by K. Cranmer
Also in PDG review of ML in HEP



https://indico.cern.ch/event/1051224/contributions/4534940/attachments/2338808/3986931/PhyStat-systematics-ML-2021.pdf
https://pdg.lbl.gov/2021/reviews/rpp2021-rev-machine-learning.pdf

When are ML Model Uncertainties Needed? y

Neural Unfolding Methods

* Many methods, e.g. reweighting, neural
posterior estimation, neural empirical Bayes

* Poorly fit ML model of response matrix
— bad unfolded spectra

Observed data
Tobs

Parameters
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_ T
likelihood ST
ratio O P

Simulator argmin L[g] = 7(x|0) —> .: ’,."

9 P e

0;
1. Simulation 2. Machine Learning 3. Inference
Train NN classifier, interpret as Amortized: cheap

Run simulator and save data . . .
likelihood ratio estimator to repeat for new data

— T T T ;]
E 3x10° ATLAS Simulation 10
£ oot 's=13TeV 10’
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Simulation-Base Inference

* Example: neural network
approximates likelihood ratio

* Poorly fit ML model
— bad model of LR
— poor parameter inference



Aleatoric Uncertainty s

Randomness of data — Typically described by probability distributions

Generative Models:
Aim to approximate a density, p(x)

StyleGAN v2

Train NN to transform noise z~p(z) into data:
X = fw(2), p(X) = Paara(x)

Implicit models:
can only generate sample synthetic data, e.g. GANS

EXpIiCit mOdeIS: (Karrasetal,2019)
can also evaluate density, e.g. Normalizing Flows



Aleatoric Uncertainty in HEP with Generative Models
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Simulators slow / hard to sample from — approximate with Generative Model

Generative Adversarial Networks:

Noise
Z~p(Z) —_— Generator . <ZE
O

“Real” data

Image Credit: 1712.10321
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https://arxiv.org/abs/2109.02551
https://arxiv.org/abs/1712.10321

Monte Carlo Dropout for Epistemic Uncertainty .
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(a) Standard Neural Net (b) After applying dropout.

Randomly drop connections between neurons, using Bernoulli distribution

Can be viewed as a Variational Approximation

Gal, Ghahramani, 1506.02142


https://arxiv.org/abs/1506.02142

Comparisons

38

100% - l E = E |
@
(@))] —_ —
S
O 75%-
3
D = %
)
"(;; 50%"
() . .
= A
c
©
()
S 25%-
0 2 3
Mean Test Set Width

Kompa et. al, 2010.03039

Method

Dropout
Ensemble

GP

Linear Regression
LL Dropout

LL SVI

SVI

SN0 N OO O O


https://arxiv.org/abs/2010.03039

Comparisons with Data Corruptions -
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https://arxiv.org/abs/2010.03039

