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New fundamental particle = back. + signalNo new fundamental particle = only background
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Is there a new fundamental particle? 



Signal detection requires estimating the background

We only know the theorized signal region

is the bump a significant deviation from the background?
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Signal detection requires estimating the background

We only know the theorized signal region

is the bump a significant deviation from the background?
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1. Estimate the background

2. Check if the bump is far away from the est. background

Signal detection

Deviance test [Algeri ’19], LRT [Cowan’11] 
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Statistical problem
Model the data as a mixture of background and signal densities

X ∼ F : dF(x) = (1 − λ) ⋅ dB(x) + λ ⋅ dSθ(x)

Signal detection construct a confidence interval for the signal strength ￼λ

This talk
We focus on constructing confidence intervals for ￼λ

Characterise ￼  as a fixed function of ￼  λ F → λ(F)
Quantify the uncertainty due to using ￼ ̂F → λ( ̂F)
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Approach 1: use two samples
Assume access to a sample only from the background

Problem: it might not be available in all experiments
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Approach 2: assume a signal model
Assume a signal model a do joint optimisation

Model the data as a mixture of background and signal densities

X ∼ F : dF(x) = (1 − λ) ⋅ dB(x) + λ ⋅ dSθ(x)
polynomials gaussian

Fit background, signal and signal strength together 

λMLE(F) = arg min
λ,θ,dB∈ℬ

KL (dF , (1 − λ) ⋅ dB + λ ⋅ dSθ)

Problems the background density might fit some of the signal

if ￼  the model is over-parametrisedλ = 0



Represent signal strength as a function of measure ￼  and ￼F B

λ(F, B) = 1 −
1 − F(SR)
1 − B(SR)

counting experiments [Behnke ’13]

We have data from observations from ￼  but not from ￼F B

Prob. that ￼  falls in SR X ∼ F

Prob. that ￼  falls in SR X ∼ B
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Approach 3: assume a control region
We don’t assume access to a pure sample from the background

We assume that the signal vanishes outside the signal region (SR)

X ∼ F : dF(x) = (1 − λ) ⋅ dB(x) + λ ⋅ dSθ(x)

dSθ(x) = 0 ∀x ∉ SR
Outside the signal region the data follows a scaled background

dF(x) = (1 − λ) ⋅ dB(x) ∀x ∉ SR

(SR)
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Approach 3: assume a control region
We assume that the signal vanishes outside the signal region (SR)

Represent signal strength as a function of measure ￼  and ￼F B

λ(F, B) = 1 −
1 − F(SR)
1 − B(SR)

X |X ∉ SR ∼
dF(x)

1 − F(SR)
=

dB(x)
1 − B(SR)

The conditional density of the data on the control region is 
the conditional background density 

Assuming that the background can be identified 

using only the data outside the signal region

λ(F) = 1 −
1 − F(SR)
1 − B*F (SR)

 where  dB*F = arg min
dB̃∈ℬ

d(
dF

1 − F(SR)
,

dB̃
1 − B̃(SR)

)

(SR)



Approach 3: assume a control region
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0. Under our assumption, outside the signal region (SR)

dF(x) = (1 − λ) ⋅ dB(x) ∀ ∉ SR



Approach 3: assume a control region

1. Fit the background without the signal region
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0. Under our assumption, outside the signal region (SR)

dF(x) = (1 − λ) ⋅ dB(x) ∀ ∉ SR

dB*F = arg min
dB̃∈ℬ

KL( dF
1 − F(SR)

,
dB̃

1 − B̃(SR) )



Approach 3: assume a control region

2. Extrapolate the background to the signal region

1. Fit the background without the signal region
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0. Under our assumption, outside the signal region (SR)

dF(x) = (1 − λ) ⋅ dB(x) ∀ ∉ SR
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Approach 3: assume a control region

2. Extrapolate the background to the signal region

1. Fit the background without the signal region

3. Check if the bump is far away from the background

λ(F) = 1 −
1 − F(SR)
1 − B*F (SR)
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0. Under our assumption, outside the signal region (SR)

dF(x) = (1 − λ) ⋅ dB(x) ∀ ∉ SR

dB*F = arg min
dB̃∈ℬ

KL( dF
1 − F(SR)

,
dB̃

1 − B̃(SR) )

Prob. that ￼  falls in SR X ∼ F

Prob. that ￼  falls in SR X ∼ B*F



Confidence intervals via functional delta method
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F → λ(F) = 1 −
1 − F(SR)
1 − B*F (SR)

Given a distribution, we compute the parameter of interest as a fixed function of it

X1, …, Xn ∼ F → ̂F(A) =
1
n

n

∑
i=1

I(Xi ∈ A) → λ( ̂F)

Given a sample from the distribution, we estimate the distribution and do the same

n (λ( ̂F) − λ(F)) ≍ n ( 1
n

n

∑
i=1

ψ(Xi, F)) d→ 𝒩( 0 , σ2(F) )

Functional derivatives tell us how ￼  changes as we move from ￼  to ￼λ(F) F ̂F

lim
ϵ→∞

λ(F + ϵ H) − λ(F)
ϵ

= ∫ ψ(x, F) ⋅ dH(x)  where  ∫ ψ(x, F) dF(x) = 0

Hadamard derivative⏟ Influence function⏟



Confidence intervals via functional delta method
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Given a distribution, we compute the parameter of interest as a fixed function of it

F → λ(F) = 1 −
1 − F(SR)
1 − B*F (SR)

X1, …, Xn ∼ F → ̂F(A) =
1
n

n

∑
i=1

I(Xi ∈ A) → λ( ̂F)

Given a sample from the distribution, we estimate the distribution and do the same

We need to understand how ￼  changes as we move from ￼  to ￼λ(F) F ̂F

λ( ̂F) ± 1.96 ⋅
σ2( ̂F)

n
Compute the 95% asymptotically valid confidence interval 

Delta method [van der Vaart ’98], influence functions [Hines’22], error propagation in unfolding  [Adye’11]

n (λ( ̂F) − λ(F)) ≍ n ( 1
n

n

∑
i=1

ψ(Xi, F)) d→ 𝒩( 0 , σ2(F) )



Toy problem: we take a background and add a signal
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CMS open data



Toy problem: we take a background and add a signal
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We produce 200 datasets of 20 000 observations



Background model selection
Estimate without signal modelling

E[λ( ̂F)] − λ
λ

λ = 0.01

Background complexity

λ(F) = 1 −
1 − F(SR)
1 − B*F (SR)
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Choose the model

with the smallest extrapolation error

donut selection [Barreca’11]



Coverage as the signal strength is varied
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λ(F) = 1 −
1 − F(SR)
1 − B*F (SR)

Estimate without signal modelling

Percentage of the data from the signal (log scale)

E[λ( ̂F)] − λ
λ



14Thanks! Questions?

Summary + Future work
Assuming:  The mixture ￼ 


The signal vanishes outside the signal region

The background can be identified from the control region 


X ∼ F : dF(x) = (1 − λ) ⋅ dB(x) + λ ⋅ dSθ(x)

Re-define target : Rewrite the target parameter ￼  as ￼  


        Construct confidence interval for ￼  using  ￼  and influence functions

λ(F, B) λ(F)
λ(F) λ( ̂F)

Next step: We can reduce the statistical uncertainty of estimating ￼  by using

sample splitting + influence functions

λ(F)

λ( ̂F1) + ∫ ψ(x, ̂F1) d ̂F2(x)X1, …, Xn ∼ F
X1, …, Xn/2 → ̂F1

X1+n/2, …, Xn → ̂F2


