Uncertainty quantification
via influence functions

L ucas Kania
(CMU)

Joint work with: Larry Wasserman (CMU)
Mikael Kuusela  (CMU)
Olaf Behnke (DESY)



No new fundamental particle = only background

Normalized counts

Is there a new fundamental particle?

New fundamental particle = back. + signal
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Normalized counts

Signal detection requires estimating the background

B Signal region
Bl Background + Signal

Mass

We only know the theorized signal region

Is the bump a significant deviation from the background?



Normalized counts

Signal detection requires estimating the background

B Signal region
Bl Background + Signal
Est. background
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We only know the theorized signal region

is the bump a significant deviation from the background?

Signal detection

1. Estimate the background

2. Check if the bump is far away from the est. background

Deviance test [Algeri *19], LRT [Cowan’11] 9



Statistical problem

Model the data as a mixture of background and signal densities
X~F : dFx)=((—=4)-dB(x) + A-dSy(x)

Signal detection construct a confidence interval for the signal strength A

This talk
We focus on constructing confidence intervals for 4
Characterise A as a fixed function of F — A(F)

Quantify the uncertainty due to using F' — A(F)



Normalized counts

Approach 1: use two samples

B Signal region
Bl Background + Signal

Mass

Assume access to a sample only from the background

Bl Signal region
Bl Background

Normalized counts

Mass

Problem: it might not be available in all experiments



Normalized counts

Approach 2: assume a signal model

B Signal region
Bl Background + Signal

Mass

Assume a signal model a do joint optimisation

Model the data as a mixture of background and signal densities

X~F : dF(x)=(1=2)-dB(x) + A-dS,x)

polynomials gaussian

Fit background, signal and signal strength together

Mg p(F) =arg min KL (dF , (1 =4)-dB+4- ng)
A,0,dBESS

Problems the background density might fit some of the signal

if A = 0 the model is over-parametrised



Normalized counts

Approach 3: assume a control region

B Signal region
Bl Background + Signal

Mass

We don’t assume access to a pure sample from the background

We assume that the signal vanishes outside the signal region (SR)
X~F : dF(x)=(—=41)-dB(x) + 1 -dSyx)

Outside the signal region the data follows a scaled background

dF(x) = (1 — 1) -dB(x) Vx & SR

Represent signal strength as a function of measure F and B

Prob. that X ~ F' falls in SR
1 — F(SR)

1 — B(SR)
Prob. that X ~ B falls in SR

MF.B) =1 —

We have data from observations from F but not from B

counting experiments [Behnke '13] /



Normalized counts

Approach 3: assume a control region

B Signal region
Bl Background + Signal

Mass

1 — F(SR)

AF)=1- where dBF = arg min d(

1 — B%(SR)

We assume that the signal vanishes outside the signal region (SR)

Represent signal strength as a function of measure F and B

1 — F(SR)
1 — B(SR)

MF.B) =1 —

The conditional density of the data on the control region is
the conditional background density

dF(x) dB(x)

X|X ¢& SR ~ =
| —F(SR) 1— B(SR)

Assuming that the background can be identified
using only the data outside the signal region

dF dB )
dBez 1 —F(SR) 1— B(SR)




Normalized counts

Approach 3: assume a control region

'- Si;;nal region 0. Under our assumption, outside the signal region (SR)

_- Bz?ckground + Signal dF(x) = (1 —1)-dB(x) V & SR

Mass



Normalized counts

Approach 3: assume a control region

B Signal region
Bl Background + Signal
Est. background

Mass

0. Under our assumption, outside the signal region (SR)

dF(x)=(1—-1)-dB(x) V & SR

1. Fit the background without the signal region

dB; = arg

min KL
dBe%

(

dF dB

1 — F(SR) 1 — B(SR)

)



Normalized counts

Approach 3: assume a control region

B Signal region
Bl Background + Signal
Est. background

Mass

0. Under our assumption, outside the signal region (SR)
dF(x) = (1 —=1)-dB(x) V & SR

1. Fit the background without the signal region

, dF dB
dB} = arg min KL : -
dBe % 1 —F(SR) 1 - B(SR)

2. Extrapolate the background to the signal region




Normalized counts

Approach 3: assume a control region

B Signal region
Bl Background + Signal
Est. background
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0. Under our assumption, outside the signal region (SR)
dF(x)=(1—-1)-dB(x) V & SR

1. Fit the background without the signal region

, dF dB
dB} = arg min KL : -
dBe % 1 —F(SR) 1 - B(SR)

2. Extrapolate the background to the signal region

3. Check if the bump is far away from the background

| — F(SR) Prob. that X ~ F' falls in SR

] — B;E(SR)
Prob. that X ~ B;‘f falls in SR

AF) =1 —




Confidence intervals via functional delta method

Given a distribution, we compute the parameter of interest as a fixed function of it

1 — F(SR)
F - AF)=1-
1 — B¥(SR)

Given a sample from the distribution, we estimate the distribution and do the same

n | « n
X,...X ~F > F(A) = —ZI(XZ- cA) — AMF)
n
i=1
Functional derivatives tell us how A(F') changes as we move from F to F

lim ME+ e H) — AF) = [ w(x, F)-dH(x) where [ w(x, F) dF(x) =0

€— 00 € \V/
V Influence function

Hadamard derivative

. &
\n (/I(F) - /I(F)) =1/n (— D w(X, F)) S M0, 6XF))
& =1




Confidence intervals via functional delta method

Given a distribution, we compute the parameter of interest as a fixed function of it

1 — F(SR)
F - AF)=1-
| — B¥(SR)

Given a sample from the distribution, we estimate the distribution and do the same

) ] & )
X,...X ~F - F(A):-ZI(XieA) - AUF)
& =1

We need to understand how A(F’) changes as we move from F to F

A 1 «
Vi (4F) = 2(F)) </n (; > v, F)) S M0, G(F))
=1

o*(F)

n

Compute the 95% asymptotically valid confidence interval ,1(]3“) + 1.96 - \

Delta method [van der Vaart '98], influence functions [Hines’2?2], error propagation in unfolding [Adye’11] 9



Normalized counts (log scale)

Toy problem: we take a background and add a signal

CMS open data
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Normalized counts

Toy problem: we take a background and add a signal
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We produce 200 datasets of 20 000 observations

11
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Coverage as the signal strength is varied
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Summary + Future work

Assuming: The mixture X ~ F : dF(x) = (1 — A1) - dB(x) + 1 - dS/(x)
The signal vanishes outside the signal region
The background can be identitied from the control region

Re-define target : Rewrite the target parameter A(F, B) as A(F)

Construct confidence interval for A(F’) using /I(ﬁ ) and influence functions

Next step: We can reduce the statistical uncertainty of estimating A(F’) by using

sample splitting + influence functions

Xis ooy X —>I:“1 A A A
Ky eeey X, ™~ F< A) A(F) +[ w(x, i) dF,(x)
X, = F,

X1+n/2’ ..
Thanks! Questions? 14



