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Monte Carlo

F is a given (complicated) probability distribution

Want to know something about θ, a vector of features of F

θ can consist of a mean, variance, median, quantiles, marginal
densities, output of system, and so on



Monte Carlo

Simulate X1, . . . ,Xm (GOFMC, MCMC, . . . )

Monte Carlo sample size, m, is ”sufficiently large”

θ̂m = θ̂(X1, . . . ,Xm) ≈ θ

Example:
θ = EF (X ) = 〈X 〉F =

∫
xF (dx)

Estimate with sample mean

θ̂m = 1
m

m∑
i=1

Xi ≈ θ



Assessing Monte Carlo Error

There is an unknown (multivariate) Monte Carlo error

θ̂m − θ

Use the approximate sampling distribution: For large m
√

m(θ̂m − θ) ≈ N(0,Σ)

Σ accounts for temporal dependence (MCMC) and dependence
between components.

Need to estimate Σ to assess the simultaneous Monte Carlo error.

Vats et al 2019

https://arxiv.org/pdf/1512.07713.pdf


Constructing Simultaneous Intervals
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Illustrative Example: SimTools
Goal: Estimate the mean and the 0.1 and 0.9 quantiles for a
marginal distribution.
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Robertson et al (2020)

https://arxiv.org/pdf/1904.11912.pdf


Producing a representative sample
GOFMC: Not really an issue almost by definition

MCMC: Not just for Bayesians

Metropolis-Hastings

Let f be a target density and qh a proposal density.

Given Xt = x , draw Y ∼ qh(· | x)

Draw U ∼ Unif (0, 1) and set Xt+1 = y if

u ≤ f (y)qh(x | y)
f (x)qh(y | x)

otherwise set Xt+1 = x

Choice of h is crucial to the finite-sample performance



When does MH fail?

If
Ah(x) =

∫ [ f (y)qh(x | y)
f (x)qh(y | x) ∧ 1

]
qh(y | x)dx ′.

then, for every x , the distance between the t-th step of the
simulation and the target is bounded below by

[1− Ah(x)]t

Answer: Choose proposal scaling or other features so that we avoid
Ah(x) ≈ 0.

Brown and Jones (2023)

https://arxiv.org/abs/2212.05955


Gaussian Proposals

Suppose µ : Rd → Rd and consider a proposal of the form

Nd (µ(x), hC)

then
Ah(x) ≤ 1

f (x)(2πh)d/2 det(C)1/2

Remark: Suggests h must be small to avoid poor convergence
properties and that many MH chains can have poor dimension
dependence unless the scaling is chosen carefully.

If n is also large or d depends on n, then h will have to depend on
both, but it’s complicated–see Brown and Jones (2023)

https://arxiv.org/abs/2212.05955


Application: Approximating Likelihoods

Developed in statistics by Charlie Geyer in late 1980s

A density is often known up to a constant hγ so that

fγ(x) = 1
c(γ)hγ(x)

and the log-likelihood is

l(γ) = log hγ(x)− log c(γ)

but
∇l(γ)

or profile likelihoods aren’t available because c(γ) is intractable

http://users.stat.umn.edu/~geyer/


Monte Carlo Likelihood Approximation

Suppose α is arbitrary, but fixed and

gα(x) = 1
n(α)bα(x)

is a family that we can simulate from (GOFMC or MCMC). Then

Eα
[hγ(x)

bα(x)

]
=
∫ hγ(x)

bα(x)gα(x)dx = c(γ)
n(α)

so estimate it with
1
m

m∑
i=1

hγ(xi )
bα(xi )



Monte Carlo Likelihood Approximation

Monte Carlo approximation to l(γ):

lm(γ) = log hγ(x)
bα(x) −

1
m

m∑
i=1

hγ(xi )
bα(xi )

MC-MLE converges to MLE and is asymptotically normal

Profile MC-likelihoods converge to the profile likelihood

and so on...

Geyer (1990) and for an application see Knudson et al (2020)

https://www.stat.umn.edu/geyer/f05/8931/c.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002/sta4.339


Monte Carlo Likelihood Approximation
In particular, for large m, n

γ̂m,n ≈ N
(
γ∗,

J−1VJ−1

n + J−1WJ−1

m

)

J is minus the expectation of the second derivative of the log
likelihood

V is the variance of the score function

W is the variance of the deviation of the score from its Monte Carlo
approximation

This does not require the model be correct, but there is no free
lunch. . .

Sung and Geyer (2007)

https://arxiv.org/pdf/0708.2184.pdf


Finally. . .

What can we do to assess MC results in settings where the
simulation is extremely costly and only a small number of samples
can be obtained?

There is a lot of current work on high-dimensional (large n and d)
Monte Carlo, I’ve only scratched the surface.

Incorporating MC error and observational error due to m and n
simultaneously seems hard in general. Again, we’ve only scratched
the surface.


