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Disclaimers and Apologies.

I’m not an experimentalist let alone a statistics expert, so apologies if
some things are too pedestrian and others too complicated ...

I have tried to abstract things out as much as I could, but please interupt
if I slip too much into theory slang
I I’m also more than happy to go into more detail ...

There are many opinions about theory uncertainties (usually as many as
there are theorists in the room ...)
I So in matters opinion I will give you mine ...
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What Are We Talking About?

Pendulum example

d2θ

dt2
+
g

l
sin θ = 0

θ�1
=⇒ θ(t) = θ0 cos

2πt

T
, T = 2π

√
l

g

We have a formula to obtain the quantity of interest (g) from our
measurement (θ(t) or T )

This formula is the theory prediction

The theory uncertainty is due to the fact that the formula itself is not exact
but derived in some approximation (θ � 1)
I It is not the inexact knowledge of parameters needed in the (otherwise

exact) formula (e.g. the length l of the pendulum)
These are the usual systematics (parametric uncertainties)

I Note: Sometimes certain parametric uncertainties are also called a theory uncertainty just
because they primarily enter via the theory predictions (e.g. parton distribution functions).

For this talk these are not theory uncertainties.

⇒ The Challenge: How to account for the inexactness of the formula itself?
I The theory uncertainty is different from other systematics because a priori

there is no auxiliary measurement to improve inexactness
I But wait until the end of the talk ...
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In Particle Physics.

Data
Lagrangian
parameters

Measured
cross sections

(or limits)
Theory predictionsTheory predictions

In one way or another, we always compare a measured quantity to its
theory prediction

fmeasured = fpredicted(pi)

= f(pi) ± ∆f(pi)

I where pi are the parameter(s) of interest to be determined
I Exactly how and where this comparison happens is not relevant for now

We never know the exact formula for fpredicted(pi), so to account for
inexactness, we also quote an uncertainty ∆f(pi)

Implies a corresponding uncertainty in extracted parameters of interest

⇒ pi ± ∆pi
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Outline.

How to estimate ∆f?

How to interpret ∆f , i.e., what does it actually mean?

How to propagate ∆f into ∆pi?

What about correlations between different predictions?
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How to Estimate ∆f?

How to Estimate ∆f?
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How to Estimate ∆f?

There are (Roughly) 3 Types of Approximations.

1 We’re expanding in a (known) small quantity x and can (in principle)
calculate higher-order corrections

f(x) = f(0) + f ′(0)x+ f ′′(0)
x2

2
+O(x3)

I Example: Perturbative expansion in coupling constants

2 We know the limit, but don’t know how to calculate corrections to it

f(x) = f(0) +O(x)

I Example: Kinematic expansion in parton showers

3 We don’t even know a limit, and all we have is (what theorists call) a model

f(x) ≈ f̃(x)

I Example: Hadronization models
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How to Estimate ∆f?

Standard Estimation Method.
Perform the expansion in slightly different ways and take the difference

We make a variable transformation:

x = x(x̃) = x̃+ b0x̃
2/2 +O(x̃3)

I To lowest order x = x̃, so we can expand in either x or x̃

f(x) = f(0) + f ′(0)x+ f ′′(0)
x2

2
+O(x3)

f(x(x̃)) = f(0) + f ′(0) x̃+
[
f ′′(0) + f ′(0) b0

] x̃2

2
+O(x̃3)

and conclude

fpredicted = f(0) + f ′(0)x±∆f

where ∆f = f ′(0) (x− x̃) = f ′(0) b0
x2

2
+O(x3)

I Estimated ∆f is indeedO(x2)

I Including the x2 term in the prediction we get ∆f ∼ O(x3)
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How to Estimate ∆f?

Important Caveats.

∆f = f ′(0) b0
x2

2
+O(x3) ∆ftrue = f ′′(0)

x2

2
+O(x3)

So we effectively approximate f ′′(0) ≈ f ′(0) b0

I Nothing guarantees that this is a good approximation, and often it is not
I f ′′(0) usually has nontrivial internal structure different from f ′(0)

I But by default b0 is just a constant, and the same for any f and at any order

Does not work if we only know the limit f(x) = f(0) +O(x)

I If f(x, y) has more dimensions, can compare taking the limit in different
ways or from different directions

If we only have a model f(x) ≈ f̃(x)

I Vary model parameters or compare different models (Pythia vs. Herwig)
I No guarantee and no way to check if this provides a good estimate
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How to Estimate ∆f?

Translation to Scale Variations.

x ≡ αs(µ0) , x̃ ≡ αs(µ) , b0 ∼ β0 ln
µ

µ0

Continuous choice of variable transformation
I µ (or b0) is not an actual parameter with a true value that f depends on
I No value for it might ever capture the true result (happens regularly)
I Uncertainty reduces at higher order because scale becomes less relevant

and not because it would somehow become better known

⇒ Unfortunately so very convenient and prevalent that it is hard to overcome
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How to Estimate ∆f?

Better Approach

f(x) = f(0) + f ′(0)x + f ′′(0)
x2

2
+O(x3)︸ ︷︷ ︸

source of the theory uncertainty

We should directly estimate f ′′(0)

f(x) is only a function of x ⇒ f (n)(0) are numbers
I Still have nontrivial internal structure (color channels, partonic channels)

f(x) = f(x, y) ⇒ f (n)(0, y) are functions
I If leading y dependence is known→ expand in y and reduce to previous

f(x) = f(x, y1, y2, ...) ⇒ f (n)(0, y1, y2, ...) are N-dim. functions
I How to best estimate uncertainty due to an unknown function?

⇒ Will come back to this at the end
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How to Estimate ∆f?

2-Point Systematics: “Herwig vs. Pythia”.

Take difference of two models as the uncertainty

f(x) ≈ f̃1(x) ≈ f̃2(x) ⇒ ∆f = f̃2(x)− f̃1(x)
???≈ ∆ftrue

∆f is small: does not mean ∆ftrue is small
I f̃1(x) and f̃2(x) might just be equally wrong→ underestimate

∆f is large: does not mean ∆ftrue is large
I one of f1(x) or f2(x) might just be wrong/bad→ overestimate

If both f1(x) or f2(x) can be considered equally good approximations
I ∆f may or may not give a good estimate of ∆ftrue

⇒ If this becomes a relevant source of uncertainty, best (or really only) way
to proceed is to modify the analysis procedure to reduce sensitivity to it
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How to Interpret ∆f?

How to Interpret ∆f?

2023-04-25 | Frank Tackmann 11/24.



How to Interpret ∆f?

What Should ∆f Actually Represent or Mean?

fpredicted = f ± ∆f

∆f ≈ |f true − f |

16

18

20

22

24

26

28

30

We usually think of estimating possible difference to true result
I Can only check if ∆f at lower order captures next/highest known order
I Sufficient if series converges well (uncertainty on uncertainty is small)
I I tend to trust uncertainty at highest order, if lower-order uncertainties cover

highest-order result (and not if they don’t)
I But: Danger of “over-tuning” lower-order results

However, in practice almost always used as some sort of “1σ”
I |f true − f | ≤ ∆f with 68% “probability”
I But “probability” in what sense?
I And what probability distribution?
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How to Interpret ∆f?

And How Is It Distributed?

Theorist: “Do not use a Gaussian, it should be a flat distribution”

Translation: “The central value shouldn’t be the most likely”

A flat box of size ∆f makes no sense (obviously too aggressive)

I Why some theorists insist on adding theory uncertainties linearly

How about a central flat region with some (gaussian) tails?
I How large is the flat vs. tail region? What part does ∆f cover?

My opinion: Use whatever distribution suits you (Gaussian, log-normal, ...)
Until someone demonstrates that the choice actually matters
I And if it does matter, you’re so sensitive to theory uncertainties that you have

much bigger problems ...

And if a theorist complains, just do an auxiliary measurement of their true
mental distribution, by asking them:
“Which percentage of [citations on paper, monthly salary, postdoc funding, ...] are
you willing to loose if the next order is outside your uncertainty? 68%? 95%?”
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Correlations and How to Propagate?
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Correlations and How to Propagate?

Correlations.

Correlations can be crucial once several predictions are used in combination

Prototype of extrapolation that happens in many data-driven methods

f(x) =
[
g(x)

]
measured

×
[
f(x)

g(x)

]
predicted︸ ︷︷ ︸

needed
︸ ︷︷ ︸
measure precisely

︸ ︷︷ ︸
theory uncertainties cancel

I Cancellation of theory uncertainties is often taken for granted, but obviously
relies crucially on precise correlation between ∆f and ∆g

Key Issue: Correlation between ∆f and ∆g is not captured by our usual
variation methods
I Simultaneous (scale) variation does not imply correlation
I Can try to come up with some theoretically motivated (but still arbitrary)

correlation model
I True correlation depends on the extent to which missing f ′′(0) and g′′(0)

are independent or related
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Correlations and How to Propagate?

Important Case: Differential Spectrum.

f(x, y) = f(0, y) + f ′(0, y)x

+ ∆f(y)

∆f 6=
∫

dy∆f(y)

1.8 2.0 2.2 2.4 2.6
0.0

0.5

1.0

1.5

2.0

Integral is often more precisely predicted than spectrum
I There is a nontrivial (long-range) anticorrelation across spectrum which

cancels additional (shape) uncertainty in the spectrum

We have multiple variation estimates ∆fn(y) which make up the band

∆f(y) = max{|∆f1(y)|, |∆f2(y)|, ...}
I We take the envelope since they largely probe same source of inexactness
I But envelope does not commute with integral: Taking the upper/lower edges

of the band looses possible correlations and overestimates
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Correlations and How to Propagate?

Envelope Propagation.
[Bernlochner et al., arXiv:2007.04320]

Repeat fit with varied theory inputs

1.8 2.0 2.2 2.4 2.6
0.0

0.5

1.0

1.5

2.0

⇒

4.70 4.75 4.80
14.0

14.5

15.0

15.5

16.0

16.5

Propagates the envelope to the final result
I Maintains behaviour of individual variations, i.e. some form of anticorrelated

shape uncertainty (which however could still be rather arbitrary)
I But fit does not see the theory uncertainty

How to take, interpret, and reuse envelope in fit results?
I Should one shift the central fit value?
I What if someone wants to use the result to predict the spectrum?
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Correlations and How to Propagate?

Example: Correlation Model for 2 Bins.
[Stewart, FT, arXiv:1107.2117]

σtot =

∫ pcut
T

0

dpT
dσ

dpT︸ ︷︷ ︸ +

∫ ∞
pcut
T

dpT
dσ

dpT︸ ︷︷ ︸
σ0(pcut

T ) + σ≥1(pcut
T )

Scale variation fails for σ0(pcutT )

Instead, parametrize in terms of
I yield: overall normalization
I migration: induced by binning cut

σ0 σ≥1 σtot

θy ∆0y ∆1y ∆0y+∆1y

θcut ∆cut −∆cut 0

I ∆iy and ∆cut can be estimated

pTpcut
T

d
σ
/
d
p
T

σ0(p
cut
T ) σ≥1(p

cut
T )

Resummation
Peak

Fixed Order
Tail

Transition

0
0

2

4

6

8

10

10 20 30 40 50 60 70 80 90 100

Ecm=7TeV

pcut
T [GeV]

σ
0
(p

cu
t

T
)
[p
b
]

mH =165GeV

gg → H+0 jet (NNLO)

µ=mH/4

µ=mH/2

µ=mH

combined incl. unc.
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Theory Nuisance Parameters

Theory Nuisance Parameters.

(The promise of a less ugly future)

[FT, work in progress ...]
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Theory Nuisance Parameters

What We Should be Doing.

Parametrize and estimate the actual source of the uncertainty: f ′′(0)

f(x) = f(0) + f ′(0)x + f ′′(0)
x2

2
+O(x3)︸ ︷︷ ︸

source of the theory uncertainty

We typically know a lot about the general structure of f ′′(0) even without
explicitly calculating it
I Color structure, partonic channels, kinematic structure, ...
I All we want is an uncertainty estimate, so it is sufficient to consider dominant

contributions or limits

Parametrize f ′′(0) and treat the remaining unknown parameters as
“theory nuisance parameters” (TNPs)
I Figure out allowed range based on theory arguments
I Best case: Parameters are numbers
I More generally, one or more unknown functions
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Theory Nuisance Parameters

Advantages of Theory Nuisance Parameters.

TNPs are genuine parameters with a true but unknown or uncertain value
Renders the whole problem much more well-defined
We get all benefits of truly parametric uncertainties
X Encode correct correlations, straightforward to propagate everywhere
X Can be constrained by measurements (auxiliary and/or primary)

There will typically be several parameters
I Much safer against accidental underestimate of any one parameter
I Total theory uncertainty becomes Gaussian due to central-limit theorem

Can even lead to reduced theory uncertainties
I Can fully exploit partially known higher-order information
I Can also reduce theory uncertainties at a later time

Price to pay
Predictions become quite a bit more complex
I Need to implement complete next order in terms of unknown parameters
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Theory Nuisance Parameters

Example: Z pT Spectrum.

0 5 10 15 20 25 30 35 40
0

1

2

3

4

0 5 10 15 20 25 30 35 40
-10

-5

0

5

10

f(x, pT ) = exp

{∑
i

[
fi(x)

]
gi(pT )

}
+O( p2T

m2
Z

)
Here, leading pT dependence factorizes, gi(pT ) are known exactly

Problem reduces to parametrizing f ′′i (0) which are numbers
I Correlations in pT spectrum are fully captured X
I Illustration: Show θi = (0± 2)θtrue

i with known θtrue
i at this order
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Theory Nuisance Parameters

Estimating Size of TNPs.

Anomalous dimensions Boundary conditions

1-loop 2-loop 3-loop 4-loop 5-loop
0.0

0.5

1.0

1.5

va
lu

e
/
ge

ne
ri

c
si

ze

1-loop 2-loop 3-loop 4-loop
0.0

0.5

1.0

1.5

2.0

va
lu

e
/
ge

ne
ri

c
si

ze
Possible to estimate the typical size of TNPs (when they are numbers)

I Can construct a general estimator based on known structure of perturbation
theory (basically leading color and nf dependence)

I Shown are coefficients of many known perturbative series divided by
corresponding estimate at each order
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Theory Nuisance Parameters

Example of a Functional TNP.
Remaining challenge is when TNPs are genuine functions

Strategy: Parametrize by exploiting known functional dependence and/or
expanding in known limits

Example: Beam function matching coefficients depend on parton
momentum fraction x (similar to splitting functions)

I Can construct a parametrization based on expanding around x→ 1
[Billis, Ebert, Michel, FT, arXiv:1909.00811]

NNLO (full was known) N3LO (full was not yet known)

10-3 0.01 0.1 1
-4
-3
-2
-1
0
1
2
3

10
-3

0.01 0.1 1

-4

-3

-2

-1

0

1

2023-04-25 | Frank Tackmann 22/24.



Theory Nuisance Parameters

Example of a Functional TNP.
Remaining challenge is when TNPs are genuine functions

Strategy: Parametrize by exploiting known functional dependence and/or
expanding in known limits

Example: Beam function matching coefficients depend on parton
momentum fraction x (similar to splitting functions)

I Can construct a parametrization based on expanding around x→ 1
[Billis, Ebert, Michel, FT, arXiv:1909.00811]

NNLO (full was known) N3LO (full was not yet known)

10-3 0.01 0.1 1
-2.5

-2

-1.5

-1

-0.5

0

0.5

10
-3

0.01 0.1 1

-2.5

-2

-1.5

-1

-0.5

0

0.5

2023-04-25 | Frank Tackmann 22/24.



Theory Nuisance Parameters

Summary.

Theory uncertainties are indeed ugly business

Be aware of limitations of current methods like scale variations
I Not particularly reliable
I Most severe limitation is the lack of proper correlations

Some might say that the best way is to avoid theory uncertainties
I But “avoiding” often secretly means “canceling” them, which relies on

correlations, so we’re right back to where we started

We can make progress when we have an actual expansion

Parametrize the known unknown: theory nuisance parameters
I A paradigm change, but the obvious way forward (at least to me)
I Any feedback is most welcome ...
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