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“Uncertainties on Systematics”

1) Some systematic uncertainties can be well estimated:

 Related to stat. error of control measurements F
* Related to size of MC event sample

2) But they can also be quite uncertain:

* Theory systematics (~50% relative error) Pttps://kelcom/210/

1

 Two points systematics (Nﬁ =70% relative error)



Formulation of the problem o LR
W

Suppose measurements y have a probability density P(v|u, @)
* u = Parameters of interest
* O = Nuisance parameters

Auxiliary Measurements u are used to provide info on nuisance parameters and are (often)
assumed to be independently Gaussian distributed
Can be a real measurement

The resulting Likelihood is: /\ or just our best guess based

on theoretical reasons

1 o,
L(w,0) = P(y,ulu,0) = P(y|p, 6)% 1_[— e~ (100
AV2nay,



Formulation of the problem o,
W

Suppose measurements y have a probability density P(v|u, @)
* u = Parameters of interest
* O = Nuisance parameters

Auxiliary Measurements u are used to provide info on nuisance parameters and are (often)
assumed to be independently Gaussian distributed

Can be a real measurement

The resulting Likelihood is: /\ or just our best guess based

on theoretical reasons

1 o,
L(w,0) = P(y,ulu,0) = P(y|p, 6)% 1_[— e~ (100
AV2nay,
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Formulation of the problem o,
W

Suppose measurements y have a probability density P(v|u, @)
* u = Parameters of interest
* O = Nuisance parameters

Auxiliary Measurements u are used to provide info on nuisance parameters and are (often)
assumed to be independently Gaussian distributed

Can be a real measurement

The resulting Likelihood is: /\ or just our best guess based

on theoretical reasons

1 o,
L(w,0) = P(y,ulu,0) = P(y|p, 6)% 1_[— e~ (100
AV2nay,

And the log Likelihood:

) Let systematic errors be
i —0;) potentially uncertain!

202,

log L(1,0) = log P(y1,0) — )’ (u
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Gamma distributions w ROVAL

To implement errors-on-errors suppose the systematic variances 0,2” are

adjustable parameters, and their best estimates v; are gamma distributed:

Gamma Distributions for Different € Values

5
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1 Oy; 7 .
* g =—-—— =-—1:relative erroron o,.: “Error on error’*
2 0y, Ou; !

*& used to be r in previous

l
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Gamma Variance Model (GVM) o
W

 The likelihood is modified as follows:

L(u,0,0%) =P(y|u, 0) x | | o~ Wm0 /200, o UL il v,
( ul) y l rzn_o_ui I"(al) i

* One can profile over a,zll. in closed form:

2
2¢; Vi

1 1 , (u; — 0;)*
logLp(u,0) = logP(y|u,0) __Zz 1+ log( 1+ 2ef———
i

(see: G. Cowan, Eur. Phys. J. C (2019) 79:133; arXiv:1809.05778)



Gamma Variance Model (GVM) B o
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* The original quadratic terms in the log likelihood replaced by a logarithmic terms:

4

" — 02 1 (u; — 6,)2
Z—( - 2’) —_— z<1+2 2)10g<1+2£%%
Zaui i &i '



Gamma Variance Model (GVM)
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* The original quadratic terms in the log likelihood replaced by a logarithmic terms:

- Z<l+2

1 u;
—2> log <1 +2¢7 (s

01‘)2>

€

Vi

* Equivalent to switch from Gaussian constraints to Student’s t constraints for systematics:
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Sensitivity to outliers 2 .

* Suppose we want to average 4 measurements all with statistical and syst errors equal to 1.
Also assume they all have equal error on error &:

1 —u—60)%* 1 1 u: — 0.)2
logLp(u,0) = -3 § 67 :2 i) - E <1 +—2£2)log (1 + 28?%)
. , . . ;
t i

Vi l

* Suppose the measurements are internally compatible (no outliers), errors on errors have a
small impact:

24
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20 68.3% Confidence-Interval
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* Suppose the measurements are internally compatible (no outliers), errors on errors have a
small impact:

24
® Data Points

221 — Mean E_O-3

20 68.3% Confidence-Interval

18 A

16

y Value

14

I—

F—e—

11



Sensitivity to outliers 2 .

* Suppose we want to average 4 measurements all with statistical and syst errors equal to 1.
Also assume they all have equal error on error &:

1 —u—60)%* 1 1 u: — 0.)2
logLp(u,0) = -3 § 67 :2 i) - E <1 +—2£2)log (1 + 28?%)
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Vi l

* Suppose the measurements are internally compatible (no outliers), errors on errors have a
small impact:
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Sensitivity to outliers 2L .

Estimate of Mean vs. € L Half-Size Confidence Interval vs. €
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The estimate of the mean does not change when we increase ¢

The size of the confidence interval for the mean only slightly increase, reflecting the
extra degree of uncertainty introduced by the errors-on-errors

If data are internally compatible results are only slightly modified

13



Sensitivity to outliers 2 R
W

* Suppose one of the measurements is an outlier:

24

e Data Points
22 1 —— Mean E—0.0
20 - 68.3% Confidence-Interval
18 A
S 16-
3
- 14 4

12 - }
10

 If data are internally incompatible important changes can be observed
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Sensitivity to outliers 2 R
W

* Suppose one of the measurements is an outlier:

24
® Data Points
221 — Mean & O . 3

20 68.3% Confidence-Interval

18 ~

A
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y Value
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 If data are internally incompatible important changes can be observed
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Sensitivity to outliers 2 R
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* Suppose one of the measurements is an outlier:

24

® Data Points
22 T —_— Mean E O n 6

20 - 68.3% Confidence-Interval

18 ~

S

14
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10

y Value

 If data are internally incompatible important changes can be observed
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Sensitivity to outliers o,
W

1. With increasing &, the estimate of mean is pulled less strongly by the outlier

2. The error bar grows more significantly: the GVM treats internal incompatibility
as an additional source of uncertainty

Estimate of Mean vs. € Half-Size Confidence Interval vs. €
12.0 < 1.2
>
| -
9
11.5 - € 1.0
c Q
© e
] (3] 4
2 110 g 0.8
S c
o
10.5 - O 0.6
o S
—
.E 10.0 - 5 0.4
] =
- 5
9.5 4 g 021
w
©
90 T T T T I 00 T T T T
0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5
£ € value

3. The model is sensitive to internal compatibility of the data

17



Application: W-mass 2 DR
W

* The W-mass is one of the fundamental parameters of the Standard Model (SM)

Overview of m,, Measurements

I LEP Combination | AT AS Preliminary =~ ™ @<=
,,,,,,,,,,,,,,,,,,,,,,, V,E,,?,?,T,e,yj,‘}:s,f,bi,',,,,,,,,,,,L,, ‘,,,,,,,,:,,,,,,,,,,,,,,,,,,,,,

DO (RUI’] 2) | -: [ ) -

PRL 108, p151804 (2012) H ! ' H

CDF (Run 2 o

Science ( 37(’;‘,258% p170 (2022 : N 101

JLngE;g .20262 (22022) L L] ‘ -

ATLAS 2017 i [ ;

EPJ-C 78-2, p110 (2018) @ Measurement (@ mm

|:|Stat. Unc. : ‘

ATLAS 2023 W otal Unc. C

{his work | ISM Prediction — L
,,,,,,,,,,,,,,,,,,,,,, i i i

80200 80300 80400
m,, [MeV]

* The latest CDF W-mass measurement displayed a significant tension with the other
measurements and the SM prediction

18



CDF vs SM 2 L R

SM{  —&—
Potentially uncertain!
MW—CDF = 804335 i 6-4’stat i 6. 9syst MeV
MW—SM = 80354 i 7 MeV
CDF - |—0—|
80.36 80.38 80.40 80.42 80.44

Central Value = Total Uncertainty (GeV)

* CDF has a 70 discrepancy with the SM

* We will associate an error-on-error to the uncertainties in orange.

19



Significance of discrepancy o,
@)

1. We assume £¢pr and £¢,; to be equal to € and we plot the significance as a function of &.

Esm =&, EcDF=¢€

~
!

[}
1

MW—CDF = 804‘335 i 6-4stat i 6. 9S_’)/St MeV

N Assign & to both

(9,1}
!

significance (o)

N
!

=
!

0.0 0.1 0.2 0.3 0.4 0.5 0.6
3

* Errors-on-errors substantially reduce the significance of the discrepancy
e Uncertainties in the assignment of systematics can account for some of the tension between the
inputs

20



CDF vs Atlas
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ATLAS { | ¢
CDF - : ——
80.34 80.36 80.38 80.40 80.42 80.44

Central Value = Total Uncertainty (GeV)

Potentially uncertain!

MW—CDF == 804335 i 6-4stat i 6 9syst MeV

MW—Atlas = 80360 i Sstat i 155)/5 MeV

* CDF and the latest Atlas measurements display a 40 tension, even thought they measure

the same SM parameter

* We will associate an error-on-error to the uncertainties in orange.

21



Significance of discrepancy B oo
@)

1. €cDF = €Atlas — €

Entlas = E, EcDF = €&

[e)]
I

(6]
1

MW—CDF = 804335 i 6-4stat i 6. 9Sj/St MeV

My —atias = 80360 +£ 554 £ 15555 MeV

Significance (o)
w H

N
1

=
1

o

0.1 0.2 0.3 0.4 0.5 0.6

©
o
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Significance of discrepancy o,
@)

2. EcDF = 0.01 and EAtlas — €

8
—— Eatlas =&, Ecpr = 0.01

~
1

[o)]
I

(6]
1

MW—CDF = 804335 i 6-4’stat i 6-9syst MeV

My —atias = 80360 +£ 554 £ 15555 MeV

Significance (o)
w H

N
1

=
1

0.0 0.1 0.2 0.3 0.4 0.5 0.6

* Error on the largest uncertainty dominates
* The error on the Atlas systematic uncertainty dominates because is the one with largest systematic

error
23



Average o L R
N6

1. €cpr = Eatlas = €

3

s 35

80480 A — 4 % Gamma Variance Model

--- CDF c 307

80460 3
-=-= Atl

as € 5]
(0]
__ 80440 1 o

""""""""""""""""""""""" [0) 4

5 S 20
S 80420 / 2

3 S 151
80400 S

— 10
80380 ©
=

& °]
80360 == === m 5

T T T T T H_—I O T T T T T
0.0 0.1 0.2 0.3 0.4 0.5 0.6 © 00 0.1 0.2 0.3 0.4 0.5 0.6
£ £

* Since the Atlas measurement has the bigger systematic error, it is treated by the GVM as the
outlier of the dataset.
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Average

2. ECDF — 0.01 and EAtlas — €

3
s 35
80480 - —_ =
H ©
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= 25_
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e
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15~
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1

Gamma Variance Model

o
o
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0.3

0.4 0.5

0.6

ROYAL
HOLLOWAY

* As before the Atlas measurement is treated by the GVM as the outlier of the dataset.

25



ROYAL

AVG ra ge ﬁw; HOLLOWAY

3. EAtlas — 0.01 and EcprF — €

3

s 35

80480 - — % Gamma Variance Model

--- CDF c 301
804601 --- Atlas c

-— 25_
80440 - S
o R e B 5

> 3 20 |
S 80420 - =
— o

-y S 15
80400 | S

~ 101
80380 - o
=

5
80360 f-————————mmm - 5

T T T T T '-l_—I O T T T T T
0.0 0.1 0.2 0.3 0.4 0.5 0.6 T 0.0 0.1 0.2 0.3 0.4 0.5 0.6
& &

* This time, for sufficiently large error-on-error (¢ > 0. 3) the GVM treats the CDF
measurement as the outlier of the dataset.

* To accurately assign errors-on-errors experts knowledge is needed
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Average Nt

* |f we want to reduce the significance of discrepancy from 40 to 20 large errors-
on-errors are needed (£>0.5)

* This implies a significant inflation of the confidence interval on the estimate of
the mean

 Examples 1&2: 8MeV — 10MeV
 Example 3: 8MeV — 20MeV

* The knowledge we claim to have on the W-mass can be significantly impacted by
uncertainties on systematics.

27
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* How can confidence intervals be computed with the Gamma Variance
Model?

* The GVM was found to deviate from the asymptotic limit when the
errors-on-errors parameters ¢; are different from 0.

* Higher-order asymptotics provide an elegant solution.

28



Calculation of the confidence intervals 2 BRI

* The likelihood function can be used to construct the profile likelihood ratio
test statistic:

* Use the p-value:

* Include u such that:

29



Confidence intervals 20 DR,
N6

* The likelihood function can be used to construct the profile likelihood ratio
test statistic:

PROBLEM: Compute
f(Wum)

* Use the p-value:

* Include u such that:

30



Confidence intervals

ROYAL
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* The likelihood function can be used to construct the profile likelihood ratio

test statistic:

* Use the p-value:

* Include u such that:

PROBLEM: Compute
f(Wum)

SOLUTIONS:

* Use MC: Very long
* Use Asymptotic limit

31
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Asymptotic limit W b

The asymptotic limit is the limit where the MLEs are Gaussian distributed:
A~N(u,j~%) + 0m™/?)

. 0%logL
] - aﬂz

1 is usually, but not always, the sample size

In the Asymptotic limit the likelihood ratio w, is x? distributed (Wilks theorem)
w,~x*+0m™)

1
For the errors-on-errors modeln = 1 +2—2
&

32
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Asymptotic limit W b

The asymptotic limit is the limit where the MLEs are Gaussian distributed:

A~N (uj~H2) + 0(n71/2)

PROBLEM: What if nn is
small?

. 0%logL
] - aﬂz

1 is usually, but not always, the sample size

In the Asymptotic limit the likelihood ratio w, is x? distributed (Wilks theorem)

w,~x*+0m™)

1
For the errors-on-errors modeln = 1 +2—2
&
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Asymptotic limit W b

The asymptotic limit is the limit where the MLEs are Gaussian distributed:

A~N (uj~H2) + 0(n71/2)

PROBLEM: What if nn is
small?

. 0%logL
] - aﬂz

1 is usually, but not always, the sample size

SOLUTION:

In the Asymptotic limit the likelihood ratio w, is x? distributed (Wilks theorem)
* UseMC

* Higher order

2 -1
Wu~ X +0(n ) Asymptotics

For the errors-on-errors modeln = 1 +—

1
22

34
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Higher order Asymptotics W b

Higher order-asymptotics are corrections to the likelihood ratio w, to make it “more”
x? distributed

35
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Higher order Asymptotics W b

Higher order-asymptotics are corrections to the likelihood ratio w, to make it “more”
x? distributed

 Bartlett Correction:

*k

° I :
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Higher order Asymptotics W b

Higher order-asymptotics are corrections to the likelihood ratio w, to make it “more”
x? distributed

 Bartlett Correction:

*k

° I :

We will apply these corrections to the errors-on-errors model. But they can be a very
useful tool in any analysis where the asymptotic distributions are a poor
approximation, e.g., small data sample.

37
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Bartlett Correction fead | RoLibway

* Modify the likelihood ratio w directly so that its distribution is closer to the
asymptotic form:

w * = M
' T R W

w~ x5 + 0(n™1)

w*~x% + 0(n~2)

38



Bartlett Correction
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* Modify the likelihood ratio w directly so that its distribution is closer to the

asymptotic form:

@"\?

- Wo = W
M llE[]

Wn

w~ x5 + 0(n™1)

w*~xir + 0(n™?)

Expectation value in
the asymptotic limit
(degrees of freedom
of x*)

39
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Bartlett Correction Jn0 | Foltoway

* Modify the likelihood ratio w directly so that its distribution is closer to the

asymptotic form:

*
Wu > Wl.l

w~ x5 + 0(n™1)

w*~xir + 0(n™?)

Expectation value in

@ 7"\ the asymptotic limit

(degrees of freedom
\ Exact
expectation
value”

“The expectation value can be computed at order O(n~1) using a
result by Lawley (Biometrika, Vol. 43, Issue 3-4, (1956) 295-303)

40
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 Define the likelihood root statistic:

r, = sign(u — ff),/w, ~N(0,1) + 0(n~/2)

41
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 Define the likelihood root statistic:

r, = sign(u — ff),/w, ~N(0,1) + 0(n~/2)

* Correct the likelihood root:

1
=1+ —log@
Tw T

42
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 Define the likelihood root statistic:

r, = sign(u — ff),/w, ~N(0,1) + 0(n~/2)

* Correct the likelihood root:

% 1 Qu _ ru—E[ry]

43



ROYAL

HOLLOWAY

 Define the likelihood root statistic:

r, = sign(u — ff),/w, ~N(0,1) + 0(n~/2)

* Correct the likelihood root:

. 1 q ry—E[r,] _
n =1 +r—logr—“ = \;‘[r ]1/”2 +0(n=3/%)
U U u

ni~N(0,1) + O(n=3/2)
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 Define the likelihood root statistic:

r, = sign(u — ff),/w, ~N(0,1) + 0(n~/2)

* Correct the likelihood root:

. 1 q ry—E[r,] _
n =1 +r—logr—“ = \;‘[r ]1/”2 +0(n=3/%)
U U u

ni~N(0,1) + O(n=3/2)

* 1,%is x* distributed
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Simple error-on-error Model w> HOLLOWAY

* Suppose a measurement y is Gaussian distributed with mean i and variance a2

y~N (u, o)

% is uncertain, with a relative error parameter £. The resulting

* Suppose o
likelihood is:

1 (y—u)? a
e 202 B

\V2mo? XT&)

L(w0?) = pa-ie hr

46
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Simple error-on-error Model w> HOLLOWAY

* Suppose a measurement y is Gaussian distributed with mean i and variance a2

y~N (u, o)

% is uncertain, with a relative error parameter £. The resulting

* Suppose o

likelihood is:
1 -w? p“
L(u,0%) = e 202 x—— v le PV
V2mo? I'(a)

 The likelihood ratio is:

+0(e%)

1 (y—w?l (y—w?
=(1+—)log|1 + 2&2 =~
Wk ( +2€2) og[ e v v

47



Distribution

10° 4

101 4

102 4

1073 4

1074 o

Asymptotic behaviour

are y? distributed, therefore if £ = 0:

N2
e But terms like S v”)
w,~x? + 0(£%)

* For values of £ # 0 we expect deviations of 0(£2):

0 2 4 6 8 10 1'2 1'4 16

ROYAL

HOLLOWAY
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Asymptotic behaviour L | Foltbway

e But terms like are y? distributed, therefore if £ = 0:

y-w?*
v
w,~x? + 0(£%)

* For values of £ # 0 we expect deviations of 0(£2):

10° 4 10° 4

1071 4 1071 5

1072 5 10-2 4

Distribution
Distribution

1073 4 1073 4

1074 4 1074 4

0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16
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Distribution

10° 4

101 4

102 4

1073 4

1074 o

Asymptotic behaviour
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2
e Butterms Iike% are y? distributed, therefore if £ = 0:

w,~x? + 0(£%)

* For values of £ # 0 we expect deviations of 0(£2):

0 2 4 6 8 10 12 14 16

Distribution

100 4

10°1 4

1072 4

1073 4

1074 .

0 2 4 6 8 10 12 14 16

Distribution

0 2 4 6 8 10 12 14 16
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Asymptotic behaviour L | Foltbway

* Higher order Asymptotics remarkably improve the y? approximation:

10° -

10-1 4

10-2 4

Distribution

1073 4

10—4 .

0 2I lll (Ii Eli 1I0 1I2 1I4 16
Test Statistic Value
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Distribution

10° -

10-1 4

10-2 4

1073 4

10—4 .

Asymptotic behaviour

2 4 6 8 0 12 14 16
Test Statistic Value

Distribution

100 4

10-1 4

1072 4

1073 4

10—4 4

2 4 6 8 0 12 14 16
Test Statistic Value

ROYAL
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52



Distribution

Asymptotic behaviour
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* Higher order Asymptotics remarkably improve the y? approximation:

10° -

10-1 4

10-2 4

1073 4

10—4 .

2 4 6 8 0 12 14 16
Test Statistic Value

Distribution

100 4

10-1 4

1072 4

1073 4

10—4 4

2 4 6 8 0 12 14 16
Test Statistic Value

Distribution

100 4

10—1 .

10—2 4

1073 4

1074 4

2 4 6 8 0 12 14 16
Test Statistic Value
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Asymptotic behaviour

ROYAL

HOLLOWAY

* Higher order Asymptotics remarkably improve the y? approximation:

10° -

10-1 4

10-2 4

1073 4

10—4 .

0 2 4 6 8 10 12 14 16

Test Statistic Value

MC not needed

Distribution

100 4

10-1 4

1072 4

1073 4

10—4 4

2 4 6 8 0 12 14 16
Test Statistic Value

Distribution

100 4

10—1 .

10—2 4

1073 4

1074 4

2 4 6 8 0 12 14 16
Test Statistic Value
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Confidence Intervals w R tbway

 We can use higher order asymptotics for a precise inference on the parameters of
interest. For example:

— * *
Pu = f ) f(walu) dwy
Wu,obs

= 2.00
> W y=1v=1
[} 4
€ L7591 —— exact
Y 1.50
C
[}
;‘_3 1.25 A
C
S 1.00-
9 I e
~ 0.751
o
% 0.50 -
8 g5 (Half-length confidence interval as a
T function of ¢)
'C 0-00 T T T T T T

0.0 0.1 0.2 0.3 0.4 0.5 0.6
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Confidence Intervals w R tbway

 We can use higher order asymptotics for a precise inference on the parameters of
interest. For example:

— * *
Pu = f ) f(walu) dwy
Wu,obs

= 2.00
> W y=1v=1
L 175
S - T
Y 1.50 w’
S —— exact T
;(_3 1.25 /
C —
S 1.001
9 I e
~ 0.751
o
< i
Ja 0.50 ' .
8 g5 (Half-length confidence interval as a
T function of ¢)
'C 0-00 T T T T T T

0.0 0.1 0.2 0.3 0.4 0.5 0.6
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* We just published a paper on the arXiv (arXiv:2304.10574) where higher order
asymptotics are applied to more types of errors-on-errors models

* Simple averages without systematics.

1 2 2 Bal a:—1
L(p 6% ) = 1_[ e~ i /200 5 TL T e Bivi
( ) A V2mo; I'(e;) *
e Averages using the full GVM.

* Correct goodness-of-fit statistics
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Including errors-on-errors has non-trivial consequences:

 The model is sensitive to internal compatibility of the data
» |f data are internally compatible results are only slightly modified

 |f data are incompatible errors-on-errors modify both central values and confidence
intervals in a non-linear way.

* The GVM deviates from asymptotic limit: higher-order asymptotics provide an elegant
method to avoid (or reduce) the use of MC.
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Thank you for your attention
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Significance of discrepancy B oo
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2. Weassume g¢cpr = 0.01 and &4, to be equal to € and we plot the significance as a
function of ¢.

[oe]

— &=, €cpr=0.01

significance (o)
N w E~Y w (o)} ~

=
!

o

0.1 0.2 0.3 0.4 0.5 0.6

o
=)
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3. Weassume ggp; = 0.01 and £-pf to be equal to € and and we plot the significance
as a function of ¢.

[ee]

— &gm =/0.01, EcDF= €&

significance (o)
N w H w (o)} ~

=
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o

0.1 0.2 0.3 0.4 0.5 0.6
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* The three examples gives very similar results:
8

Esm =&, EcDF =&
— &M =€, ECDF=0-01
— &v=0.01, ecpr=¢

o]
L

ul
1

significance (o)

N
1

=
!

o

0.1 0.2 0.3 0.4 0.5 0.6
3

o
o

* Due to the high tension in the dataset, MILEs adjust to eliminate the quadratic term, directing tension
in the dataset to the log-term with the larger uncertainty estimate v;: (below the goodness-of-fit statistic)

A A 2
— = Oepr)? 1 § 1 %
q _ Oepr = = Ocor) +(1+2 . >log<1+2£§DF—CDF >+(1+282 >log(1+28§M(ySM M))
SM

2
Oycpr €cpF VcpF Vsy

63



Significance of discrepancy B
W

* The three examples gives very similar results:
8

Esm =&, EcDF =&
— &M =€, ECDF=0-01
— &v=0.01, ecpr=¢

o]
L

ul
1

significance (o)

N
1

=
!

o

0.1 0.2 0.3 0.4 0.5 0.6
3

o
o

* Due to the high tension in the dataset, MILEs adjust to eliminate the quadratic term, directing tension
in the dataset to the log-term with the larger uncertainty estimate v;: (below the goodness-of-fit statistic)

A A 2
— = Oepr)? 1 § 1 %
q _ Oepr = = Ocor) +(1+2 . >log<1+2£§DF—CDF +(1+2 g >log(1+Zs§M Osm = 1) )

2
Oycpr €cpF VcpF &5y /vSM
> = 6.9 Mev = 7 Mev 64




Significance of discrepancy 2 .

* The three examples gives very similar results.

8

;| Esm =&, EcDF—E
— &sm =€, Ecpr=0.01
B °] — &sm=0.01, ecpr=¢
O 51
O
c
© 4
9]
e
c 37
2
0n 21
1-
0 T T T ; ;
0.0 0.1 0.2 0.3 0.4 0.5 0.6

&
* Due to the high tension in the dataset, the MLEs arrange themselves in order to set the quadratic term to

zero and relieve the tension in the dataset in the log term with the greater estimate of the uncertainty:

1. Firstexample: ecpp = €, gy = €

_/ 2 0 2
= Wepr—cor) | (1 +—— ) logA + 22, 2CoE ) + (1 +

2
28cpF VCDF

=2
q 12 )log (1 + 2£§M—(ySM ) )

YCDF 285y Vsm

=0 £ =0 \):6,9Mev \‘327M8V
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2. Second example: ecpr = 0.01, gy = €

_/ 2 0 g
g = Qeor— ¥ 0pr)” | (1 +— )log (1 + 262 20F ) + (1 +— )10g (1+ 222

2
p . VCDF 285

/’CDF
=0 K \> = 6.9 Mev 4

3. Third example: ecpp = &, gy = 0.01

—7i—0 / M2
q = eprA-Ocpt) +<1 +— >log (1 22, SCDF ) + (1 +— )1og (1+ 222, 2bl)

2
O'yC ZECDF 2£SM VsMm

=0 K =0 |/ \>=6.9Mev > = 7 Mev
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1. €cDF = €Atlas — €

Entlas = E, EcDF = €&

[e)]
I

(6]
1

MW—CDF = 804335 i 6-4stat i 6. 9Sj/St MeV

My —atias = 80360 +£ 554 £ 15555 MeV

Significance (o)
w H

N
1

=
1

o

0.1 0.2 0.3 0.4 0.5 0.6
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2. EcDF = 0.01 and EAtlas — €

8

—— Eatlas =&, Ecpr = 0.01

~
1

[o)]
I

(6]
1

MW—CDF = 804335 i 6-4’stat i 6-9syst MeV

My —atias = 80360 +£ 554 £ 15555 MeV

Significance (o)
w H

N
1

=
1

0.0 0.1 0.2 0.3 0.4 0.5 0.6

* Error-on-error on the largest uncertainty dominates
* The error-on-error on the Atlas systematic uncertainty dominates because is the one with largest
systematic error
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3. EAtlas = 0.01 and Ecpr — €

8

7 - 5At|a5=0-01, EcDF = €&

[e)]
I

(6]
1

MW—CDF = 804335 i 6-4stat i 6. 9Sj/St MeV

\ My —atias = 80360 +£ S5¢q¢ £ 1555 MeV

0.0 0.1 0.2 0.3 0.4 0.5 0.6
&

Significance (o)
w H

N
1

* If weset €441, = 0.01 we can now see the effects of the uncertainty on CDF uncertainty
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p~ Approximation i

* If we integrate the p* approximation for density function of i:

— - w/2 -3/2
f@) =p (@ \/—n +0(n3/2)

 We find:

Fi) = 04) + (; ~)p()

. Wlth (alogL(,\) alogL (H))\/](—ﬁ)

70



ROYAL

* 1 1 %_“;Au\ HOLLOWAY
p~ Approximation s

* Or equivalently we can define

) 1 q
ro=r +; log (;)
* Distributed as:

fr") =n(0,1) + 0(n~3/?%)

e Therefore r*is y?
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Motivation for the GVM Jod | SOy

 Gamma distributions allow to parametrize distributions of positive
defined variables (like estimates of variances)

* Using Gamma distributions it is possible to profile in close form over

2
0;
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Motivation for the GVM

e Gamma distributions include the case where the variance is estimate from a real
dataset of control measurements:

1 N2

 (n— l)vi/a,fi follows a y2_, distribution and v; a Gamma distribution with:

Tli_l
a; = 5
ﬂ _ni_l
L 20,

* Thereforen; = 1 + 1/2rf
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Simple-average-model 2o LB

aj
2\ — L ~i-w?/2e? o Pi a1 —pw,
. L( o ) = 11]; e Wi i X—— V. e Pivi
K Hl\/Znai I(a;) t
* vy =404, y, = —8§ and v; = v, = 1. Both the measurements are assumed to have ¢; = &, = ¢
T 30 < 30
g — " 6 =05 g — " 6=1.5
g254+— Eo254 —r q
3 w’ 8 w’ °
§2.0- ® prof. construction éz.o- ® prof. construction
§ 1.5 1 § 1.5
® < S
ul_6| 1.0 - //././ ‘g -
5 e . £
§ 05 g o5
E 0.0 . T T T T T E 0.0 T T T T T T
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.0 0.1 0.2 0.3 0.4 0.5 0.6
& &
2 2
w . 4 Ty 1 T
« w* =—and b can be computed in close form b =— )=+ — 505
b Y= Ui 2_1 Vi
v; v;
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e Goodness-of-fit statistics:

Z 1 (yi — )?
— 2 l
q = (1 +2—82> lOg (1 + 2£i v,

l

e Can be used to compute the significance of the p-value of g: Z = ®~1(1 — p)

5

44
F\T \
W 3 °
O
C
S *
T 2 o
2 q

— g (Significance computed for the same
17 q* measurements of the slide before)
e MC
0 T T T T T T
0.0 0.1 0.2 0.3 0.4 0.5 0.6




Simple-average-model G.O.F. oo .

e g* is the Bartlett-corrected version of g:

(g antt
1 Elq]

* E[q] was computed analytically at order £2 using the Lawley formula

* The Lawley formula was used defining g as the likelihood ratio of the
saturated model
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*y1 =10,y =—0
‘UL =Uy, =0
c0f=0f=1/2
*vV; =V, =1/2

* Both the measurements are assumed to have g1 = &, = ¢
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* Confidence interval for the parameter u
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* 2D Confidence interval for the parameter u and 64

1A 1A
&’
01 '°.~ 01
%
~
CRY CRY
_2 B _2 -
L ]
—_w —_w
3 w 3 w
B e prof. construction B e prof. construction
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3
u u

79



Simple-average-model G.O.F. B o
W

e Goodness-of-fit statistics:

(vi — A — 6;)? 1 , (u; — 6;)?
q =z ) +z 1+2—£2 log| 1+ 2&¢ o

Yi [

e Can be used to compute the significance of the p-value of g: Z = ®~1(1 — p)

5

—q
[ ] g* MC
4 ° e MC
°
N
o 31 [}
<
5 °
= 4
5217
g
1 (Significance computed for the same
measurements of the slide before)
0 T T T T T T
0.0 0.1 0.2 0.3 0.4 0.5 0.6
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