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Motivation

1) Some systematic uncertainties can be well estimated:

• Theory systematics (~50% relative error)
• Two points systematics (~ 𝟏

𝟐
≅70% relative error)

• Related to stat. error of control measurements
• Related to size of MC event sample 

2) But they can also be quite uncertain:

“Uncertainties on Systematics”
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https://xkcd.com/2110/ 



Formulation of the problem

• Suppose measurements 𝒚 have a probability density 𝑃(𝒚|𝝁, 𝜽)
• 𝝁 = Parameters of interest 
• 𝜽 = Nuisance parameters

• Auxiliary Measurements 𝒖 are used to provide info on nuisance parameters and are (often) 
assumed to be independently Gaussian distributed

• The resulting Likelihood is:

𝐿 𝝁, 𝜽 = 𝑃 𝒚, 𝒖 𝝁, 𝜽 = 𝑃 𝒚|𝝁, 𝜽 ×-
!

1
2𝜋𝜎"!

𝑒# "!#$! "/&'#!
"
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Can be a real measurement 
or just our best guess based 
on theoretical reasons
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• And the log Likelihood:

log 𝐿 𝝁, 𝜽 = log 𝑃 𝒚|𝝁, 𝜽 −7
(𝒖𝒊 − 𝜽𝒊)𝟐

𝟐𝝈𝒖𝒊
𝟐
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Can be a real measurement 
or just our best guess based 
on theoretical reasons
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Let systematic errors be 
potentially uncertain!
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Can be a real measurement 
or just our best guess based 
on theoretical reasons



Gamma distributions

To implement errors-on-errors suppose the systematic variances 𝝈𝒖𝒊
𝟐 are

adjustable parameters, and their best estimates 𝒗𝒊 are gamma distributed:

𝒗~
𝜷𝜶

𝜞(𝜶)
𝒗𝜶&𝟏𝒆&𝜷𝒗

𝜶 =
𝟏
𝟒𝜺𝒊

𝟐 𝜷 =
𝟏

𝟒𝜺𝒊
𝟐𝝈𝒖𝒊

𝟐

• 𝝈𝒖𝒊
𝟐 Expectation value of 𝒗𝒊

• 𝜺𝒊 =
𝟏
𝟐
𝝈𝒗𝒊
𝝈𝒖𝒊
𝟐 ≅ 𝒗𝒊

𝝈𝒖𝒊
: relative error on 𝝈𝒖𝒊: “Error on error”*
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*𝜺 used to be 𝑟 in previous 
references



Gamma Variance Model (GVM)

• The likelihood is modified as follows: 

𝐿 𝝁, 𝜽, 𝝈𝒖𝒊
𝟐 = 𝑃 𝒚 𝝁, 𝜽 × 5

$

1
2𝜋𝜎%"

𝑒& %"&'" #/)𝝈𝒖𝒊
𝟐
×

𝜷𝒊
𝜶𝒊

𝜞(𝜶𝒊)
𝒗𝒊
𝜶𝒊&𝟏𝒆&𝜷𝒊𝒗𝒊

• One can profile over 𝝈𝒖𝒊
𝟐 in closed form:

log 𝐿/ 𝝁, 𝜽 = log 𝑃 𝒚|𝝁, 𝜽 −
1
2
D
$

𝟏 +
𝟏
𝟐𝜺𝒊𝟐

𝐥𝐨𝐠 𝟏 + 𝟐𝜺𝒊𝟐
(𝒖𝒊 − 𝜽𝒊)𝟐

𝒗𝒊
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(see: G. Cowan, Eur. Phys. J. C (2019) 79:133; arXiv:1809.05778)



Gamma Variance Model (GVM)
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D
$

𝟏 +
𝟏
𝟐𝜺𝒊𝟐

𝐥𝐨𝐠 𝟏 + 𝟐𝜺𝒊𝟐
(𝒖𝒊 − 𝜽𝒊)𝟐

𝒗𝒊D
$

(𝒖𝒊 − 𝜽𝒊)𝟐

𝟐𝝈𝒖𝒊
𝟐

• The original quadratic terms in the log likelihood replaced by a logarithmic terms:



Gamma Variance Model (GVM)

D
$

𝟏 +
𝟏
𝟐𝜺𝒊𝟐

𝐥𝐨𝐠 𝟏 + 𝟐𝜺𝒊𝟐
(𝒖𝒊 − 𝜽𝒊)𝟐

𝒗𝒊D
$

(𝒖𝒊 − 𝜽𝒊)𝟐

𝟐𝝈𝒖𝒊
𝟐

• The original quadratic terms in the log likelihood replaced by a logarithmic terms:

• Equivalent to switch from Gaussian constraints to Student’s t constraints for systematics: 
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Sensitivity to outliers

• Suppose we want to average 4 measurements all with statistical and syst errors equal to 1. 
Also assume they all have equal error on error 𝜺:

log 𝐿% 𝝁, 𝜽 = −
1
2
,
&

(𝑦& − 𝜇 − 𝜃&)'

𝜎(!
' −

1
2
,
&

1 +
1
2𝜺&

' log 1 + 2𝜺&
' (𝑢& − 𝜃&)'

𝑣&

• Suppose the measurements are internally compatible (no outliers), errors on errors have a 
small impact:

10



Sensitivity to outliers

11

• Suppose we want to average 4 measurements all with statistical and syst errors equal to 1. 
Also assume they all have equal error on error 𝜺:

log 𝐿% 𝝁, 𝜽 = −
1
2
,
&

(𝑦& − 𝜇 − 𝜃&)'

𝜎(!
' −

1
2
,
&

1 +
1
2𝜺&

' log 1 + 2𝜺&
' (𝑢& − 𝜃&)'

𝑣&

• Suppose the measurements are internally compatible (no outliers), errors on errors have a 
small impact:



Sensitivity to outliers
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Sensitivity to outliers
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1. The estimate of the mean does not change when we increase 𝜀

2. The size of the confidence interval for the mean only slightly increase, reflecting the 
extra degree of uncertainty introduced by the errors-on-errors

3. If data are internally compatible results are only slightly modified



• Suppose one of the measurements is an outlier:

Sensitivity to outliers
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• If data are internally incompatible important changes can be observed
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• If data are internally incompatible important changes can be observed



• Suppose one of the measurements is an outlier:

Sensitivity to outliers
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• If data are internally incompatible important changes can be observed



Sensitivity to outliers

1. With increasing 𝜀, the estimate of mean is pulled less strongly by the outlier 

2. The error bar grows more significantly: the GVM treats internal incompatibility 
as an additional source of uncertainty

17

3. The model is sensitive to internal compatibility of the data



• The W-mass is one of the fundamental parameters of the Standard Model (SM)

Application: W-mass

• The latest CDF W-mass measurement displayed a significant tension with the other 
measurements and the SM prediction

18
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CDF vs SM
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𝑀,#-./ = 80433.5 ± 6.40121 ± 𝟔. 𝟗0301 MeV

Potentially uncertain!

Science 376 
(2022) 170 

𝑀,#45 = 80354 ± 𝟕 MeV PoS ICHEP2022 897, 
arXiv: 2211.07665

• CDF has a 7𝜎 discrepancy with the SM
• We will associate an error-on-error to the uncertainties in orange.



1. We assume 𝜺𝐂𝐃𝐅 and 𝜺𝑺𝑴 to be equal to 𝜺 and we plot the significance as a function of 𝜺.

Significance of discrepancy

20

• Errors-on-errors substantially reduce the significance of the discrepancy
• Uncertainties in the assignment of systematics can account for some of the tension between the 

inputs

𝑀,#-./ = 80433.5 ± 6.40121 ± 𝟔. 𝟗0301 MeV

𝑀,#45 = 80354 ± 𝟕 MeV

Assign 𝜺 to both  



CDF vs Atlas
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𝑀,#-./ = 80433.5 ± 6.40121 ± 𝟔. 𝟗0301 MeV

Potentially uncertain!

Science 376 
(2022) 170 

𝑀,#61720 = 80360 ± 50121 ± 𝟏𝟓030 MeV ATLAS-CONF-2023-004

• CDF and the latest Atlas measurements display a 4𝜎 tension, even thought they measure 
the same SM parameter

• We will associate an error-on-error to the uncertainties in orange.



1. 𝜺𝑪𝑫𝑭 = 𝜺𝑨𝒕𝒍𝒂𝒔 = 𝜺

Significance of discrepancy
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𝑀0&123 = 80433.5 ± 6.44565 ± 𝟔. 𝟗4745 MeV

𝑀0&85964 = 80360 ± 54565 ± 𝟏𝟓474 MeV



Significance of discrepancy
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2. 𝜺𝑪𝑫𝑭 = 0.01 and 𝜺𝑨𝒕𝒍𝒂𝒔 = 𝜺

• Error on the largest uncertainty dominates
• The error on the Atlas systematic uncertainty dominates because is the one with largest systematic 

error 

𝑀0&123 = 80433.5 ± 6.44565 ± 6.94745 MeV

𝑀0&85964 = 80360 ± 54565 ± 𝟏𝟓474 MeV



1. 𝜺𝑪𝑫𝑭 = 𝜺𝑨𝒕𝒍𝒂𝒔 = 𝜺

Average
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• Since the Atlas measurement has the bigger systematic error, it is treated by the GVM as the 
outlier of the dataset.



Average
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2. 𝜺𝑪𝑫𝑭 = 0.01 and 𝜺𝑨𝒕𝒍𝒂𝒔 = 𝜺

• As before the Atlas measurement is treated by the GVM as the outlier of the dataset.



Average
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3. 𝜺𝑨𝒕𝒍𝒂𝒔 = 0.01 and 𝜺𝑪𝑫𝑭 = 𝜺

• This time, for sufficiently large error-on-error (𝜺 > 𝟎. 𝟑) the GVM treats the CDF 
measurement as the outlier of the dataset.

• To accurately assign errors-on-errors experts knowledge is needed



• If we want to reduce the significance of discrepancy from 𝟒𝝈 to 𝟐𝝈 large errors-
on-errors are needed (𝜺>0.5)

• This implies a significant inflation of the confidence interval on the estimate of 
the mean

• Examples 1&2: 𝟖MeV → 10MeV
• Example 3: 𝟖MeV → 20MeV

Average
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• The knowledge we claim to have on the W-mass can be significantly impacted by 
uncertainties on systematics.



• How can confidence intervals be computed with the Gamma Variance 
Model?

• The GVM was found to deviate from the asymptotic limit when the 
errors-on-errors parameters 𝜀) are different from 0.

• Higher-order asymptotics provide an elegant solution. 

28



• The likelihood function can be used to construct the profile likelihood ratio 
test statistic:

𝑤𝛍 = −2𝑙𝑛
𝐿 𝛍, CC𝜽

𝐿 E𝛍, C𝛉

• Use the 𝑝-value:

𝑝𝝁 = H
g𝛍,:;<

h
𝑓 𝑤𝛍|𝛍 𝑑𝑤𝛍

• Include 𝝁 such that:
𝑝𝝁 < 𝛼

Calculation of the confidence intervals

29



Confidence intervals

PROBLEM: Compute 
𝑓 𝑤𝛍|𝛍
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Confidence intervals

SOLUTIONS:

• Use MC: Very long
• Use Asymptotic limit

PROBLEM: Compute 
𝑓 𝑤𝛍|𝛍
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Asymptotic limit
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• The asymptotic limit is the limit where the MLEs are Gaussian distributed:

K𝜇~𝒩(𝜇, 𝑗#=/&) + 𝒪(𝒏#=/&)

𝑗 = −
𝜕&𝑙𝑜𝑔𝐿
𝜕𝜇&

• 𝒏 is usually, but not always, the sample size

• In the Asymptotic limit the likelihood ratio 𝑤> is 𝜒& distributed (Wilks theorem)

𝑤>~ 𝜒& + 𝒪(𝒏#=)

• For the errors-on-errors model 𝒏 = 𝟏 + 𝟏
𝟐𝜺𝟐



Asymptotic limit

PROBLEM: What if 𝒏 is 
small? 
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• The asymptotic limit is the limit where the MLEs are Gaussian distributed:
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Asymptotic limit

PROBLEM: What if 𝒏 is 
small? 

SOLUTION:

• Use MC
• Higher order 

Asymptotics

• The asymptotic limit is the limit where the MLEs are Gaussian distributed:

K𝜇~𝒩(𝜇, 𝑗#=/&) + 𝒪(𝒏#=/&)

𝑗 = −
𝜕&𝑙𝑜𝑔𝐿
𝜕𝜇&

• 𝒏 is usually, but not always, the sample size

• In the Asymptotic limit the likelihood ratio 𝑤> is 𝜒& distributed (Wilks theorem)

𝑤>~ 𝜒& + 𝒪(𝒏#=)

• For the errors-on-errors model 𝒏 = 𝟏 + 𝟏
𝟐𝜺𝟐
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Higher order Asymptotics

Higher order-asymptotics are corrections to the likelihood ratio 𝑤l to make it “more” 
𝜒m distributed (See: Applied Asymptotics Case Studies in Small-Sample Statistics by A. R. Brazzale, A. C. Davison and N. Reid)
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• Bartlett Correction: (see: Bartlett, M. S. (1937) Proceedings of the Royal Society A, 160, 268–282)

• 𝒓∗: (see: Barndorff-Nielsen, O. E. (1983) Biometrika, 70, 343–365)



Higher order Asymptotics

• Bartlett Correction: (see: Bartlett, M. S. (1937) Proceedings of the Royal Society A, 160, 268–282)

• 𝒓∗: (see: Barndorff-Nielsen, O. E. (1983) Biometrika, 70, 343–365)

Higher order-asymptotics are corrections to the likelihood ratio 𝑤l to make it “more” 
𝜒m distributed (See: Applied Asymptotics Case Studies in Small-Sample Statistics by A. R. Brazzale, A. C. Davison and N. Reid)

We will apply these corrections to the errors-on-errors model. But they can be a very 
useful tool in any analysis where the asymptotic distributions are a poor 
approximation, e.g., small data sample. 
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Bartlett Correction

𝑤𝛍 𝑤𝛍∗ = 𝑤𝛍
𝑀
𝐸[𝑤]

𝑤~ 𝜒*+ + 𝒪 𝒏,-

𝑤∗~𝜒*+ + 𝒪 𝒏,+

• Modify the likelihood ratio 𝑤 directly so that its distribution is closer to the 
asymptotic form:
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Bartlett Correction

𝑤𝛍 𝑤𝛍∗ = 𝑤𝛍
𝑀
𝐸[𝑤]

Expectation value in 
the asymptotic limit 
(degrees of freedom 
of 𝜒))

𝑤~ 𝜒*+ + 𝒪 𝒏,-

𝑤∗~𝜒*+ + 𝒪 𝒏,+
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• Modify the likelihood ratio 𝑤 directly so that its distribution is closer to the 
asymptotic form:



Bartlett Correction

𝑤𝛍 𝑤𝛍∗ = 𝑤𝛍
𝑀
𝐸[𝑤]

Exact 
expectation 
value*

𝑤~ 𝜒*+ + 𝒪 𝒏,-

𝑤∗~𝜒*+ + 𝒪 𝒏,+
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Expectation value in 
the asymptotic limit 
(degrees of freedom 
of 𝜒))

• Modify the likelihood ratio 𝑤 directly so that its distribution is closer to the 
asymptotic form:

*The expectation value can be computed at order 𝒪 𝒏*+ using a 
result by Lawley (Biometrika, Vol. 43, Issue 3-4, (1956) 295-303) 



𝑟∗

𝑟/ = 𝑠𝑖𝑔𝑛(𝜇 − 7𝜇) 𝑤/

• Define the likelihood root statistic:

41

~𝒩(0,1) + 𝒪(𝒏&p/m)



𝑟/ = 𝑠𝑖𝑔𝑛(𝜇 − 7𝜇) 𝑤/

• Define the likelihood root statistic:
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~𝒩(0,1) + 𝒪(𝒏&p/m)

• Correct the likelihood root:

𝑟l∗ = 𝑟l +
1
𝑟l
log

𝑞l
𝑟l

𝑟∗



𝑟/ = 𝑠𝑖𝑔𝑛(𝜇 − 7𝜇) 𝑤/

• Define the likelihood root statistic:
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~𝒩(0,1) + 𝒪(𝒏&p/m)

• Correct the likelihood root:

𝑟l∗ = 𝑟l +
1
𝑟l
log

𝑞l
𝑟l

= rA&s[rA]

v rA
B/C +𝒪(𝒏&w/m)

𝑟∗
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~𝒩(0,1) + 𝒪(𝒏&p/m)
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1
𝑟l
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𝑟/ = 𝑠𝑖𝑔𝑛(𝜇 − 7𝜇) 𝑤/

• Define the likelihood root statistic:
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~𝒩(0,1) + 𝒪(𝒏&p/m)

• Correct the likelihood root:

𝑟l∗ = 𝑟l +
1
𝑟l
log

𝑞l
𝑟l

= rA&s[rA]

v rA
B/C +𝒪(𝒏&w/m)

𝑟l∗~𝒩(0,1) + 𝒪(𝒏&w/m)

• 𝑟l∗m is  𝜒m distributed

𝑟∗



Simple error-on-error Model

• Suppose a measurement 𝑦 is Gaussian distributed with mean 𝜇 and variance 𝜎m:

𝑦~𝒩(𝜇, 𝝈)

• Suppose 𝜎m is uncertain, with a relative error parameter 𝜺.  The resulting 
likelihood is:

𝐿 𝜇, 𝜎m =
1
2𝜋𝜎m

𝑒&
x&l C

m𝝈C ×
𝛽y

𝛤(𝛼)
𝑣y&p𝑒&z{
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Simple error-on-error Model

• Suppose a measurement 𝑦 is Gaussian distributed with mean 𝜇 and variance 𝜎m:

𝑦~𝒩(𝜇, 𝝈)

• Suppose 𝜎m is uncertain, with a relative error parameter 𝜺.  The resulting 
likelihood is:

𝐿 𝜇, 𝜎m =
1
2𝜋𝜎m

𝑒&
x&l C

m𝝈C ×
𝛽y

𝛤(𝛼)
𝑣y&p𝑒&z{

• The likelihood ratio is:

𝑤l = 1 +
1
2𝜀m

log 1 + 2𝜀m
𝑦 − 𝜇 m

𝑣
≅

𝒚 − 𝝁 𝟐

𝒗
+ 𝒪(𝜺𝟐)
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Asymptotic behaviour

• But terms like 𝒚&𝝁
𝟐

𝒗
are 𝜒m distributed, therefore if 𝜺 → 0:

𝑤l~𝜒m + 𝒪(𝜺m)

• For values of 𝜺 ≠ 0 we expect deviations of 𝒪(𝜺m):

𝑛~
1
𝜀e
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Asymptotic behaviour

𝑛~
1
𝜀e
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• But terms like 𝒚&𝝁
𝟐

𝒗
are 𝜒m distributed, therefore if 𝜺 → 0:

𝑤l~𝜒m + 𝒪(𝜺m)

• For values of 𝜺 ≠ 0 we expect deviations of 𝒪(𝜺m):



Asymptotic behaviour

𝑛~
1
𝜀e
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• But terms like 𝒚&𝝁
𝟐

𝒗
are 𝜒m distributed, therefore if 𝜺 → 0:

𝑤l~𝜒m + 𝒪(𝜺m)

• For values of 𝜺 ≠ 0 we expect deviations of 𝒪(𝜺m):



• Higher order Asymptotics remarkably improve the 𝜒m approximation:
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• Higher order Asymptotics remarkably improve the 𝜒m approximation:
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Asymptotic behaviour



• Higher order Asymptotics remarkably improve the 𝜒m approximation:
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Asymptotic behaviour



• Higher order Asymptotics remarkably improve the 𝜒m approximation:

54

• MC not needed

Asymptotic behaviour



Confidence Intervals
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• We can use higher order asymptotics for a precise inference on the parameters of 
interest. For example:

𝑝l = H
g𝝁,:;<
∗

h
𝑓 𝑤𝝁∗|𝜇 𝑑𝑤𝝁∗

(Half-length confidence interval as a 
function of 𝜀)

𝒚 = 𝟏, 𝒗 = 𝟏



Confidence Intervals
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• We can use higher order asymptotics for a precise inference on the parameters of 
interest. For example:

𝑝l = H
g𝝁,:;<
∗

h
𝑓 𝑤𝝁∗|𝜇 𝑑𝑤𝝁∗

(Half-length confidence interval as a 
function of 𝜀)

𝒚 = 𝟏, 𝒗 = 𝟏



• We just published a paper on the arXiv (arXiv:2304.10574) where higher order 
asymptotics are applied to more types of errors-on-errors models

• Simple averages without systematics. 

𝐿 𝝁, 𝝈𝟐 =f
}

1
2𝜋𝜎}

𝑒& xF&l C/m𝝈𝒊
𝟐
×

𝜷𝒊
𝜶𝒊

𝜞(𝜶𝒊)
𝒗𝒊
𝜶𝒊&𝟏𝒆&𝜷𝒊𝒗𝒊

• Averages using the full GVM.

• Correct goodness-of-fit statistics
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• Including errors-on-errors has non-trivial consequences:

• The model is sensitive to internal compatibility of the data
• If data are internally compatible results are only slightly modified
• If data are incompatible errors-on-errors modify both central values and confidence 

intervals in a non-linear way.

• The GVM deviates from asymptotic limit: higher-order asymptotics provide an elegant 
method to avoid (or reduce) the use of MC.

Conclusions



Thank you for your attention
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Significance of discrepancy
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2. We assume 𝜺𝑪𝑫𝑭 = 0.01 and 𝜺𝑺𝑴 to be equal to 𝜺 and we plot the significance as a 
function of 𝜺.



Significance of discrepancy
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3. We assume 𝜺𝑺𝑴 = 0.01 and 𝜺𝑪𝑫𝑭 to be equal to 𝜺 and and we plot the significance 
as a function of 𝜺.



• The three examples gives very similar results:

Significance of discrepancy

63

• Due to the high tension in the dataset, MLEs adjust to eliminate the quadratic term, directing tension 
in the dataset to the log-term with the larger uncertainty estimate 𝑣A: (below the goodness-of-fit statistic)

𝑞 =
(𝑦-./ − K𝜇 − [𝜃-./)&

𝜎3,-.
& + 1 +

1
2𝜺-./& log 1 + 2𝜺-./&

[𝜃-./
&

𝑣-./
+ 1 +

1
2𝜺45&

log 1 + 2𝜺45&
(𝑦45 − K𝜇)&

𝑣45



• The three examples gives very similar results:

Significance of discrepancy
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• Due to the high tension in the dataset, MLEs adjust to eliminate the quadratic term, directing tension 
in the dataset to the log-term with the larger uncertainty estimate 𝑣A: (below the goodness-of-fit statistic)

𝑞 =
(𝑦-./ − K𝜇 − [𝜃-./)&

𝜎3,-.
& + 1 +

1
2𝜺-./& log 1 + 2𝜺-./&

[𝜃-./
&

𝑣-./
+ 1 +

1
2𝜺45&

log 1 + 2𝜺45&
(𝑦45 − K𝜇)&

𝑣45
= 6.9Mev = 7Mev



• The three examples gives very similar results.

Significance of discrepancy
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• Due to the high tension in the dataset, the MLEs arrange themselves in order to set the quadratic term to 
zero and relieve the tension in the dataset in the log term with the greater estimate of the uncertainty:

1. First example: 𝜺𝐂𝐃𝐅 = 𝜺, 𝜺𝐒𝐌 = 𝜺

𝑞 = (7&'(&AB&C'&'()#

E)&'(
# + 1 + F

)𝜺&'(
# log 1 + 2𝜺123) C'&'(

#

H&'(
+ 1 + F

)𝜺*+
# log 1 + 2𝜺IJ)

(7*+&AB)#

H*+

= 6.9 Mev = 7 Mev= 𝟎= 𝟎



Significance of discrepancy
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2. Second example: 𝜺𝐂𝐃𝐅 = 𝟎. 𝟎𝟏, 𝜺𝐒𝐌 = 𝜺

𝑞 = (7&'(&AB&C'&'()#

E)&'(
# + 1 + F

)𝜺&'(
# log 1 + 2𝜺123) C'&'(

#

H&'(
+ 1 + F

)𝜺*+
# log 1 + 2𝜺IJ)

(7*+&AB)#

H*+

3. Third example: 𝜺𝐂𝐃𝐅 = 𝜺, 𝜺𝐒𝐌 = 𝟎. 𝟎𝟏

𝑞 = (7&'(&AB&C'&'()#

E)&'(
# + 1 + F

)𝜺&'(
# log 1 + 2𝜺123) C'&'(

#

H&'(
+ 1 + F

)𝜺*+
# log 1 + 2𝜺IJ)

(7*+&AB)#

H*+

= 𝟎
= 𝟎

= 6.9 Mev = 7 Mev

= 6.9 Mev = 7 Mev

= 𝟎 = 𝟎



1. 𝜺𝑪𝑫𝑭 = 𝜺𝑨𝒕𝒍𝒂𝒔 = 𝜺

Significance of discrepancy
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𝑀0&123 = 80433.5 ± 6.44565 ± 𝟔. 𝟗4745 MeV

𝑀0&85964 = 80360 ± 54565 ± 𝟏𝟓474 MeV



Significance of discrepancy
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2. 𝜺𝑪𝑫𝑭 = 0.01 and 𝜺𝑨𝒕𝒍𝒂𝒔 = 𝜺

• Error-on-error on the largest uncertainty dominates
• The error-on-error on the Atlas systematic uncertainty dominates because is the one with largest 

systematic error 

𝑀0&123 = 80433.5 ± 6.44565 ± 6.94745 MeV

𝑀0&85964 = 80360 ± 54565 ± 𝟏𝟓474 MeV



Significance of discrepancy
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3. 𝜺𝑨𝒕𝒍𝒂𝒔 = 0.01 and 𝜺𝑪𝑫𝑭 = 𝜺

𝑀0&123 = 80433.5 ± 6.44565 ± 𝟔. 𝟗4745 MeV

𝑀0&85964 = 80360 ± 54565 ± 15474 MeV

• If we set 𝜺𝑨𝒕𝒍𝒂𝒔 = 0.01we can now see the effects of the uncertainty on CDF uncertainty 



• If we integrate the 𝑝∗ approximation for density function of *𝜇:

𝑓 *𝜇 = 𝑝∗ *𝜇 =
1
2𝜋

𝑗 𝑒GH/J +𝒪 𝑛GK/J

• We find:

𝐹 𝑟 = Φ 𝑟 + (
1
𝑟 −

1
𝑞)𝜙(𝑟)

• With 𝑞 = LMNOP
LQR

( *𝜇) − LMNOP
LQR

(𝜇) 𝑗( *𝜇)

𝑝∗ Approximation

70



• Or equivalently we can define

𝑟∗ = 𝑟 +
1
𝑟
log

𝑞
𝑟

• Distributed as:

𝑓 𝑟∗ =𝒩 0,1 + 𝒪(𝑛&w/m)

• Therefore 𝑟∗ is 𝜒m

𝑝∗ Approximation
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• Gamma distributions allow to parametrize distributions of positive 
defined variables (like estimates of variances)

• Using Gamma distributions it is possible to profile in close form over 
𝜎)+

Motivation for the GVM

72



• Gamma distributions include the case where the variance is estimate from a real 
dataset of control measurements:

𝑣} =
1

𝑛} − 1
g 𝑢},� − i𝑢}

m

• 𝑛 − 1 𝑣}/𝜎�F
m follows a 𝜒�&pm distribution and 𝑣� a Gamma distribution with:

𝛼! =
𝑛! − 1
2

𝛽! =
𝑛! − 1
2𝜎"!

&

• Therefore 𝑛} = 1 + 1/2𝑟}
m

Motivation for the GVM
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• 𝐿 𝝁, 𝝈𝟐 = ∏}
p
m��F

𝑒& xF&l C/m𝝈𝒊
𝟐
×

𝜷𝒊
𝜶𝒊

𝜞(𝜶𝒊)
𝒗𝒊
𝜶𝒊&𝟏𝒆&𝜷𝒊𝒗𝒊

• 𝑦S = +𝛿, 𝑦J = −𝛿 and 𝑣S = 𝑣J = 1. Both the measurements are assumed to have 𝜀S = 𝜀J = 𝜀

Simple-average-model

74

• 𝑤∗ = g
�

and b can be computed in close form 𝑏 = �
∑ B
HF

∑ rF
C

{F
− p

∑ B
HF

C∑
rF
C

{F
C

𝛿 = 0.5 𝛿 = 1.5



• Goodness-of-fit statistics:

𝑞 = g 1 +
1
2𝜺}m

log 1 + 2𝜺}m
(𝑦} − 𝜇̂)m

𝑣}

• Can be used to compute the significance of the p-value of 𝑞: 𝑍 = Φ&p(1 − 𝑝)

Simple-average-model G.O.F.
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(Significance computed for the same
measurements of the slide before) 



• 𝑞∗ is the Bartlett-corrected version of 𝑞:

𝑞∗ = 𝑞 ∗ 0,-1[3]

• 𝐸[𝑞] was computed analytically at order 𝜀+ using the Lawley formula

• The Lawley formula was used defining 𝑞 as the likelihood ratio of the 
saturated model 

76

Simple-average-model G.O.F.



• 𝐿 𝝁, 𝜽, 𝝈𝒖𝒊
𝟐 = ∏}

p
m��F

𝑒& xF&l C/m�IF
C
∏}

p
m��JF

𝑒& �F&�F C/m𝝈𝒖𝒊
𝟐
×

𝜷𝒊
𝜶𝒊

𝜞(𝜶𝒊)
𝒗𝒊
𝜶𝒊&𝟏𝒆&𝜷𝒊𝒗𝒊

• 𝑦- = +𝛿, 𝑦+ = −𝛿
• 𝑢- = 𝑢+ = 0
• 𝜎-+ = 𝜎++ = 1/2
• 𝑣- = 𝑣+ = 1/2
• Both the measurements are assumed to have 𝜀- = 𝜀+ = 𝜀

Combinations with the full GVM
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Combinations with the full GVM

• Confidence interval for the parameter 𝜇
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• 2D Confidence interval for the parameter 𝜇 and 𝜃p



• Goodness-of-fit statistics:

𝑞 = g
(𝑦} − 𝜇̂ − r𝜃})m

𝜎xF
m +g 1 +

1
2𝜺}

m log 1 + 2𝜺}m
(𝑢} − C𝜃})m

𝑣}

• Can be used to compute the significance of the p-value of 𝑞: 𝑍 = Φ&p(1 − 𝑝)

Simple-average-model G.O.F.
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(Significance computed for the same
measurements of the slide before) 


