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Simulators are Ubiquitous in Science

3 High Energy Physics
(Particle Collisions) 10°

1012

Neuroscience

(Neural Activity)

Cosmology
(Evolution of the Universe)
Epidemiology
(Epidemic Spreading)

Credit: Dalmasso (adapted from Cranmer et al, 2020)

@ For many complex phenomena, the only meaningtul
model (theory) may be in the form of simulations.



Likelihood-Based Inference
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What is Likelihood-Free Inference?
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@ The likelihood cannot be evaluated. But it is implicitly
encoded by the simulator...

@ Inference on parameters in this setting is called
likelihood-free inference (LFI)

{(917X1)7 (927X2)7 Tt (HB,XB)}, where 6 ~ 71-(9)7 X ~ F0




Classical LFI: Approximate Bayesian
Computation (ABC)
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Changing = Landscape [Cranmer et al, PNAS 2019]

® More recent developments use ML algorithms to directly
estimate key inferential quantities from simulated data

{(017X1)7 (92)X2)7 R (037XB)}? where 0 ~ 71'(9), X ~ F9

@ Posteriors, f(81x) [e.g., Papamakarios et al, 2016; Lueckmann et al, 2016;
Izbicki et al, 2019; Greenberg et al, 2019]

@ Likelihoods, f(xI0) or f(xI0)/g(x) [e.g., Izbicki et al, 2014; Thomas et al,
2016; Durkan et al, 2020; Brehmer et al., 2020]

@ Likelihood ratios, f(x104)/f(x|02) [e.g, Cranmer et al, 2015; Thomas et al,
2016; Hermans et al, 2020; Durkan et al, 2020; Brehmer et al, 2020]
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@ These new training-based approaches can handle complex
high-dimensional data without a prior dimension reduction.

Provide “amortized” inference.
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So What's Missing in the LFI-ML Literature?

Given observed data, we would like to constrain parameters of
interest using assumed theoretical/simulation model. Valid measures
of uncertainty, no matter the value of the unknown parameter.

DES collaboration, Abbott+17

KiDS, Joudaki+17

KiDS-450 (wCDM) N
Planck 2015 (wCDM)
KiDS (ACDM) ---
Planck (ACDM) ---
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@ Shortage of practical inferential and diagnostic tools with
finite-sample guarantees of conditional coverage.




Open Problems in LF

DES collaboration, Abbott+17

KiDS, Joudaki+17

Confidence sets with correct

KiDS-450 (wCDM)
Planck 2015 (wCDM) I
KiDS (ACDM) ---
Planck (A\CDM) ---

conditional coverage (for small n)?

Ppio (9 c fi(D)‘H) —1—a, VAeO

@ Most approaches that estimate likelihoods or likelihood ratios

@ rely on asymptotic assumptions (Wilks 1938) for downstream inference
@ do not assess validity across entire parameter space, or

@ use costly MC simulations at fixed parameter settings on a grid
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Unitied Inference Machinery for Frequentist LF

@ Bridges ML with classical statistics to provide:

(i) valid inference: confidence sets and tests with finite-sample
guarantees (Type | error control and power)

(i) practical diagnostics: check actual coverage across entire
parameter space

@ Goal: Modular and computationally efficient procedures

@ Can leverage generative, predictive and posterior algorithms

® Compatible with any test statistic and prior

https://github.com/lee-group-cmu/If2i
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https://github.com/lee-group-cmu/lf2i
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Abstract

Many areas of science make extensive use of computer simulators that implicitly encode
likelihood functions of complex systems. Classical statistical methods are poorly suited for
these so-called likelihood-free inference (LFI) settings, particularly outside asymptotic and
low-dimensional regimes. Although new machine learning methods, such as normalizing
flows, have revolutionized the sample efficiency and capacity of LFI methods, it remains
an open question whether they produce confidence sets with correct conditional coverage
for small sample sizes. This paper unifies classical statistics with modern machine learning
to present (i) a practical procedure for the Neyman construction of confidence sets with
finite-sample guarantees of nominal coverage, and (ii) diagnostics that estimate conditional
coverage over the entire parameter space. We refer to our framework as likelihood-free fre-
quentist inference (LF2I). Any method that defines a test statistic, like the likelihood ratio,
can leverage the LF2I machinery to create valid confidence sets and diagnostics without
costly Monte Carlo samples at fixed parameter settings. We study the power of two test
statistics (ACORE and BFF), which, respectively, maximize versus integrate an odds function
over the parameter space. Our paper discusses the benefits and challenges of LF2I, with a
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https://arxiv.org/abs/2002.10399
https://arxiv.org/abs/2107.03920
https://arxiv.org/abs/2205.15680

Equivalence of Tests and Confidence Sets

@ Data D ={Xy,.... X, } ~ Fy
@ Test statistic A\(D;0)

@ Critical values

Reject Hy : 0 = 0y <— )\(D; 90) < Ceo,a

Theorem (Neyman 1937)

Constructing a 1 — o confidence set for 0 is equivalent to testing

H():Q:@o VS. HAZQ#HO

for every 0y € O.




1. Fixed 6. Find the rejection region for test statistic .

LR(D; 6)




2. Repeat for every 6 in parameter space.




3. Observe data D = D. Evaluate A\(D;#).
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5.0
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4. Construct (1 — «) confidence set for 6.

0.0 -

2.5 -

5.0 -




Challenges

@ Neyman construction itself. L. Lyons, “Open Statistical Issues
in Particle Physics”, AOAS 2008:

However, in practice, it is very hard to use the Neyman frequentist construction
when more than two or three parameters are involved: software to perform a Ney-

man construction efficiently in several dimensions would be most welcome. The

@ Validation of frequentist coverage. R. Cousins: “Lectures on

Statistics in Theory: Prelude to Statistics in Practice”,
arXiv:1807.05996, 2018:

A complete, rigorous check of coverage considers a fine multi-D grid of all parameters, and
for each multi-D point in the grid, generates an ensemble of toy MC pseudo-experiments,
runs the full analysis procedure, and finds the fraction of intervals covering the u of interest

that was used for that ensemble. ILe., one calculates P(u; € [u1, p2]), and compares to C.L.

But. . . the ideal of a fine grid is usually impractical.
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EGEGE——————EL



How Do we Turn the Neyman Construction and Validation
into Practical Procedures?

The Neyman construction requires one to test
H():H:@o VS. HAIH#H()

for every 6y € O.

Key insight:

© Test statistic A(D; 6)
@ Ciritical values Cy, ,, or p-values p(D;0g) of the test

© Coverage Ppg (9 S R(D)) of the constructed confidence set

are conditional distribution functions of the (unknown) parameters, and
often vary smoothly across the parameter space O.



Efficient Construction of Finite-Sample Confidence Sets

LR(D; 6)

Co LR(D; 6)

Rather than running a batch of Monte Carlo simulations for every null
hypothesis 8 = 6 on, e.g., a fine enough grid in ©, we can interpolate
across the parameter space using training-based ML algorithms.




Our Inference Machinery

Likelihood-Free Frequentist Inference

[ Proposal ]
lo

Simulator

B

g l----CReference Distribution)

Classification

— /
/ Critical or / /_Odds and / / Diagnostics /
L

P-Value / Test Statistics /
Hypothesis Confidence
[ Damd Testing *| Setforo




Test Statistics: Leverage ML Classitfication/
Prediction Algorithms

@ Examples of LF2| test statistics:

. \
@ classification/odds = ACORE (approximate LRT)

[Dalmasso et al 2020; arXiv:2002.10399]

@ classitication/odds = BFF (approximate Bayes Factor)

[Dalmasso et al 2021; arXiv:2107.03920]
N\ v

@ prediction or posterior estimation = WALDO (modified
Wald test statistic) [Masserano et al 2022; arXiv:2205.15680]
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Center Branch: Estimating Odds and Test Statistic

Parameter: 0 € ©
Simulated data: X, x € X. Observed data: X°Ps x°Ps ¢ X.

(Proposal n(ﬁ)) @ Proposal distribution 7(6) over
lo the parameter space ©

Simulator F, @ Forward simulator Fy
» Fy, # Fy, for 0y #0605 € O

yB } -- ( Reference Distribution G )

\ 4
Classification f----

© Reference distribution G over
the feature space X

l » [y < G forall @ e ©®

/TOdds and / O A simulated sample of size B to
S

t Statisti - isti
O5: SialStC estimate odds and test statistic




Estimate Odds via Probabilistic Classification

Simulate two samples:
o {(0, X, Y, = 1)}2/% where 6 ~ 7(6), X ~ Fj
o {(6,,X,,Y;=0)}"? where 6 ~ 7(6), X ~ G

Probabilistic classifier r:
r:(0,X) — P(Y =1|X,6)

Define the odds at # € © and fixed x € X as

O P(Y =1lx,60)  fa(x)
O(x;0) := P(Y =0|x,0) ¢g(x)

Interpretation: Chance that x was generated from Fjy rather than G.




Test Statistics Based on Odds: ACORE and BFF

Suppose we want to test:
Hy:0€ 0y vs H;:0¢€ 01, where ©1 = O;

For observed data D = {X$"s, ..., X955} we define:

@ ACORE (Approximate Computation via Odds Ratio Estimation):

- n  Q(X0bs: g
A(D;0¢) :=log SUPgeo( 1'1;—1/\ ( ;bs )
supgeg | [i=1 O(X3°;6)

@ BFF (Bayesian Frequentist Factor):

Jo (TTi=y O(XS55; ) dmo(6)

7(D;09) := - — .
f@g 11;=1 @(Xq: 59) d7r1(9)

where g and 71 are the restrictions of a proposal distribution 7, over
© to O and OF, respectively.



ACORE and BFF are Approximations of the LR Statistic and
the Bayes Factor respectively!

Lemma (Fisher's Consistency)
If P(Y =1/6,X) =P =1/|0,x)V0,X

Supee@o L(D,Q)
Supee@ L(D,Q) )

Q0 — A(D;0g) =LR(D;0) = log

_ PD|Hy) _ Jeo, £(Di0)dmo(0)

Q@ — 7(D;60) =BF(D;00) = 557,) = I, £(D:8)dmi(6)
1

Note: The Bayes factor is often used as a Bayesian alternative to
significance testing but here we are treating it as a frequentist test statistic.




Test Statistics Based on Odds: ACORE and BFF

Suppose we want to test:

Ho:@zeo VS H1:97£90

For observed data D = {X$bs, ..., X°Ps) we define

@ ACORE (Approximate Computation via Odds Ratio Estimation):

A 1y O(X$™; 6)

A(D; 6y) :=log ——
supgee) [T O(X9; 6p)

@ BFF (Bayesian Frequentist Factor):

I, O(X™:0)
Jo (TTi=) O(X; 6)) dr- (6)

where 7-(6) is a probability distribution over the parameter space.

?(@, 90) =




Left Branch: Estimate Critical Values or P-Values

( Proposal )
lo

Simulator

g .
"/B

\ 4

Critical or
p-Value

/ . . . -
We use B simulations to estimate critical values.




Estimating Critical Values Cy, ,

To control Type | error at level a: l00(AD)

a

Reject Hy : 0 = 0y when \(D;60y) < Cy, o, Where N\

Ceo, a

Coy,0 = arg sup {C Ppjg, (A(D;0p) < C) < Oz} :

CeR

Problem: Need to compute Ppg (A(D;0) < C) for every 0 € ©.

Solution: Fy4(C | 0) =\Ppg(A(D;0) < C | 8))is a conditional CDF, so
we can estimate its a-quantile via quantile regression )\‘9(049)




Construct Confidence Set via Neyman Inversion

R(D) = {9 c O | \D;6) > ég,a}

Critical or Odds and
p-Value Test Statistics
Hypothesis Confidence
( Lol ) '[ testing I ’[ set for 6 ]




Are the Constructed Confidence Sets Valid?

Theorem (Validity for any test statistic)

Let Cg be the critical value of a level-o test based on the statistic
A(D;60y). Then, if the quantile regression estimator is consistent,

P

B — 0

Cp

> C™,

where C* is such that

Ppjo(A(D;6o)) < CF) =

!/ . . .
If B is large enough, we can construct a confidence set with guaranteed
nominal coverage regardless of the observed sample size n.




Right Branch: Assessing Conditional Coverage of R(D)

How do we check coverage of constructed confidence sets across ©7
Note:

R(D)={0c O | \D;0) > Cpa}

Py (9 e R(D) | 9) — Epyg []1 (9 € fz(@)) | 0}

( Proposal )
"0

Smulater @ Sample 0; and data D; ~ Fy,
¢ )
g, @ Construct confidence set R(D;)
B
ﬁ ; / Q@ For {0;, R(D;)}2 ., regress
iagnostics R
[ Confidence ]_|
set for 6

How close is the actual coverage to the nominal confidence level 1 — a7
2



Ex: Estimate Critical Values (GMM; n=1000)
& Run Diagnostics Across the Parameter Space

X1,..., X, ~05N(0,1) +0.5N(—6,1)

LR with Monte Carlo samples ) Chi-square LRT ) LR with Cg via Quantile Regression

(Left) LR with1000 MC simulations at each 6 on a fine grid
(Center) Assume chi-squared distribution of LR statistic
(Right) LR with quantile regression with B’=1000 simulations total

82
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Ex: Construct Confidence Sets (MVG data)

Xi,..., X, ~N(0,1;), where n=10, 8 =0

LFI setting, 90% confidence sets

1.5
1.0
0.5 ]
< 0.0] &" * D"
—0.57 ACORE, B=B'=5000 1
BFF, B=B'=5000
-1.04{ 1 Exact LR
L — Exact BF
-15

215 -10 -05 00 05 10 15 -15 -10 -05 00 ©05 10 15 -15 -10 -05 00 05 1.0 15
91 61 61

When d=2, ACORE and BFF confidence sets (for B=B’=5000) are

similar in size to the confidence sets.
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LF2| scales well for <10 parameters

PROSPECTOR
SED Models

Priors |
(5-parameter |—p |
SED model)

Approximate
Proposal
Posteriors

SEDs mapped to
regions in the
parameter space

Gaussian
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Simulated galaxy spectrum

Why? Advent of billion-galaxy surveys with complex data needs efficient modeling of spectral energy

distributions (SEDs) with robust uncertainty quantification

How? Combine SBI and NPE to infer galaxy parameters (5-parameter model)

Goal: use Waldo to obtain reliable constraints and check their validity against those obtained via NPE

TWALDO(D; 00> _

(E[6]D] — 60)°
V[o|D]




Coverage across the entire parameter space

r@):=P@ € #D)|60), 0eR’

Joint Coverage Probability

)

Credible Sets (NPE) Confidence Sets (Waldo)

(E[6]D] — 60)°
V[o|D]

TWALDO(D; 00) _




Profiled dependence of coverage probability vs parameters
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LF2] scales well for <10 parameters. However...

The parameters 0

One more issue: the “theory” space is not the only thing effecting the data

* every step of the forward process comes with its own parameters
(we understand the process generally but need additional knobs to model the data)

]
W) ) =
_,1'F

1 PPy +he
+ gy boe
+ B~ vip)
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| | ~.
p(aj|9):/dzddzhdzp p(a:|zd,( p(zd|zh,.) p(zn2p, p(2p]

.eth)
|

core “theory”
nuisance parameters parameters of inferest
(e.g. “Higgs Mass”

Credit: Lukas Heinrich




How do we Handle Nuisance Parameters?

In many applications, the parameter space can be decomposed as
© = M x N, where M contains the main parameters p. of interest, and N
contains the nuisance parameters v not of immediate interest.

Suppose we want to test

Ho o : o= po versus Hy,o:p#po for ppeM

How does one solve this problem within our inference machinery?




Nuisance-Parameterized LF2I

Test composite vs composite hypotheses:
HO,HO :0 €Oy vs Hl,uo : 0 € ©4,
where(©g = {(uo,v) | v € N},)and ©; = 6§,
@ ACORE test statistic (by maximizing estimated odds)

sup,ex [T O(XE"; (1o, )

A(D; po) = log h
supgee [ 11— O(X2s; 6)

@ BFF test statistic (by integrating estimated odds)

n L OXES; (ug,v)) dmo(v)
Jo, T, O(X$b5;0) drmy(6)

where 7 (v) is a distribution over N, the nuisance parameter space.

A(D; o) 1=



GG S s G S
But Critical Value Estimation is Difficult with Many NPs

Remember: To guarantee frequentist coverage by Neyman's inversion
technique, we need to test null hypotheses

Hopo i pp=po versus Hy,o:p#po for ppeM

by comparing test statistics to the cutoffs 6“0 == inf e é(uo,u)-

That is, one needs to control the type | error at each pg for all possible
values of the nuisance parameters.

Can lead to numerically unwieldy and costly computations if the number
of nuisance parameters is large (>10 NPs).




Hybrid Approaches to Critical Value Estimation

@ h-ACORE: Hybrid Resampling or Profiling! of Nuisance Parameters
» Compare ACORE test statistic with the hybrid cut-off

C' =F! R U
Ho A(D;u«o)‘(uo,uuo) (Of |N0 VMO)

where the quantile regression is based on a train sample 7’ generated
at fixed v,,,.

@ h-BFF: Integration of Nuisance Parameters
» Compare BFF test statistic with the approximate cut-off

- ﬁ—l
C“O 'r(iD;uo)’No (Olf ’ #0)

where we draw the train sample T’ from the entire parameter space
© = M x N, but apply(quantile regression using p only

1Van der Vaart, 2000; Chuanﬁ & Lai, 2000; Feldman, 2000; Sen et-al. 2009



Hybrid Methods and Confidence Sets

@ Hybrid methods (which maximize or average over
nuisance parameters) do not always control the type
| error of statistical tests.

@ "For small sample sizes, there is no theorem as to
whether profiling or marginalization will give better
frequentist coverage for the parameter of interest”
(Cousins 2018)

@ Can our diagnostic tools provide guidance as to
which method to choose for the problem at hand?

42



Poisson Counting Experiment
[cf., Lyons, 2008; Cowan et al, 2011; Cowan, 2012]

@ Particle collision events counted under the presence of a
background process.

Observed data D = (X, X, ..., X1g)

X = (Ny, Ny), where Nj, ~ Pois(yb), N ~ Pois(b + €s)

® The observed data D consist of n=10 observations of
X=(Ng, Ns), where

@ Np is the # of events in the background region (assume y=1)
@ Ngs is the # of events in the signal region

@ Unknown parameters:

@ signal strength (s); two nuisance parameters (b and €)

43
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Diagnostics to Check Coverage Across the Entire Parameter Space

Estimated coverage across parameter space ©

B Undercoverage
B Correct Coverage
Overcoverage

h-ACORE (Critical Values) h-BFF (Critical Values) ACORE (Asymptotic)

@ h-BFF (averages over nuisance parameters) performs the best in
terms of having the largest proportion of the parameter space
with CC and only a small fraction of the parameter space with UC
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Our diagnostic tool can identify regions in parameter

space with UC, CC and OC

(Bottom: heat maps of upper limit of 2o prediction band)

h-BFF (Critical Values) ACORE (Asymptotic)
@ uc

@® cc

oC

h-ACORE (Critical Values)

1.0

0.8

I
t
[ 0.8|8 ©©
[




Take-Away: LF2|

@ Can construct finite-sample confidence sets with nominal
coverage, and provide diagnostics, even without a tractable
likelihood. (Do not rely on large n, or costly MC samples)

Likelihood-Free Frequentist Inference

Critical or Odds and Di ti
P-Value Test Statistics R
Hypothesis Confidence
Testing > Set foro




Take-Away: LF2|

@ Validity: Any existing or new test statistic — that is, not only
estimates of the LR statistic — can be used in our framework
to create frequentist confidence sets. (~10 parameters)

@ Power: Hardest to achieve in practice. Area where most
statistical and computational advances will take place.

@ Nuisance parameters and diagnostics: No guarantee that
hybrid methods are valid. However, we have a practical tool
for assessing coverage across the entire parameter space.

https://github.com/lee-group-cmu/If2i
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Current Projects (2023-)

@ Constructing test statistics that are invariant to nuisance
parameters (with Luca Masserano and Rafael |zbicki) = next
time?

@ Nuisance-parametrized LF2| of atmospheric cosmic-ray
showers (with Alex Shen, Tommaso Dorigo, Michele Doro,
Luca Masserano) — next talk by Alex!

Right: a simulated photon-induced air shower
over the LHAASO array in China. Below: a
representation of the SWGO array.
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Likelihood-Free Inference (LFI)

Like%od L(D: 0)
Data Generating Input Output Observable Data
Process 6 e .‘ —l

Forward Simulator

Parameters of

Image credit: Nic Dalmasso

@ The likelihood cannot be evaluated. But it is implicitly
encoded by the simulator...

@ Inference on parameters in this setting is called
likelihood-free inference (LFI)

{(917X1)7 (927X2)7 Tt (HB,XB)}, where 6 ~ 71-(9)7 X ~ F0




Predictive Al Approach Can Be Very Powerful, But

One Needs to Correct for Bias

[with Luca Masserano, Tommaso Dorigo, Rafael Izbicki and Mikael Kuusela]

Data coming from Dorigo et al. (2020): ~ 400’000
simulated muons with true incoming energy
sampled uniformly between 100 and 2000 GeV.

Energy=655.69965 GeV

Epreq. [GeV]
8
S

£
=)
o

=
E True [G 9V]

Figure 9: 2D histogram of uncorrected
kNN prediction versus true energy for test
data.

corr. [GeV]

EPred

Figure 10: 2D histogram of corrected
kNN prediction versus true energy for test
data.

E[O|X] #6

Figure 4: Muon entering the calorimeter in z direction.

[Kieseler et al., July 2021 arXiv:2107.02119]

Source: Dorigo et al 2020.
Slide credit: Luca Masserano
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Simulation-Based Inference with WALDO: Confidence Regions by Leveraging
Prediction Algorithms or Posterior Estimators for Inverse Problems

Luca Masserano' Tommaso Dorigo®

2INFN, Sezione di Padova

Abstract

Predictive algorithms, such as deep neural net-
works (DNNs), are used in many domain sciences
to directly estimate internal parameters of interest
in simulator-based models, especially in settings
where the observations include images or other
complex high-dimensional data. In parallel, mod-
ern neural density estimators, such as normalizing
flows, are becoming increasingly popular for un-
certainty quantification, especially when both pa-
rameters and observations are high-dimensional.
However, parameter inference is an inverse prob-
lem and not a prediction task; thus, an open chal-
lenge is to construct conditionally valid and pre-
cise confidence regions, with a guaranteed proba-
bility of covering the true parameters of the data-
generating process, no matter what the (unknown)
parameter values are, and without relying on large-
sample theory. Many simulator-based inference
(SBI) methods are indeed known to produce bi-

Rafael Izbicki’
'Department of Statistics & Data Science, Carnegie Mellon University
IDepartment of Statistics, Federal University of Sdo Carlos

Mikael Kuusela' Ann B. Lee'

1 INTRODUCTION

(E[6|D] — 6,)°

WALDO D0, =
T ( ) O) V[H’D]

many science applications, however, one is often interested
in the “inverse” problem of estimating the internal parame-
ters of a data-generating process with reliable measures of
uncertainty. The parameters of interest, which we denote by
@, are then not directly observed but are the “causes” of the
observed data x.

In order to make inference on internal parameters, one needs
a statistical model that relates the (unknown) parameters to
the observed data. In science and engineering, simulations
are often used to model the behavior of complex systems in
licu of an analytical likelihood, when the latter is too com-
plicated to be evaluated explicitly. Let D = (x,,..., X, )"

denote observable data, where the “sample size™ n refers

- - -


https://arxiv.org/abs/2205.15680

e | Back to muon energy calorimeter problem:
LF21/Waldo Confidence Sets
: Derived from CNN Predictions:
Correct Coverage Across the Parameter Space
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Figure credit: Luca Masserano




Ex: Credible Regions from Neural (NF) Posteriors
D|0 ~ 3N (0,1I) + sN(0,0.01 ©I), where @ € R? and n =1

Parameter Reaions Coverage Diaanostics

Credible Region Credible Region Credible Region Diagnostics Credible Regions

—— Posterior Credible Region 95% 100 gps
N(0, 21) Prior Credible Region 95% 75 N

N

e
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- Waldo Confidence Set 95%

Blue contours: 95% credible regions from Normalizing Flows
(overly confident when prior is poorly specified)




Ex: LF2I/Waldo Confidence Sets Derived from the
Same Neural Posteriors & Correct Coverage

Parameter Regions Coverage Diagnostics

Credible Region Credible Region Credible Region Diagnostics Credible Regions
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Waldo guarantees coverage everywhere, even if the prior poorly

specified. Well-specified prior & power (tighter constraints) JEurpa- <E[9x|/2[)61|1_>]90)2
56




PROSPECTOR
SED Models
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Why? Advent of billion-galaxy surveys with complex data needs efficient modeling of spectral energy
distributions (SEDs) with robust uncertainty quantification
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How? Combine SBI and NPE to infer galaxy parameters (5-parameter model)

Goal: use Waldo to obtain reliable constraints and check their validity against those obtained via NPE




Coverage across the entire parameter space

r0):=P@ € Z(D)|0), 0ecR’

Proportion of diagnostics
simulations whose
coverage probability r (&)
is over/at/under the
nominal coverage level

. - Undercoverage
- Conect Coverage
- Overcivers,

[0 Waldo significantly improves the reliability of the constraints on the galaxy parameters, relative to NPE

0 This is only a partial view on the results. Regions marked as under-coverage or might largely differ
in the actual coverage probabilities




Coverage across the entire parameter space

r@):=P@ € #D)|60), 0eR’

Joint Coverage Probability
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Credible Sets (NPE) Confidence Sets (Waldo)




Partial dependence of coverage probability vs parameters
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Profiled dependence of coverage probability vs parameters
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Example of parameter regions when NPE undercovers

Confidence regions (Waldo, green) and credible regions (NPE, blue) obtained from three observations sampled from the same true parameter
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