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MY VIEW IS LIMITED

I cannot claim to have understood everything.
­ There’s a reason Mikael has 2× more time.

­ Remember what physicists think of factors of 2.

This view is incomplete and has systematics.
­ Both are my fault, not the speakers’ or discussion partakers’.

My goal: share what I learned and what I think the future can bring.
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A BEPHYTTING DIMIDATION?
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PHYTISTICIAN



A BIASED SAMPLE FROM OUR CORRESPONDING 
DISTRIBUTIONS’ TAILS

Thank you for being interested 
across the disciplines!
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OUR SYSTEMATIC PLIGHT WITH BIAS
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USUALLY
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ERRORS – –
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A REVERSIBLE PROCESS

Data also used to:
­ Calibrate.
­ Constrain theory parameters.
­ Constrain non-perturbative inputs.

­ Perennial concern that parton distribution function fits 
may subsume BSM physics effects.

Same events ≠
(Double-counting = Double-dipping)
­ Avoiding circularity always in the back of our 

minds.
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BEYOND S AND B – PROCESSES

Quantum-mechanically 
example.

­ Use interference as systematic?
­ Avoid interfering phase space?
­ Estimate effects on the total?
­ …

Generally-speaking there are:
­ Processes sensitive to the inference you want to 

make.
­ Processes that are not.

­ Some you can estimate from MC.
­ Others may be better estimated from data.
­ Many have an impact on the power of your inference.

­ Detector limitations (like noise).
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arXiv:1910.09503

More interesting Less interesting

https://arxiv.org/abs/1910.09503


ALTERNATIVES AND MORPHING

Some alternatives are physical deformations
with meaning.
­ “Average”/morphing makes sense.

Some alternatives are really just alternatives.
­ And if they end up mattering we’ll likely throw one out 

as unphysical. (Cousins)

Perturbative theory uncertainties are a 
whole different beast altogether.
­ Limited but non-zero knowledge on the next term.
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PROGRESS IN UNFOLDING

Important physics tool for theory-
experiment communication.
­ Avoids theorists having to turn their calculations into 

full-fledged simulations.

Exciting progress with many open questions 
for future work.
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Stanley, Zhu, Kuusela



ASTRONOMERS AND CALIBRATORS

All-in-one in HEPP but not universal.
­ Also makes HEPP papers have very long, uninformative, author lists.

Cases in LHC where “interpreters” are “calibrators”.

Cases where “interpretation” is blunted to not step beyond 
“calibration” stated ability.

My rule of thumb: if an analysis constrains a calibration-
provided nuisance parameter, stop and think.
­ And then possibly take action.
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THE MAGIC OF DISCRETE PROFILING

Perhaps there is hope to understand 
discrete profiling in the model selection 
context.
­ How do you feel about model averaging being the 

(weighted) average of estimates across different 
models?

Unavoidable comparison with spurious 
signal; both are prescriptions using 
statistical uncertainty under the signal as 
the gauge
­ Discrete profiling functions are chosen to have bias

smaller than O(10%) stat. unc.
­ Spurious signal is chosen on similar basis and 

added to signal model. 
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Schafer, Wardle, Kania, Brenner, Tackmann



A WELCOME SYSTEMATISATION

OPAT vs APAST

Combination of measurements vs 
combined measurement.

Discussion on simplified likelihoods:
­ Taylor expansion seems to be founded.
­ For PDFs a whole different story: cumulants, 

saddle point approximation, etc.
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Barlow, Lockhart, Wardle, Volobuev, Brazzale



APAT – ALL PARAMETERS AT A TIME
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All fixed to MLE
All profiled
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= Total unc. ⊖ Stat. unc.

APAT – ALL PARAMETERS AT A TIME
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All fixed to MLE
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BETTER ASYMPTOTICS

Sine qua non for ”errors on errors” that can 
benefit all.

Correction can also be used as coverage
diagnostic tool.

I wonder what happens in asymmetric 
cases…
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Canonero, Cowan
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HOW CERTAIN IS THAT UNCERTAINTY?

“Unleash the tails !”

Discussion focused on applying 
these foremost to theory inputs.
­ For exp. uncs. I wonder what the 

evaluation experiment_k by physicist_i
would be.
­ Especially when k = i.

­ Lots of interesting ideas to pursue to
understand how it deals with outliers.

­ I know at least one theorist seriously 
studying the method.
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HIERARCHIES TO DIVIDE AND CONQUER

Specifying intermediate “quantities of 
interest” or “observables”.

Not new: we calibrate energies of 
individual hits and reconstruct momenta of 
individual tracks.

Not a conclusion, just a feeling; a theme.
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“LAST MILE” CORRECTIONS

Simulation imperfections can have 
substantial impact on inference.

Example evolution with time:
­ “Multiply and smear”.
­ 1-D quantile regression.
­ Chained quantile regression.

Is this the best that can be done?

I heard this week about:
­ Multi-dim. quantile regression.
­ Multi-dim. CDF.
­ Optimal Transport maps.
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arXiv:2208.12279, FNAL LPC seminar, Manole

https://arxiv.org/pdf/2208.12279.pdf
https://indico.cern.ch/event/1006100


THE BULK AND THE TAILS

BSM physics unlikely to be the obvious stuff 
already looked for in the last 40 years.
­ Must be within reach and be very subtle (bulk), or
­ Out of reach and very energetic (tails).

Requiring same support as the SM simulation 
does not cover second case above.
­ I.e. events beyond SM sim. support that could still be 

SM.
­ Connected also to amount of SM sim. that can be 

afforded.

Can outlier estimation come to the rescue?
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BUMP CLIMBERS



ML FOR AI – I.E. FOR ACTUAL INTELLIGENCE*

Progress: agreement that 
optimality and correctness 
are not the same.
­ 90% of cases.

­ Can live with consequences.

­ 10% of cases.
­ Can have dire consequences.
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Progress: agreement that 
optimality and correctness 
are not the same.
­ 90% of cases.

­ Can live with consequences.

­ 10% of cases.
­ Can have dire consequences.

ABCD excellent playground 
to test and learn.
­ Also on density learning vs OT 

mapping.
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ML FOR AI – I.E. FOR ACTUAL INTELLIGENCE

Large potential and broad applicability
­ Detector operation.
­ Construct observables.
­ Detector designs.
­ Model-independent methods vs SM sim. statistics.
­ Skirt systematically-affected phase spaces.
­ …

My take: algorithms can more easily explore 
outside the box iff we manage to write loss 
functions that can do that.
Also, ML is not yet wise.
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THE IMPORTANCE OF THE MWE
(FOR ACTUAL INTELLIGENCE)
Physicists using Open Data took one year to 
reproduce an analysis.

Crucial to have minimum working 
examples and/or challenges that flesh out 
the essential of the problems being faced.

Fundamental to continued flow of 
knowledge.
­ I dare suggest a “hackathon” with talks before over 

Zoom and work together on-premise for a week.
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LHC’S BUT ONE CORNER OF PARTICLE PHYSICS

Specific issues that deserve just 
as much attention from 
statisticians.
­ Fertile (safe?, welcoming?) ground for 

Bayesian methods.
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Stefkova, Atkin, Capel



SEANPIPPDA WAS VERY EXCITING
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UNTIL NEXT TIME

Statistics
­ A continued treasure trove of techniques that shape our practices.

­ Ever more pervasive and more advanced.

Particle physics
­ Particularly good conditions for application of statistical methods.

­ Some may call our null not challenging enough.
­ Some may find Poisson counts too boring.

­ Variety of problems in multiple aspects of statistical practice.
­ Likely applicable to other (physical) sciences.

The workshop does not end today.
­ Can keep Slack alive or move it to Mattermost?
­ Can we consider a hackathon-like format in the future?
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“THERE IS NO SPOON”
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