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Polynomials

• N = {0, 1, 2, . . .}

• x will denote a family of variables: x = (x1, x2, . . . , xn)

• For a = (a1, a2, . . . , an) 2 Nn,

xa = xa11 xa22 · · ·xann (x0
i = 1)

• A polynomial f(x) in the variables x = (x1, . . . , xn) is written as

f(x) =
X

↵2Nn

c↵x
↵ =

X

(a1,a2,...,an)2Nn

c(a1,a2,...,an)

coefficient

xa11 xa22 · · ·xann
monomial

term



Symmetric polynomials

• Let Sn denote the group of permutations of [n] = {1, 2, . . . , n}.

• A polynomial f(x1, . . . , xn) is symmetric if

f(x�(1), x�(2), . . . x�(n)) = f(x1, x2, . . . , xn) for all � 2 Sn.

• Example. Which of the following symmetric polynomials?

x21 + x2x3 x1x2 + x2x3 + x1x3 x21 + x1x2 + x22

• Algebra of symmetric polynomials:

C[x1, . . . , xn]Sn =
�
f 2 C[x1, . . . , xn] : f is symmetric

 
.



• Observation:
If 17x220 x522 is a term in a symmetric polynomial,
then so is 17x21x

5
2 and 17x22 x

5
1, and . . .

• So, to construct a symmetric polynomial, symmetrize a monomial:

x21x
5
2

symmetrize
7�������! x21x

5
2 + x22x

5
1 + x21x

5
3 + x22x

5
3 + x23x

5
1 + x23x

5
2

x21x
5
2x

2
3

symmetrize
7�������! x21x

5
2x

2
3 + x22x

5
1x

2
3 + x21x

5
3x

2
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• Monomial symmetric functions:

m(�1,...,�l)(x1, . . . , xn) =
X

x�1
i1
x�2
i2

· · ·x�l
il
,

the sum over all distinct monomials with exponents �1 > . . . > �l.

• partition of length l:
sequence (�1, . . . ,�l) of positive integers satisfying �1 > . . . > �l

• Theorem. Every symmetric polynomial in C[x1, . . . , xn]Sn can be
written uniquely as

f(x1, . . . , xn) =
X

all partitions �
of length 6 n

c�m�(x1, . . . , xn)



Recurring theme: symmetric polynomials from Sn-actions

Given

• a set of combinatorial objects O

• a map " : O �! Nn, written "(T ) =
�
"1(T ), . . . , "n(T )

�

• an action of Sn on O compatible with "

the following polynomial is symmetric:

f(x1, . . . , xn) =
X

T2O

x"1(T )
1 x"2(T )

2 · · · x"n(T )
n



Tableaux
• Let � be a partition of n; for example, � = (5, 4, 4, 1).

• The (Young) diagram of � looks like this:

�1 elements in first row
�2 elements in second row
etc.

• A semistandard (Young) tableau of shape � is a filling of the cells
of the Young diagram of � by positive integers with entries
weakly increasing in rows and strictly increasing in columns:

2 2 4 5
4 4 5 7
5 7
6



Schur polynomial indexed by �

s�(x1, . . . , xn) =
X

T2SSYT(�,[n])

x"1(T )
1 · · ·x"n(T )

n

where
• SSYT(�, [n]) = semistandard tableaux of shape �

and with entries in [n] = {1, 2, . . . , n}
• "i(T ) is the number of copies of i in T

• Example. SSYT
⇣

, {1, 2, 3}
⌘

consists of

1 1
2

1 1
3

1 2
2

1 2
3

1 3
2

1 3
3

2 2
3

2 3
3

s(2,1)(x1, x2, x3)

= x21x2 + x21x3 + x1x
2
2 + 2x1x2x3 + x1x

2
3 + x22x3 + x2x

2
3



Elementary symmetric functions

s(1,1,1)(x) = x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4

1
2
3

1
2
4

1
3
4

2
3
4

• k-th elementary symmetric polynomial:
ek(x1, . . . , xn) =

X

i1<i2<···<ik

xi1 · · ·xik = s1k(x1, . . . , xn)

• algebraically independent: e�1e�2 · · · e�l
are linearly independent

and form a basis of C[x1, . . . , xn]Sn

e(�1,�2,...,�l) = e�1e�2 · · · e�l



Complete symmetric functions

s(3)(x) = x31 + x1x22 + · · ·+ x3x3x4 + · · ·

1 1 1 1 2 2 3 3 4

• k-th complete symmetric polynomial: sum of all degree k monomials

hk(x1, . . . , xn) =
X

i1i2···ik

xi1 · · ·xik = s(k)(x1, . . . , xn)

• algebraically independent: another basis of C[x1, . . . , xn]Sn

h(�1,�2,...,�l) = h�1h�2 · · ·h�l



Power sum symmetric functions

• k-th power sum symmetric polynomial:
pk(x1, . . . , xn) = xk1 + xk2 + · · ·+ xkn

• algebraically independent: another basis of C[x1, . . . , xn]Sn

p(�1,�2,...,�l) = p�1p�2 · · · p�l



Chromatic Symmetric Functions

• A graph � = (V,E) is a set of vertices V and a set of edges E.

• Example. V = {1, 2, 3} and E = {{1, 2}, {2, 3}}, encodes the graph
1 2 3

• An colouring of � is a function  : V �! C , with C a set of colours.

• A colouring  is proper if adjacent vertices have different colours:

{i, j} 2 E =) (i) 6= (j).



 ! x21 x3 x4 x
2
6

combinatorial object monomial
(proper colouring)

$ x1

$ x2

$ x3

$ x4

$ x5

$ x6



The chromatic symmetric function of � is a sum of
monomials, one for each proper colouring of �:

28 x2
1x3x4x2

6 + 144 x1x2x3x5x2
6 + · · ·

... ...



Another example

• Let’s compute X�(x1, x2, x3), where

� =

• 3! ways to colour � with colours {1, 2, 3}, each giving x1x2x3.

• 2 ways to colour � with colours {i, j}, giving x2ixj and xix2j .

• 0 ways to colour � with only one colour — no occurrences of x3i .

X�(x1, x2, x3)

= 6x1x2x3 + x21x2 + x1x
2
2 + x21x3 + x1x

2
3 + x22x3 + x2x

2
3

= 6m(1,1,1) +m(2,1)



• Express X�(x) in a different basis:

X�(x) = 28x21x3x4x
2
6 + 144x1x2x3x5x

2
6 + · · ·

= 720m111111 + 144m21111 + 28m2211

= 168 s111111 + 60 s21111 + 28 s2211

= 28 e42 + 32 e51 + 108 e6

• Some numerology:

28 + 32 + 108 = # acyclic orientations of �
28 + 32 = # acyclic orientations of � with 2 sinks

108 = # acyclic orientations of � with 1 sink



e-expansions and acyclic orientations

• Theorem (Stanley). If X� =
X

�

c�e�, then
X

`(�)=j

c� = # acyclic orientations of � with exactly j sinks.

• If � = , then X� = e(2,1,1) � 2e(2,2) + 5e(3,1) + 4e(4).

• Open problem: Characterize the graphs for which X� is e-positive.

• Conjecture (Stanley–Stembridge). If � is the incomparability
graph of a (3 + 1)-free poset, then X� is e-positive.



Chromatic quasisymmetric functions

• Let � = (V,E) be a finite graph on the vertex set V = [n]. We
will consider colourings  of the vertices by positive integers.

• Define the ascent statistic of  as

asc�() = |{(i, j) 2 E : i < j & (i) < (j)}|

• The chromatic quasisymmetric function of � is

X�(x; t) =
X

proper
colourings
:[n]!N⇥

tasc�()x(1)x(2) · · ·x(n).



• � = 1 2 3

• There are two ways to colour � with colours
n

i < j
o

:
there is one ascent, giving txix2j
there is one ascent, giving tx2ixj

This gives t
P

i<j x
2
ixj + t

P
i<j xix

2
j .

• There are 3! ways to colour � with colours
n

i < j < k
o

:

 2 ascents  t2xixjxk
 1 ascents  t1xixjxk
 1 ascents  t1xixjxk
 1 ascents  t1xixjxk
 1 ascents  t1xixjxk
 0 ascents  t0xixjxk

This gives (t2 + 4t+ 1)
P

i<j<k xixjxk .



• In the example, X�(x; t) is symmetric in the x variables

• However, this is not always the case!

• Shareshian & Wachs identified a class of graphs for which
X�(x; t) is symmetric

• For this class of graphs, they conjecture X�(x; t) is e-positive



Tuples of skew-partitions
• If the diagram of � contains the diagram of µ, then the

skew-partition �/µ consists of the cells of � that are not in µ.

� = (4, 2, 2, 1)
µ = (3, 2, 1)
�/µ contains 3 cells

• Tuples of skew-tableaux, aligned according to diagonals:

8 11

2 5

4 7 10

1

9

3 6



Inversions in tuples of skew-tableaux
Given a tuple of skew-tableaux

�
T1, . . . , Tk

�
,

a pair of cells c 2 Ti and d 2 Tj form an inversion if

• Ti(c) > Tj(d), where Ti(c) denotes the entry in cell c

and either:
• i < j and diag(c) = diag(d), or
• i > j and diag(c) = diag(d) + 1.

diag(c) = diag(d)
diag(c) = diag(d0) + 1

Tj0
Ti

Tj

d0

c

d



LLT Polynomials

• For a tuple of skew-partitions ~⌫ = (⌫1, ⌫2, . . . , ⌫k),

LLT~⌫(x; t) =
X

~T=(T1,...,Tk)
T i

2SSYT(⌫i)

tinv(
~T )xT1 · · ·xTk

• LLT~⌫(x; t) are symmetric in the x variables.

• Example. s(3) + 2t s(2,1) + t2 s(1,1,1)



Unicellular LLT polynomials

If every ⌫i in ~⌫ is a single cell, then LLT~⌫(x; t) is unicellular.



• Define a graph �~⌫ on the cells of ~⌫ with an edge connecting
c 2 ⌫i and d 2 ⌫j whenever

• i < j and diag(c) = diag(d); or
• i > j and diag(c) = diag(d) + 1.

• inv(~T ) statistic equals the ascent statistic of the colouring



Proposition. If ~⌫ = (⌫1, . . . , ⌫k) is unicellular, then

LLT~⌫(x; t) =
X

all colourings
:[k]!N⇥

tasc()x(1)x(2) · · ·x(k).

Example.

~⌫ = � = 1 2 3

LLT~⌫(x1, x2, x3; t) = s(3) + 2ts(2,1) + t2s(1,1,1)



From LLT to chromatic quasisymmetric polynomials

Theorem. If ~⌫ = (⌫1, . . . , ⌫k) is unicellular, then

X�~⌫
(x; t) =

1

(t� 1)k
LLT~⌫ [(t� 1)x; t].

• If f is a symmetric function, then f [(t� 1)x] denotes the
plethystic substitution defined by

pk[(t� 1)x] = (tk � 1)pk(x).

• Attention: You have to switch bases first!



Representation theory

• A representation (over C) of a group G is a morphism of groups

⇢ : G �! GL(V ), where V is a C-vector space.

• By fixing a basis of V , we get a matrix representation of G:

⇢ : G �! GLn(C),

and we define the character of the representation as

�⇢(g) = trace(⇢(g))



Symmetric functions from representations of Sn

• Let V be a representation of Sn with character �.

• The Frobenius characteristic of V is the symmetric function

Frob(V ) =
1

n!

X

�2Sn

�(�) pcycletype(�)

• A graded representation is a graded vector space V =
L

d2N Vd

equipped with an action of the group that maps each component
Vd to itself. The graded Frobenius characteristic of V =

L
d Vd is

Frob(V )(t) =
X

d

Frob(Vd)t
d
2 SymJtK.



Theorem. Let CF(Sn) be the algebra of characters of Sn.

• Frob :
L

nCF(Sn) �! Sym is an algebra isomorphism.

• The Frobenius characteristic of an irreducible character is a
Schur function s�; and conversely.

• If � and  are characters of Sn and Sm, respectively, then

Frob(�)Frob( ) = Frob
⇣
IndSn+m

Sn⇥Sm
(� )

⌘
.

• If � and  are characters of Sn, then
⌦
�, 

↵
Sn

=
⌦
Frob(�),Frob( )

↵
Sym

.


