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1 Overview of the Field
The study of smooth functions on a metric measure space (X, d, µ) can be undertaken in two general settings.
In both there are circumstances under which one obtains a Dirichlet form, which allows for the possibility of
studying curvature via functional inequalities in the sense of Bakry and Émery. With regard to curvature, the
theory is quite well-developed in one case and in its infancy in the other, so it makes sense to describe the
situations separately even though the purpose of the workshop was to bring people from these fields together
to learn from one another and consider problems of mutual interest.

First order calculus and Dirichlet forms on spaces with many rectifiable curves

Taking the perspective that a function f : X → R can be thought of as smooth if it can be paired with
some sort of “gradient object” g such that the pair satisfies some familiar estimates from calculus leads
to function spaces analogous to classical Sobolev spaces. Various types of gradient are considered in the
literature, involving limits of Lp norms of difference quotients (Korevaar-Schoen spaces), an analogue of the
maximal function of the classical gradient (Hajłasz-Sobolev spaces), a notion of the size of the gradient as
measured through the fundamental theorem of calculus on rectifiable curves (Newtonian Sobolev spaces),
and relaxation of Lp norms of local Lipschitz constants (Cheeger Sobolev spaces). In each case one should
think of the Sobolev space as having norm ∥f∥p + ∥g∥p.

In order to obtain a good first order calculus from the preceding construction, one requires that the under-
lying space contains suffciently many rectifiable curves. The standard condition for this, which has become
central to the field, is the validity of a p-Poincaré inequality, which says that there is η ≥ 1 so that for all balls
B, integrable functions f and upper gradient g of f
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where fB is the average over B and ηB is the ball concentric with B but having radius increased by the factor
η. It is an important result of Keith and Zhong [23] that if X is complete, µ is doubling and (X, d, µ) satisfies
a p-Poincaré inequality for some p > 1 then it also satisfies a q-Poincaré inequality for some 1 ≤ q < p.
Using this it is possible to show that these hypotheses ensure all the preceding constructions of Sobolev spaces
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coincide. Moreover, it then follows from the work of Cheeger [13] that the spaces have a tangent structure
and that Lipschitz functions are Cheeger differentiable µ-a.e. (an analogue of Rademacher’s theorem). Just
as an upper gradient can be considered an analogue of the size of the gradient, the Cheeger differential is an
analogue of the gradient itself.

Since a Dirichlet form is an abstract version of the classical object
∫
|∇f |2 it is natural to think that

an L2 Sobolev space constructed by the above procedure should provide a Dirichlet form simply by taking
the seminorm ∥g∥2 with domain the Sobolev space. However, doing this does not ensure the space has a
Hilbertian structure with respect to f , or even that the space is reflexive. The reason is that g was assumed
to record some notion of the size of a gradient, but this size need not correspond to an L2 norm. It is an
open problem to determine optimal conditions under which Sobolev spaces arising from this construction are
infinitesimally Hilbertian, for a positive result using a lower bound on Bakry-Émery curvature see [26]. A
positive result is that when one has a 2-Poincaré inequality and a Cheeger differential then the L2 norm of
this differential is a strongly local regular Dirichlet form with domain the Sobolev space, see [30].

Calculus on spaces without many rectifiable curves

In cases where (X, d) does not have many rectifiable curves and there is no Poincaré inequality the preceding
approach is not productive because the Sobolev spaces are degenerate, sometimes even coinciding with Lp.
However, it is sometimes still possible to directly construct a local regular Dirichlet form E and its domain
F without going via a notion of gradient. This approach has been particularly fruitful on highly symmetric
self-similar fractal spaces. Initially, all such constructions were probabilistic: researchers constructed diffu-
sions on fractal sets to investigate their anomolous properties [16, 10, 6]. This produced Dirichlet forms by
well-established functional analytic methods, see [15]. Probabilistic constructions remain the primary way
to produce Dirichlet forms on infinitely ramified self-similar sets, but on post-critically finite self-similar
sets (which are typically gaskets like the Sierpinski gasket) there is a more elementary approach due to
Kigami [24] that constructs a Dirichlet form as a suitably renormalized limit of Dirichlet forms on finite
graphs.

Higher order and fractional smoothness

In either setting, once one has a local regular Dirichlet form it is standard to consider not only the associated
Markov process but the corresponding (heat) semigroup Pt and its generator L, which is non-positive and
self-adjoint. These satisfy Pt = etL and E(f, g) = −

∫
fLg for suitable classes of functions. On Euclidean

spaces L is the (negative) Laplacian, and it is well known that a complete description of the usual Sobolev
and Besov spaces in this context can be defined from the Laplacian via spectral theory and interpolation [33].
A parallel approach based on L can be used to define spaces of smooth functions on metric measure spaces
with a local regular Dirichlet form.

Differences between the settings

It should be emphasized at this point that although one has a local regular Dirichlet form in both the rectifiable
and the fractal settings we have described, the properties of these forms and their domains are rather different.
One difference is seen in the walk dimension, which is an exponent β measuring the rate at which the diffusion
Pt spreads through the space. If Pt has an integral kernel pt(x, y) then under fairly mild conditions (see [19]
Theorem 4.1) one has bounds of the form
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with Φ(s) = exp
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)
. In the rectifiable analysis setting one always has β = 2, while on fractals β > 2

is typical; α is the Hausdorff dimension and it is known both that 2 ≤ β ≤ α+1 and all pairs (α, β) satisfying
this inequality can occur [5]. Another difference is seen in the structure of energy measures. According to
the seminal work of Beurling and Deny, corresponding to bounded f, g ∈ F one can introduce a measure
dΓ(f, f) via ∫

gdΓ(f, f) = E(fg, f)− 1

2
E(f, g2)
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by virtue of the regularity assumption that F is dense in C(X) in the uniform norm. A recent result of Kajino
and Murugan [21] establishes that having walk dimension β = 2 is equivalent to absolute continuity of all
dΓ(f, f) with respect to µ. Earlier results of Kusuoka [27] and Hino [20] established that dΓ(f, f) ⊥ dµ
was the case in many fractal examples. In turn, this property is closely connected to a significant property
of smooth functions, an elementary proof of which was given by Ben-Bassat, Strichartz and Teplyaev for
the case of the Sierpinski gasket [11]: functions in the domain of the generator L do not form an algebra.
The connection to the singularity of energy measures is that (modulo some technicalities) the Beurling-Deny-
LeJan theorem may be applied to compute L(fg) = fLg + gLf + 2dΓ(f, g), which is a measure singular
to µ. Strichartz [34] has identified a connection to the fact that L does not act as a 2nd order operator on the
Hölder-Lipschitz scale of spaces. We close this section by noting that the replacement for the p = 2 Poincaré
inequality (1) in such fractal settings is∫

B

|f − fB |2 ≤ C(diam(B))β
∫
ηB

dΓ(f, f).

Curvature

In the situation where dΓ(f, f) is absolutely continuous with respect to µ we abuse notation to simply write
Γ(f, f) for the Radon-Nikodym derivative and use polarization to define Γ(f, g) (which could have also been
defined by polarizing the definition from E). Notice that classically, Γ(f, g) is the scalar product of ∇f and
∇g, and that on a manifold the scalar products encode the Ricci curvature. For this reason, Bakry and Émery
introduced the form

Γ2(f, f) =
1

2
LΓ(f, f)− Γ(f,Lf) (2)

and defined curvature dimension spaces CD(K, d) with curvature K and dimension d to be those for which

Γ2(f, f) ≥ KΓ(f, f) +
1

d
(Lf)2. (3)

It is a result of Ambrosio, Gigli and Savaré [2] that this condition is equivalent to the definition of synthetic
curvature given in terms of displacement convexity of the entropy functional in the 2-Wasserstein space due
to Sturm [36, 35] and Lott and Villani [29], thereby giving access to results proved by methods of optimal
transport. The achievements in describing the geometry of metric measure spaces using synthetic curvature
are too many to consider here; we refer to [37] for further information and references.

Having said that this approach to curvature is very successful, it should immediately be noted that in
fractal settings where dΓ(f, f) is singular to µ one cannot define Γ2 by (2). It is not known whether there is
a version of Γ2 or the curvature condition (3) in these settings but, given the apparent difficulties of devising
such, it is useful to know that that there are weaker curvature notions that do not involve Γ2. Some examples
of conditions equivalent to the CD(K,∞) condition that only involve Γ are described in Proposition 3.3
of [3]. An even weaker condition of this type was introduced in [1] as a Hölder smoothing property of the
heat kernel; such estimates are available in the setting of fractal spaces with fractal diffusion established by
Barlow [4].

The workshop was targeted at the nexus of the preceding areas of study, providing experts the opportunity
to share techniques from recent work and early-career faculty and students the chance both to learn about the
foundations of these disciplines, discover open problems, and talk about their own work to senior researchers
in the fields.

2 Recent Developments and Open Problems
As the workshop lay at the meeting point of several fields we summarize some results and open problems that
involve at least pairwise intersections of them. Many of these were presented and discussed at the workshop.
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Linear structure of W 1,p in the rectifiable analysis setting

It was mentioned above that a notable obstruction to obtaining a Dirichlet form in the setting where one
has rectifiable analysis is that the space W 1,2 may fail to be infinitesimally Hilbertian. More generally, one
is interested in knowing when there is a tangent linear space such that the upper gradient g is given by a
norm of a gradient ∇f . Significant recent progress on this problem has been made by Eriksson-Bique and
Soultanis, who provide a notion of a p-weak chart that exists without the assumption of a Poincaré inequality
and coincide with Cheeger’s Lipschitz charts when a Poincaré inequality is valid. This is achieved by taking
a tangent space defined in terms of directions of a.e. rectifiable curve through the base point. Significant open
problems include generalizing to the case p = ∞, determining how this structure behaves under tensorization,
and understanding the properties of tangent space directions in general spaces.

2.0.1 Correspondence between metric and Dirichlet form

We have described above how one might go about constructing a Dirichlet form from the metric measure
structure of (X, d, µ). This is successful in a complete separable metric space on which the measure is
semilocally finite and satisfies some growth condition, provided that the resulting form is infinitesimally
Hilbertian. Problems include determining when the semilocally finite assumption is necessary and providing
a geometric characterization for the infinitesimal Hilbertian condition. Conversely, if energy measures are
absolutely continuous with respect to µ then one can define the intrinsic metric from the Dirichlet form E by
setting dE(x, y) = sup{f(x)− f(y) : f ∈ F ∩ C(X), |Γ(f, f)| ≤ 1}. It is then natural to ask: if we begin
with (X, d, µ), construct E and then dE , when does d = dE?, and if we begin with (X, E , µ), construct dE ,
and then use (X, dE , µ) to build a new form Ẽ , when does E = Ẽ?

The first question has a fairly satisfactory answer: provided that the form E is infinitesimally Hilbertian
and given some mild condition on the measure one has always dE ≥ d and equality holds if there is an
embedding f ∈ F ∩ C(X) and |Γ(f, f)| bounded implies f is Lipschitz. For the second condition there
is a sufficient condition from the work of Ambrosio Gigli and Savaré, which in particular guarantees that it
is sufficient that one has the preceding Sobolev to Lipschitz embedding without the a-priori assumption of
continuity and a Bakry-Émery curvature lower bound of the form (3). An optimal condition is not known.

Conformal structure and quasisymmetric deformation on fractal spaces

One of the most natural problems in the circumstances we have described is the question of when the theory
in one framework is equivalent to that in another. A concrete realization of this is to consider how a notion
of smoothness transforms under suitable maps between metric spaces, and to ask whether or when it is
possible to transform, for example, from the fractal analysis setting to that where a rectifiable analysis applies.
Kigami showed this was possible for the Sierpinski gasket using a harmonic parametrization [25]. Significant
recent progress on problems of this type has been achieved by Kajino and Murugan [22]. They use the walk
dimension β, which always satisfies β ≥ 2 and has β = 2 in the case where the space admits a rectifiable
analysis, as a measure of how different the notion of smoothness is on a fractal to that in the rectifiable
setting. They then show that a space on which initially 0 < β < 2 can be quasisymetrically deformed to
have β arbitrarily close to 2. They also show examples in which one cannot achieve β = 2 by this kind
of deformation. The same authors have investigated the connection between the walk dimension and the
singularity or absolute continuity of energy measures to the reference measure µ [21]; this work is connected
to investigations of the geometric nature and stability of the Harnack inequality [9] and to the general question
of finding the “correct” conformal structure on these types of spaces. Among the open problems in this area
is the need for a more detailed understanding of boundary behavior of harmonic functions, especially in
infinitely ramified fractals, as this is implicated in the the failure of the deformation to achieve β = 2.

Geometry of Harnack inequalities and boundary Harnack principle

A core estimate in Dirichlet spaces is the elliptic Harnack inequality (EHI), which says that if h is harmonic
on a ball B(x, 2R) then ess supB(x,R) h ≤ C ess infB(x,R) h for some constant C depending only on the
Dirichlet space, not the function h. For divergence form elliptic PDE this is due to Moser, who also proved the
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closely related parabolic Harnack inequality (PHI) for solutions of the associated heat equation. Other well-
known approaches to this result are due to DeGiorgi and to Nash. The PHI for a Laplace-Beltrami operator on
a Riemannian manifold was given a metric measure characterization as the conjunction of volume doubling
and Poincaré inequality by Grigory’an [17] and by Saloff-Coste [32]; subsequently this was extended to more
general settings in several ways [7, 8, 18] that involve a third condition on the existence of suitable cutoff
functions. More recently, Barlow and Murugan [9] recognized that the possibility of changing the measure,
and thus altering the PHI without altering the harmonic functions, can be used to give a deeper understanding
of spaces that have EHI but not PHI. They developed these ideas to prove stability of the EHI under rough
isometries and give a geometric characterization of the EHI under certain local regularity assumptions.

The boundary Harnack principle (BHP) states that positive harmonic functions u, v in a domain Ω that
vanish on the portion ∂Ω ∩ B(z, 2R) of the boundary must satisfy u(x)

v(x) ≤ C u(y)
v(y) for x, y in Ω ∩ B(z,R).

This inequality is crucial for understanding boundary values of elliptic PDE, and has a long history. Recent
work of Barlow, Chen and Murugan shows that the EHI implies a BHP on inner uniform domains, but also
showed that the EHI is not necessary for the BHP, leaving open the question of which diffusions admit a
BHP. BHPs for processes involving both diffusions and non-local operators such as Levy processes are also
an active area of study.

Nonlinear potential theory

The linear potential theory of Dirichlet forms is a long-studied area with a rich and detailed theory, particu-
larly as it interacts with probabilistic notions [15, 14]. In Euclidean spaces the same is true of the non-linear
potential theory corresponding to the p-energy

∫
|∇f |p, and much of this has been extended to the setting

of rectifiable analysis on metric measure spaces [12]. For example, p-harmonic functions are known to be
Hölder continuous, satisfy comparison principles, have a Harnack inequality and a Liouville type theorem.
They can be constructed by a Perron method from boundary data, though determining the “weakest” possible
assumptions on the boundary data is an open problem. There are also open problems around removability of
sets for these function spaces, many of which remain open even in the Euclidean setting.

In fractal spaces, there are at least two recent approaches to p-energy and non-linear potential theory.
Kigami has generalized both his successful earlier approach to 2-energy (Dirichlet form) via graph approxi-
mations, as well as the local Poincaré type conditions from the work of Kusuoka and Zhou [28] to a construc-
tion of p-energy under two hypotheses: p is greater than the Ahlfors regular conformal dimension (which
is conjectured to be the critical exponent for Sobolev embedding of the p-energy space into the continuous
functions) and X is p-conductive homogeneous. The latter condition can be verified in a wide variety of
fractal examples using curve modulus techniques. There are many open questions, including what should be
done when p is less than the Ahlfors regular conformal dimension, whether the p-energy space admits a core
and whether it can be characterized as a Korevaar-Schoen space, whether there are p-energy measures, what
structural information (such as Harnack inequalities) can be deduced about p-harmonic functions, and to what
extent the construction might depend on how the approximating graphs are constructed from a partition of
the space. Workshop participants are also investigating when it is possible to (weakly) define a p-Laplacian
operator

At the same time, Baudoin and co-authors have developed an approach in which the p-energy space
is a Korevaar-Schoen space at the critical exponent for which such spaces contain non-constant functions.
A key ingredient in this approach is the notion of an Lp mean value inequality, which provides that the
Korevaar-Schoen norm controls Lp norms of difference quotients at all scales. Under this assumption there
are Sobolev embedding theorems [31] and a Gagliardo-Nirenberg theorem (Baudoin). Again there are many
open questions. They include whether the critical Korevaar-Schoen exponent is independent of the Hausdorff
and walk dimensions or has a connection to the Ahlfors regular conformal dimension, whether the Lp mean
value inequality can be localized to a Poincaré-type inequality, and how these notions behave under standard
methods to construct new spaces from old spaces (e.g. gluing, products, cones, Gromov-Hausdorff limits).
We also note that in the case p = 1 the L1 mean value inequality was deduced from a weak variant of a
Bakry-Émery curvature-type inequality in [1], indicating that curvature functional inequalities might provide
structural information about p-energy spaces; the extent to which these concepts are related more generally
remains to be explored.
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3 Presentations
Fabrice Baudoin: Korevaar-Schoen-Sobolev spaces and critical exponents on metric measure spaces.
We review some of the recent developments in the theory of Korevaar-Schoen-Sobolev spaces. While this
theory is equivalent to that of Cheeger and Shanmugalingam if the space supports a Poincare inequality, it
offers new perspectives in situations, like fractals, where such inequalities are not available.

Jana Björn: Potential theory, p-harmonic and Green functions on metric spaces.
A review of some achievements of nonlinear potential theory in the setting of metric measure spaces with
Poincaré inequality.

Shiping Cao: Dirichlet forms on unconstrained Sierpinski carpets.
We construct symmetric self-similar Dirichlet forms on unconstrained Sierpinski carpets, which are natural
extension of planar Sierpinski carpets by allowing the small cells to live off the 1/k grids. The intersec-
tion of two cells can be a line segment of irrational length, and we also drop the non-diagonal assumption
in this recurrent setting. A uniqueness theorem is also provided. Moreover, the additional freedom of un-
constrained Sierpinski carpets allows us to slide the cells around. In this situation, we view unconstrained
Sierpinski carpets as moving fractals. We prove that the self-similar Dirichlet forms will vary continuously
in a Γ-convergence sense, and the generated diffusion processes, viewed as processes in R2, will converge in
distribution. This is a joint work with Hua Qiu.

Li Chen: Poincaré inequalities on the Vicsek set.
The Vicsek set is a tree-like fractal on which neither analog of curvature nor differential structure exists,
whereas the heat kernel satisfies sub-Gaussian estimates. I will talk about Sobolev spaces and scale invari-
ant Lp Poincaré inequalities on the Vicsek set. Several approaches will be discussed, including the metric
approach of Korevaar-Schoen and the approach by limit approximation of discrete p-energies.

Zhen-Qing Chen: Boundary Harnack principle for non-local operators on metric measure spaces.
It is well known that scale invariant boundary Harnack inequality holds for Laplacian ∆ on uniform do-
mains and holds for fractional Laplacians ∆s on any open set. It has been an open problem whether the
scale-invariant boundary Harnack inequality holds on bounded Lipschitz domains for Levy processes with
Gaussian components such as the independent sum of a Brownian motion and an isotropic stable process
(which corresponds to ∆+∆s). In this talk, I will present a necessary and sufficient condition for the scale-
invariant boundary Harnack inequality to hold for a class of non-local operators on metric measure spaces.
This result will then be applied to give a sufficient geometric condition for the scale-invariant boundary Har-
nack inequality to hold for subordinate Brownian motion on bounded Lipschitz domains in Euclidean spaces.
A counter-example will be given showing that the scale-invariant BHP may fail on some bounded Lipschitz
domains with small Lipschitz constants. Joint work with Jie-Ming Wang.

Stathis Chrontsios-Garitsis: Fractals under quasiconformal maps.
There are various dimension notions that are used to distinguish different fractals. Some depend on measures
(e.g. Hausdorff and packing dimension) and others depend only on the metric of the space (e.g. box-counting
and Assouad dimension). Even when considering all these notions, however, they might not be enough to
distinguish or classify certain fractals. In such situations, it is useful to consider a collection of dimensions
instead, known as a dimension spectrum. In this talk, we will present how the Assouad spectrum of a given
set changes under quasiconformal maps and use this result to quasiconformally classify polynomial spirals,
which would not be possible considering only the Hausdorff, box-counting and Assouad dimension notions.
This talk is based on joint work with Jeremy Tyson.

Simone Di Marino: Sobolev and BV spaces on metric measure spaces: a review.
A review of foundational results regarding Sobolev and BV functions in the metric measure setting.

Estibalitz Durand-Cartagena: Basics of Lipschitz analysis in metric spaces.
We review some Lipschitz-type results in connection with geometric properties and differentiable structures
of metric measure spaces.

Sylvester Eriksson-Bique (Part 1) and Elefterios Soultanis (Part 2): p-weak differentiable structure
on metric spaces.



7

A fundamental question in analysis on metric measure spaces is when W 1,p has a linear structure. Cheeger
resolved this under the assumption of measure doubling and p-Poincaré inequality for some p > 1. We report
on recent progress in removing the assumption of a Poincaré inequality.

Behnam Esmayli: Coarea Inequality for Sobolev functions on Metric Spaces.
By substituting the modulus of gradient with the notion of upper gradient, one can ask if there is a universal
inequality on metric spaces that mimics the classical coarea formula. It is reasonable to assume for example
that the metric space is (locally) homeomorphic to Rn and with locally finite Hausdorff-n measure. Under
stronger further geometric assumptions on a metric space, the affirmative answer follows from a localization
of the Eilenberg’s inequality. Only under the former assumptions, we prove for the case of n = 2, such
an equality for monotone Sobolev functions. I will also discuss counterexamples showing difficulties of
generalizing further.

Tuomas Hytönen: Dyadic cubes on metric spaces.
Dyadic cubes are ubiquitous in analysis in Euclidean spaces. First constructions preserving some of their
key features in much more general spaces have been given by David and Christ. I have explored further
elaborations in my works with Martikainen, Kairema, Auscher, and Tapiola; in particular, metric versions of
random dyadic cubes (inspired by several works of Nazarov, Treil and Volberg on Euclidean spaces), the “1/3
trick” of adjacent/shifted dyadic cubes, and constructions of Hölder-regular ”splines” and “wavelets” adapted
to these dyadic structures.

Naotaka Kajino: Conformal walk dimension: its universal value and the non-attainment for the
Sierpiński carpet.
It is an established result in the field of analysis of diffusion processes on fractals, that the transition density
of the diffusion typically satisfies analogs of Gaussian bounds which involve a space-time scaling exponent β
greater than two and thereby are called SUB-Gaussian bounds. The exponent β, called the walk dimension of
the diffusion, could be considered as representing “how close the geometry of the fractal is to being smooth”.
It has been observed by Kigami in [Math. Ann. 340 (2008), 781–804] that, in the case of the standard two-
dimensional Sierpiński gasket, one can decrease this exponent to two (so that Gaussian bounds hold) by
suitable changes of the metric and the measure while keeping the associated Dirichlet form (the quadratic
energy functional) the same. Then it is natural to ask how general this phenomenon is for diffusions.

This talk is aimed at presenting (partial) answers to this question. More specifically, the talk will present
the following results: (1) For any symmetric diffusion on a metric measure space in which any bounded closed
set is compact, the infimum over all possible values of the exponent β after “suitable” changes of the metric
and the measure is ALWAYS two unless it is infinite. (We call this infimum the conformal walk dimension
of the diffusion.) (2) The infimum as in (1) above is NOT attained, in the case of the Brownian motion on
the standard (two-dimensional) Sierpiński carpet, as well as on the standard three- and higher-dimensional
Sierpiński gaskets. Some related open problems will also be discussed. For (1), it is not known whether the
changes of the metric can be provided by geodesic metrics, or in other words, whether we can require the sub-
Gaussian bounds to hold in the full off-diagonal regime. For (2), some (slight) new knowledge about local
and global behavior of harmonic functions on the fractal is the key, and for better understanding of related
phenomena it would be very important to analyze behavior of harmonic functions on Sierpiński carpets more
deeply. This talk is based on joint works with Mathav Murugan (University of British Columbia). The results
are given in https://link.springer.com/article/10.1007/s00222-022-01148-3 (Invent. math., in press), except
for the non-attainment result for the Sierpiński carpet in (2) above, which is in progress.

Jun Kigami: Yet another construction of “Sobolev spaces” on metric spaces.
The counterpart of “Sobolev spaces” on metric spaces has been intensively studied for the last 20 years after
the pioneering works by Cheeger, Hajlasz, and Shanmugalingam. The mainstream of the ideas is to use
the local Lipschitz constant of a function as a suitable substitute for its gradient. However, a recent study
by Kajino and Murugan on the conformal walk dimension revealed that the Dirichlet form associated with
the Brownian motion on the Sierpinski carpet can not be a Sobolev space in this sense. In this talk, we
will propose a new way of constructing “Sobolev spaces” on compact metric spaces including the Sierpinski
carpet.

Mathav Murugan: Conformal Assouad dimension as the critical exponent for combinatorial mod-
ulus.



8

The conformal Assouad dimension is the infimum of all possible values of Assouad dimension after a qua-
sisymmetric change of metric. We show that the conformal Assouad dimension equals a critical exponent
associated to the combinatorial modulus for any compact doubling metric space. This generalizes a similar
result obtained by Carrasco Piaggio for the Ahlfors regular conformal dimension to a larger family of spaces.
We also show that the value of conformal Assouad dimension is unaffected if we replace quasisymmetry with
power quasisymmetry in its definition.

Enrico Pasqualetto: Isoperimetric Problem on nonsmooth spaces with Ricci curvature bounded
from below.
In the setting of nonsmooth spaces verifying synthetic lower Ricci curvature bounds (the so-called RCD
metric measure spaces), a very refined differential calculus is available by now. By combining these calculus
tools with the compactness and stability properties of the class of RCD spaces, it was possible to obtain several
results on the isoperimetric problem that are new even in the case of non-compact Riemannian manifolds.
Among other things, I will discuss the second-order differential behaviour of the isoperimetric profile, as
well as some of its consequences, such as the existence of isoperimetric sets for large volumes and the sharp
Lévy-Gromov isoperimetric inequality with the rigidity case.

Katarzyna Pietruska-Paluba: The existence of the integrated density of states on fractals.
For an operator of the form ∆+ V , where ∆ is a “Laplacian” and V is a potential, the integrated density of
states is obtained by confining to a finite volume with Dirichlet boundary conditions so that the operator has
N eigenvalues λj , forming the sum 1

N

∑
j δλj of Dirac measures and taking the limit over volumes filling

the space. We report on results in fractal settings with potentials obtained from a Poisson cloud model.

Ryosuke Shimizu: Construction of a canonical p-energy on the Sierpinski carpet.
We provide a review of construction of p-energy and (1, p)-Sobolev space on the Sierpinski carpet when
p is strictly greater than its Ahlfors regular conformal dimension. For p = 2, our 2-energy and (1, 2)-
Sobolev space correspond to the canonical Dirichlet form on the Sierpinski carpet given by Barlow–Bass and
Kusuoka–Zhou. We will see that the condition related to the Ahlfors regular conformal dimension plays the
role of “strongly recurrent”, which implies very good regularity of functions in our Sobolev space.

Giacomo Sodini: Density of subalgebras of Lipschitz functions in metric Sobolev spaces and appli-
cations to Sobolev-Wasserstein spaces.
We present a general criterium for the density in energy of suitable subalgebras of Lipschitz functions in the
p-metric-Sobolev space associated with a Polish metric-measure space. We then apply our result to the case
of the algebra of cylindrical functions in the 2-Sobolev-Wasserstein space arising from a positive Borel mea-
sure on the 2-Kantorivich-Rubinstein-Wasserstein space of probability measures on the Euclidean space. We
show that such a Sobolev space is always Hilbertian, independently of the choice of the reference measure
and we briefly mention how the density result can be extended to more general Sobolev-Wasserstien spaces.
This talk is based on a joint work with Massimo Fornasier (TU München, Germany) and Giuseppe Savaré
(Bocconi University, Milano, Italy).

Karl Theodor Sturm: Dirichlet forms and metric measure spaces.
We provide a comprehensive survey on Dirichlet forms on metric measure spaces. In particular, we discuss
how to pass from metric-measure spaces to Dirichlet forms and vice versa, and under which conditions these
transitions commute. Moreover, we outline the basic transformations of the respective data: measure change,
metric change, time change, conformal change.

Alexander Teplyaev: Fine structure of BV functions on fractals (preliminary report).
We present some recent results and work in progress regarding the structure of“gradients” of BV functions
on certain fractal sets.

Jing Wang: Spectral bounds and exit times of diffusions on metric measure spaces.
It is widely known that the exit time of a diffusion process from a domain reflects geometric and spectral
information of the domain. In this talk we consider a diffusion on a metric measure space equipped with a
local regular Dirichlet form. With suitable assumptions such as volume doubling property and heat kernel
sub-Gaussian upper bound we obtain estimates on the survival probability P (τD > t) of the diffusion, where
τD is its first exit time from domain D. The applications of this estimate include a uniform upper bound for
the product λ(D) supx∈D Ex(τD) and a partial answer to a conjecture of Grigor’yan, Hu and Lau. These
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results apply to many examples in sub-Riemannian manifolds, fractals, as well as fractal-like manifolds. This
is a joint work with Phanuel Mariano.

4 Scientific Progress and Outcomes of the Meeting
The workshop involved many high-quality presentations, and almost as many discussion sessions, at which
the audience participated enthusiastically. The small discussion rooms provided by BIRS were used exten-
sively by groups of mathematicians participating in the program to brainstorm and work on projects; and we
expect that many future papers and research programs have their beginnings rooted in this BIRS workshop.
Judging from these observations, and the informal feedback received by the organizers, it seems that the
workshop was very successful at fostering interaction between people from these distinct but related fields of
mathematics and making new connections within and between their research areas. Participants also raised
many questions during and after the presentations that suggested new directions of research and different
approaches to established topics, some of which are mentioned in this report, and we anticipate that these
research questions will be influential in the ongoing development of these areas.
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[23] Stephen Keith and Xiao Zhong. The Poincaré inequality is an open ended condition. Ann. of Math. (2),
167(2):575–599, 2008.

[24] Jun Kigami. Analysis on fractals, volume 143 of Cambridge Tracts in Mathematics. Cambridge Uni-
versity Press, Cambridge, 2001.

[25] Jun Kigami. Measurable Riemannian geometry on the Sierpinski gasket: the Kusuoka measure and the
Gaussian heat kernel estimate. Math. Ann., 340(4):781–804, 2008.

[26] Pekka Koskela, Nageswari Shanmugalingam, and Yuan Zhou. Geometry and analysis of Dirichlet forms
(II). J. Funct. Anal., 267(7):2437–2477, 2014.

[27] Shigeo Kusuoka. Dirichlet forms on fractals and products of random matrices. Publ. Res. Inst. Math.
Sci., 25(4):659–680, 1989.

[28] Shigeo Kusuoka and Zhou Xian Yin. Dirichlet forms on fractals: Poincaré constant and resistance.
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