p-weak differentiable structure on metric spaces

Sylvester Eriksson-Bique, Elefterios Soultanis

November 25th 2020

Sylvester Eriksson-Bique, Elefterios Soultanis

Diff structures

November 25th 2020 1 / 10

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

Questions:

Question

Is there a natural linear structure on $W^{1,p}(X)$?

$$f(\gamma_1) - f(\gamma_0) = \int_{\gamma} df \cdot ds.$$

Question

Is $g_f = |df|$ for some linear and pointwise defined df?

$$|f(\gamma_1)-f(\gamma_0)|\leq \int_{\gamma}g_f ds.$$

3

(日)

How to make sense in manifolds?

Definition

A chart $(U, \phi : U \to \mathbb{R}^n)$ on a manifold consists of a diffeomorphism ϕ and $U \subset M$ open.

Definition

If $f: M \to \mathbb{R}$ is Lipschitz, then any chart $(U, \phi: U \to \mathbb{R}^n)$ and a.e. $x \in U$, there exists $df_x \in (\mathbb{R}^n)^*$

$$f(y) - f(x) = df_x(\phi(y) - \phi(x)) + o(d(x, y)).$$

$$f(\gamma_1) - f(\gamma_0) = \int_0^1 df_x((\phi \circ \gamma)'_t) dt.$$

$$g_f = \sup_{|v|=1} |df(v)|.$$

Definition

Chart: $U \subset X, \phi : X \to \mathbb{R}^n$ Lipschitz. For every $f : X \to \mathbb{R}$ there exists a unique: $df_x \in (\mathbb{R}^n)^*$

$$f(y)-f(x)=df_x(\phi(y)-\phi(x))+o(d(x,y)).$$

Theorem

(Cheeger '99) If (X, d, μ) is measure doubling and satisfies a Poincaré-inequality, then there exist charts $(U_i, \phi_i : X \to \mathbb{R}^{n_i})$ with

• $\sup_{i \in \mathbb{N}} n_i \leq C(D, C_{PI}).$ • $\mu(X \setminus \bigcup U_i) = 0.$

$$egin{aligned} f(\gamma_1)-f(\gamma_0)&=\int_0^1\sum_{i\in\mathbb{N}}df_x((\phi_i\circ\gamma)_t')1_{U_i}(\gamma_t)dt.\ &g_f=|df|. \end{aligned}$$

イロト 不得 トイヨト イヨト 二日

Only consider points along curves for a.e. curve: $x = \gamma_s, y = \gamma_t$.

Definition

p-weak chart: $U \subset X, \phi : X \to \mathbb{R}^n$ Lipschitz. For every $f : X \to \mathbb{R}$ there exists a Unique: $df_x \in (\mathbb{R}^n)^*$

$$f(\gamma_s) - f(\gamma_t) = df_x(\phi(\gamma_s) - \phi(\gamma_t)) + o(d(\gamma_s, \gamma_t))$$

for p.a.e γ and a.e. t s.t. $\gamma(t) \in U$.

Theorem

(Eriksson-Bique, Soultanis '21) If (X, d, μ) is semi-locally bounded, complete, separable and X has Hausdorff dimension $d_{\text{Haus}} < \infty$, then, there exist p-weak charts $(U_i, \phi_i : X \to \mathbb{R}^{n_i})$ with

•
$$\sup_{i\in\mathbb{N}} n_i \leq d_{\text{Haus}}.$$

• $\mu(X \setminus \bigcup U_i) = 0.$

$$egin{aligned} f(\gamma_1)-f(\gamma_0)&=\int_0^1\sum_{i\in\mathbb{N}}df_{\mathsf{x}}((\phi_i\circ\gamma)_t')\mathbb{1}_{U_i}(\gamma_t)dt,\ &g_f=|df|. \end{aligned}$$

< □ > < □ > < □ > < □ >

Lemma

If $f \in W^{1,p}(X)$ and f is bounded with compact support, then $f^2 \in W^{1,p}(X)$ and

$$d(f^2) = 2fdf$$

Proof: Let (U, ϕ) be a chart

$$(f^{2} \circ \gamma)'_{t} \stackrel{AC}{=} 2f \cdot (f \circ \gamma)'_{t} \stackrel{Chart}{=} 2f(\gamma_{t}) \cdot df_{\mathsf{x}}((\phi \circ \gamma)'_{t}).$$

By uniqueness, the claim follows.

イロト 不得下 イヨト イヨト 二日

Finite Hausdorff dimension?

Definition

p-independent: $U \subset X, \varphi : X \to \mathbb{R}^n$ Lipschitz, s.t. for any countable dense set $V \subset S^{n-1}$, we have for a.e. $x \in U$ that

$$\operatorname{essinf}_{v\in S^{n-1}}g_{v\cdot\varphi}=\inf_{v\in V}g_{v\cdot\varphi}(x)>0.$$

Theorem

If $(U, \varphi : X \to \mathbb{R}^n)$ is p-independent, then $d_{\text{Haus}}(U) \ge n$.

\implies maximal *p*-independent maps

イロト イヨト イヨト イヨト

Theorem

If (U, φ) is a maximal p-independent chart, then (U, φ) is a p-weak chart. That is, every $f \in N^{1,p}(X)$ has a unique differential w.r.t. (U, φ) .

Consider the map $(U, (\varphi, f))$, which is no longer *p*-independent.