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How do microplastics move around in 
the environment?
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Petersen and Hubbart 2020, Sci. Total Environ. Welden and Lusher 2017, IEAM



What particle characteristics impact 
transport the most?

Long-term goal: help parametrize large-scale models by 
determining how much inter-particle variability matters
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size shape density

density distribution
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Where do we go from here?

Images: Kane & Clare 2019, Front. Earth Sci.
CC-BY-NC 2.0, Will Parson (Chesapeake Bay Program)
Monterey Bay Aquarium Research Institute
Rillig and Lehmann 2020, Science



The size of a particle influences how it 
experiences the surrounding turbulence.
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Images: Milos Bicanski. World Wildlife Federation (UK) / 5Gyres and Oregon State University / F. Vollnhals, INAM

Plastic ingestion study: 
Senathirajah et al 2021 J. Haz. Mat.



Inertia comes not only from the mass of 
a particle, but also from its size.
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A particle’s settling velocity in turbulence 
isn’t the same as it is in still water.
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From Nielsen 2007, “Mean and 
variance of the velocity of solid 
particles in turbulence”

Relative turb. strength,  ≡ ⁄𝑢𝑢𝑇𝑇 𝑣𝑣𝑞𝑞
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Different mechanisms act on particles 
of different size/density.
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Tooby, Wick, and Isaacs 1977 J. Geophys. Res.Maxey and Corrsin 1986, J. Atmos. Sci Good et al 2014, J. Fluid Mech.



How do the size and shape of
near-neutrally buoyant particles 
affect their motion relative to 
the surrounding flow?
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We placed particles of 4 different shapes 
and 2 different mass densities in a 
laboratory turbulent flow.
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Byron & Variano 2013, Exp. Fluids

Evan Variano

Ocean Turbulence Tank Properties
TKE = [2, 14] cm2/s2 Reλ = [200, 104] TKE = 6.47 cm2/s2 Reλ = 310

ε = [10-7, 10-4] m2/s3 η = [0.3, 2] mm ε = 4.95·10-5 m2/s3 η = 0.50mm

(from Jiménez 1998, Oc. Lit. Rev.) 

𝑆𝑆𝑆𝑆1 = 1.003

𝑆𝑆𝑆𝑆2 = 1.006

Bellani & Variano 2014, Exp. Fluids

1𝑐𝑐𝑐𝑐

𝒖𝒖𝑠𝑠= 𝒖𝒖𝑝𝑝- 𝒖𝒖𝑓𝑓



All 3 velocity components follow a linear 
trend, despite the influence of history.
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We define two different “slip” velocities: one 
for buoyancy and one for history effects.
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𝒖𝒖𝑠𝑠 𝒙𝒙, 𝑡𝑡 = 𝒖𝒖𝑠𝑠 + 𝒖𝒖𝑠𝑠
′ 𝒙𝒙, 𝑡𝑡 = 𝒖𝒖𝑏𝑏 + 𝒖𝒖𝜀𝜀 �𝒙𝒙𝑝𝑝 𝑑𝑑𝑑𝑑, 𝑡𝑡
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Gravity, mass, and shape/size effects are not 
equivalent… but maybe not independent.

more mass
more slip

Gravity still 
matters!

SG1 SG2

SG1 SG2

(Heavier particles 
fall faster)
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Byron et al 2019, Int. 
J. Multiphase Flow



Gravitational slip is significantly reduced 
compared to quiescent settling velocities.

𝑺𝑺𝑺𝑺 < 𝟏𝟏

𝑺𝑺𝑺𝑺 > 𝟏𝟏% reduction:  1 − 𝑣𝑣𝑏𝑏
𝑣𝑣𝑞𝑞

𝜶𝜶 𝐒𝐒𝐒𝐒𝟏𝟏 𝐒𝐒𝐒𝐒𝟐𝟐
0.5 57% 46%
1 52% 49%
2 45% 43%
4 55% 32%

Relative turb. strength,  ≡ ⁄𝑢𝑢𝑇𝑇 𝑣𝑣𝑞𝑞
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From Nielsen 2007, “Mean and variance of the velocity of solid 
particles in turbulence”2/24/2022 16



This brings us back to the (perhaps 
inadequate) Stokes number…
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Scaling analysis from Bordoloi and Variano 2017, J. Fluid Mech.

𝑆𝑆𝑆𝑆 = 0.1

𝑆𝑆𝑆𝑆 = 1

𝑆𝑆𝑆𝑆 = 10

constant for 
a given flow

Large & Light

Small & Heavy



So, for large inertial particles…

• 𝑣𝑣𝑏𝑏 < 𝑣𝑣𝑞𝑞: Settling is reduced in turbulence
• Shape doesn’t matter much near neutral buoyancy for 

either slip/settling (OR rotation).
• Mass and size effects are not independent when gravity is 

involved. Buoyancy effects remain even in the 
(ostensibly) non-gravity coupled term.

• Stokes number can’t fully describe particle inertia for 
large (>η𝑘𝑘) particles.

2/24/2022 18



size shape density

density distribution
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Where do we go from here?

Images: Kane & Clare 2019, Front. Earth Sci.
CC-BY-NC 2.0, Will Parson (Chesapeake Bay Program)
Monterey Bay Aquarium Research Institute
Rillig and Lehmann 2020, Science



Mass distribution isn’t always uniform 
in microplastics!
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Uniform particle: 
• Gravity and buoyancy 

are co-located
• No net buoyant 

torques

Compound particle: 
• Gravity and buoyancy are 

not co-located
• Buoyant torque stabilizes… 

or does it?
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Image: Shutterstock/Rich Carey



How do compound particles fall compared 
to uniform particles?
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SG= 1.005
SG= 1.003

SG= 1.007

𝐿𝐿 = 8𝑚𝑚𝑚𝑚
𝐷𝐷 = 8𝑚𝑚𝑚𝑚

𝐿𝐿 = 14𝑚𝑚𝑚𝑚
𝐷𝐷 = 7𝑚𝑚𝑚𝑚

𝛼𝛼 = 1: 
𝑅𝑅𝑅𝑅𝑝𝑝 = 207

𝛼𝛼 = 2: 
𝑅𝑅𝑅𝑅𝑝𝑝 = 228

𝛼𝛼 = 4: 
𝑅𝑅𝑅𝑅𝑝𝑝 = 215
𝐿𝐿 = 24𝑚𝑚𝑚𝑚
𝐷𝐷 = 6𝑚𝑚𝑚𝑚

Camera 2

Brandon Angle



The hydrogel method allows for ease 
of optical access for PIV.
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Compound density cylinders drift to the side, 
and initial orientation matters dramatically.
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Short cylinders oscillate as they fall; 
compound-density cylinders fall more stably.
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Short cylinders oscillate as they fall; 
compound-density cylinders fall more stably.
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Short cylinders oscillate as they fall; 
compound-density cylinders fall more stably.
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Short cylinders oscillate as they fall; 
compound-density cylinders fall more stably.
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Uniform medium length cylinders (𝛼𝛼 = 2) fall 
stably broadside, with minimal oscillation.
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Compound-density cylinders at 𝛼𝛼=2 fall in 
two distinct classes: stable and oscillating.

2/24/2022 29









Long cylinders fall straight down if uniform; 
if compound, they fall at a stable angle.
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Long cylinders fall straight down if uniform; 
if compound, they fall at a stable angle.
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Fall velocity depends on fall orientation 
(which determines cross-sectional area).
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Transitions between falling modes may 
be highly sensitive to 𝑅𝑅𝑅𝑅.
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1.5℃ 36.5℃

Transition Regime



Wake structure provides some 
explanation, but we need more data.
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We are exploring more shapes and mass 
distributions, and will extend to turbulence.
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25% PETG, 75% ASA
𝛼𝛼 = 2

75% PETG, 25% ASA
𝛼𝛼 = 2

𝜌𝜌𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 1.27𝑔𝑔/𝑐𝑐𝑚𝑚3

𝜌𝜌𝐴𝐴𝐴𝐴𝐴𝐴 = 1.07𝑔𝑔/𝑐𝑐𝑚𝑚3

Brayden Bowie
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We are also investigating how the presence 
of biofilms and/or degradation affect 
settling velocity in still water and turbulence. 

Annalie Fazio






size shape density

density distribution
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Where do we go from here?

Images: Kane & Clare 2019, Front. Earth Sci.
CC-BY-NC 2.0, Will Parson (Chesapeake Bay Program)
Monterey Bay Aquarium Research Institute
Rillig and Lehmann 2020, Science



Some conclusions for nonuniform cylinders… 
and implications for microplastics

CYLINDERS
1. Cylinders fell in three 

different modes.
2. Falling mode depends on 

both aspect ratio and 
density distribution.

3. Transition between modes 
may be linked to critical Re

4. Density distribution affects 
cylinder landing site.

MICROPLASTICS
1. Nonuniform density 

affects settling velocity
2. Shape matters.
3. Very subtle changes in 

density can create big 
changes in settling

4. Nonuniform density 
affects dispersion
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Thank you!
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