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Why look at the interior?

I It’s reality∗

I It informs mathematics what kind of objects exist

I It carries an imprint of the GW source outside the horizons
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The basic picture
I A smooth closed spacelike 2-surface S

is a marginally outer trapped surface
(MOTS)⇔ Θ+ = 0
where Θ+ := qαβ∇α`+β = outward expansion,

qαβ = metric on S, `α+ = outgoing null normal on S

I Θ+ > 0 light rays diverge
Θ+ < 0 light rays converge

I Apparent Horizon = outermost MOTS

I MOTS S evolves:
marginally outer trapped tube
(MOTT)

I Quasilocal horizon framework

MOTS
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The basic picture
I Brill-Lindquist initial data (m1 = 0.5, m2 = 0.8, d = 1.3)

I Connected sequence of MOTSs from S1,2 → Souter
I Formation of MOTSs that self-intersect
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MOTSs without initial guesses – Method I

I A generalized “shooting method”
(Booth et al., PRD 104, 084083 (2021) and
Pook-Kolb et al., PRL 127, 181101 (2021))

The idea:
I γ determined by two coupled 2nd

order ODEs (“MOTSodesic”)
I Choose a point on the z-axis and

shoot a “Θ+ = 0 ray”
I γ describes a MOTS

⇔ γ closes upon itself
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MOTSs without initial guesses – Method II
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expansion: Θ+ = const

I Any Θ+ = 0 surface S ∈ F
is a MOTS

(source: Pook-Kolb et al., PRD 104, 084084 (2021)) 6
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MOTSs without initial guesses – Method II
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MOTSs without initial guesses – Method II
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Tracking a MOTS through time
I Simply take the previous MOTS:
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We found . . .

this:
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I Do these MOTSs help explain the fate of S1 and S2?
I Are they all black hole boundaries?

(source: Pook-Kolb et al., PRD 104, 084084 (2021), modified) 8
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The fate of S2
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MOTS→ black hole boundary?
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The barrier property
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⇒ MOTS has “barrier” property!
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The barrier property
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“Barrier”←→ “Stability”
I Definition: “Stability operator” (Vacuum)

linear, 2nd order, elliptic, generally not self-adjoint

(Andersson, Mars, Simon, PRL 95, 111102 (2005))

LΨ = δ2ΨνΘ+ = d
ds

∣∣∣
s=0

Θs
+

LΨ = −4Ψ +
(1

2R− 2|σ+|2
)

Ψ

LΨ = λΨ

Ψ : S → R describes deformation,R = Ricci scalar of S, σ+ = shear of S
4 = (DA − ωA)(DA − ωA), ωA = `−α∇A`α+, axisymmetry + no spin⇒4 = ∆S = Laplacian on S

νa

S
time slice

I Principal eigenvalue λ0 > 0→ MOTS is strictly stable⇒ barrier
I MOTS is a barrier⇒ λ0 ≥ 0
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A new picture of the full merger
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The new picture
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Stability → Black hole boundaries
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I lighter = “more unstable” = larger number of negative stability eigenvalues

(Pook-Kolb et al., PRD 104, 084084 (2021))
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Cusps and self-intersections
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Cusps and self-intersections

I S ′ and S ′′ touch
↔ S ′ ∪ S ′′ = S

I S has a cusp,
later self-intersection

I Empirically:
N ′ +N ′′ + 1 = N

N = number of λ < 0
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A MOTS with toroidal topology
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Ingoing expansion
Souter Sinner

(source: Pook-Kolb et al., PRD 104, 084084 (2021)) 23



Ingoing expansion
Sinner S∗inner

(source: Pook-Kolb et al., PRD 104, 084084 (2021)) 24



Signature
Sinner S∗inner

(source: Pook-Kolb et al., PRD 104, 084084 (2021)) 25



Summary
I Two new methods for finding unexpected

MOTSs

I Many bifurcations and annihilations

I Individual horizons annihilate independently

I Only three MOTSs are strictly stable:
S1, S2, Souter→ black hole boundaries

I We now know what to look for in fully
generic cases
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