The ultimate fate of apparent horizons in a binary black hole merger

Daniel Pook-Kolb

with Ivan Booth and Robie Hennigar

papers: Pook-Kolb, Hennigar, Booth (PRL 127, 181101 (2021))
Booth, Hennigar, Pook-Kolb (PRD 104, 084083 (2021))
Pook-Kolb, Booth, Hennigar (PRD 104, 084084 (2021))
partly based on previous work with Ofek Birnholtz, Josè Luis Jaramillo, Badri Krishnan, Erik Schnetter
At the Interface of Mathematical Relativity and Astrophysics
April 28, 2022, BIRS / Online

Why look at the interior?

- It's reality*
- It informs mathematics what kind of objects exist
- It carries an imprint of the GW source outside the horizons

The basic picture

- A smooth closed spacelike 2-surface \mathcal{S} is a marginally outer trapped surface (MOTS) $\Leftrightarrow \Theta_{+}=0$
where $\Theta_{+}:=q^{\alpha \beta} \nabla_{\alpha} \ell_{\beta}^{+}=$outward expansion,
$q_{\alpha \beta}=$ metric on $\mathcal{S}, \ell_{+}^{\alpha}=$ outgoing null normal on \mathcal{S}
- $\Theta_{+}>0$ light rays diverge
$\Theta_{+}<0$ light rays converge
- Apparent Horizon = outermost MOTS

The basic picture

- A smooth closed spacelike 2-surface \mathcal{S} is a marginally outer trapped surface (MOTS) $\Leftrightarrow \Theta_{+}=0$
where $\Theta_{+}:=q^{\alpha \beta} \nabla_{\alpha} \ell_{\beta}^{+}=$outward expansion,
$q_{\alpha \beta}=$ metric on $\mathcal{S}, \ell_{+}^{\alpha}=$ outgoing null normal on \mathcal{S}
- $\Theta_{+}>0$ light rays diverge
$\Theta_{+}<0$ light rays converge
- Apparent Horizon = outermost MOTS

The basic picture

- A smooth closed spacelike 2-surface \mathcal{S} is a marginally outer trapped surface (MOTS) $\Leftrightarrow \Theta_{+}=0$
where $\Theta_{+}:=q^{\alpha \beta} \nabla_{\alpha} \ell_{\beta}^{+}=$outward expansion,
$q_{\alpha \beta}=$ metric on $\mathcal{S}, \ell_{+}^{\alpha}=$ outgoing null normal on \mathcal{S}
- $\Theta_{+}>0$ light rays diverge
$\Theta_{+}<0$ light rays converge
- Apparent Horizon = outermost MOTS

The basic picture

- A smooth closed spacelike 2-surface \mathcal{S} is a marginally outer trapped surface (MOTS) $\Leftrightarrow \Theta_{+}=0$
where $\Theta_{+}:=q^{\alpha \beta} \nabla_{\alpha} \ell_{\beta}^{+}=$outward expansion,
$q_{\alpha \beta}=$ metric on $\mathcal{S}, \ell_{+}^{\alpha}=$ outgoing null normal on \mathcal{S}
- $\Theta_{+}>0$ light rays diverge
$\Theta_{+}<0$ light rays converge
- Apparent Horizon = outermost MOTS

The basic picture

- A smooth closed spacelike 2-surface \mathcal{S} is a marginally outer trapped surface (MOTS) $\Leftrightarrow \Theta_{+}=0$
where $\Theta_{+}:=q^{\alpha \beta} \nabla_{\alpha} \ell_{\beta}^{+}=$outward expansion,
$q_{\alpha \beta}=$ metric on $\mathcal{S}, \ell_{+}^{\alpha}=$ outgoing null normal on \mathcal{S}
- $\Theta_{+}>0$ light rays diverge
$\Theta_{+}<0$ light rays converge
- Apparent Horizon = outermost MOTS
- MOTS \mathcal{S} evolves:
marginally outer trapped tube (MOTT)

The basic picture

- A smooth closed spacelike 2-surface \mathcal{S} is a marginally outer trapped surface (MOTS) $\Leftrightarrow \Theta_{+}=0$
where $\Theta_{+}:=q^{\alpha \beta} \nabla_{\alpha} \ell_{\beta}^{+}=$outward expansion,
$q_{\alpha \beta}=$ metric on $\mathcal{S}, \ell_{+}^{\alpha}=$ outgoing null normal on \mathcal{S}
- $\Theta_{+}>0$ light rays diverge
$\Theta_{+}<0$ light rays converge
- Apparent Horizon = outermost MOTS
- MOTS \mathcal{S} evolves:
marginally outer trapped tube (MOTT)

The basic picture

- A smooth closed spacelike 2-surface \mathcal{S} is a marginally outer trapped surface (MOTS) $\Leftrightarrow \Theta_{+}=0$
where $\Theta_{+}:=q^{\alpha \beta} \nabla_{\alpha} \ell_{\beta}^{+}=$outward expansion,
$q_{\alpha \beta}=$ metric on $\mathcal{S}, \ell_{+}^{\alpha}=$ outgoing null normal on \mathcal{S}
- $\Theta_{+}>0$ light rays diverge
$\Theta_{+}<0$ light rays converge
- Apparent Horizon = outermost MOTS
- MOTS \mathcal{S} evolves:
marginally outer trapped tube (MOTT)

- Quasilocal horizon framework

The basic picture

- A smooth closed spacelike 2-surface \mathcal{S} is a marginally outer trapped surface (MOTS) $\Leftrightarrow \Theta_{+}=0$
where $\Theta_{+}:=q^{\alpha \beta} \nabla_{\alpha} \ell_{\beta}^{+}=$outward expansion,
$q_{\alpha \beta}=$ metric on $\mathcal{S}, \ell_{+}^{\alpha}=$ outgoing null normal on \mathcal{S}
- $\Theta_{+}>0$ light rays diverge
$\Theta_{+}<0$ light rays converge
- Apparent Horizon = outermost MOTS
- MOTS \mathcal{S} evolves:
marginally outer trapped tube (MOTT)

- Quasilocal horizon framework

The basic picture

- A smooth closed spacelike 2-surface \mathcal{S} is a marginally outer trapped surface (MOTS) $\Leftrightarrow \Theta_{+}=0$
where $\Theta_{+}:=q^{\alpha \beta} \nabla_{\alpha} \ell_{\beta}^{+}=$outward expansion,
$q_{\alpha \beta}=$ metric on $\mathcal{S}, \ell_{+}^{\alpha}=$ outgoing null normal on \mathcal{S}
- $\Theta_{+}>0$ light rays diverge
$\Theta_{+}<0$ light rays converge
- Apparent Horizon = outermost MOTS
- MOTS \mathcal{S} evolves:
marginally outer trapped tube (MOTT)

The basic picture

- Brill-Lindquist initial data ($m_{1}=0.5, m_{2}=0.8, d=1.3$)

The basic picture

- Brill-Lindquist initial data ($m_{1}=0.5, m_{2}=0.8, d=1.3$)
- Connected sequence of MOTSs from $\mathcal{S}_{1,2} \rightarrow \mathcal{S}_{\text {outer }}$
- Formation of MOTSs that self-intersect

MOTSs without initial guesses - Method I

- A generalized "shooting method" (Booth et al., PRD 104, 084083 (2021) and Pook-Kolb et al., PRL 127, 181101 (2021))

The idea:

- γ determined by two coupled 2nd order ODEs ("MOTSodesic")
- Choose a point on the z-axis and shoot a " $\Theta_{+}=0$ ray"
- γ describes a MOTS
$\Leftrightarrow \gamma$ closes upon itself

MOTSs without initial guesses - Method II

- Construct a family \mathcal{F} of surfaces of constant expansion: $\Theta_{+}=$const
- Any $\Theta_{+}=0$ surface $\mathcal{S} \in \mathcal{F}$ is a MOTS

MOTSs without initial guesses - Method II

- Construct a family \mathcal{F} of surfaces of constant expansion: $\Theta_{+}=$const
- Any $\Theta_{+}=0$ surface $\mathcal{S} \in \mathcal{F}$ is a MOTS

MOTSs without initial guesses - Method II

- Construct a family \mathcal{F} of surfaces of constant expansion: $\Theta_{+}=$const
- Any $\Theta_{+}=0$ surface $\mathcal{S} \in \mathcal{F}$ is a MOTS

MOTSs without initial guesses - Method II

- Construct a family \mathcal{F} of surfaces of constant expansion: $\Theta_{+}=$const
- Any $\Theta_{+}=0$ surface $\mathcal{S} \in \mathcal{F}$ is a MOTS

MOTSs without initial guesses - Method II

- Construct a family \mathcal{F} of surfaces of constant expansion: $\Theta_{+}=$const
- Any $\Theta_{+}=0$ surface $\mathcal{S} \in \mathcal{F}$ is a MOTS

MOTSs without initial guesses - Method II

- Construct a family \mathcal{F} of surfaces of constant expansion: $\Theta_{+}=$const
- Any $\Theta_{+}=0$ surface $\mathcal{S} \in \mathcal{F}$ is a MOTS

Tracking a MOTS through time

- Simply take the previous MOTS:

Tracking a MOTS through time

- Simply take the previous MOTS:

Tracking a MOTS through time

- Simply take the previous MOTS:

Tracking a MOTS through time

- Simply take the previous MOTS:

We found ...

We found ... this:

We found ... this:

- Do these MOTSs help explain the fate of \mathcal{S}_{1} and \mathcal{S}_{2} ?
- Are they all black hole boundaries?

The fate of \mathcal{S}_{2}

MOTSs at $t=0.000000 M$

$\hat{*}$

MOTS \rightarrow black hole boundary?

The barrier property

The barrier property

The barrier property

- Every close-by untrapped surface lies outside
- Every close-by trapped surface lies inside
\Rightarrow MOTS has "barrier" property!

The barrier property

The barrier property

The barrier property

The barrier property

- Close-by untrapped surfaces cross the MOTS
- Close-by trapped surfaces cross the MOTS
\Rightarrow No "barrier" property!

"Barrier"

"Stability"

- Definition: "Stability operator" (Vacuum) linear, 2nd order, elliptic, generally not self-adjoint (Andersson, Mars, Simon, PRL 95, 111102 (2005))

$$
\begin{gathered}
L \Psi=\delta_{2 \Psi \nu} \Theta_{+}=\left.\frac{d}{d s}\right|_{s=0} \Theta_{+}^{s} \\
L \Psi=-\triangle \Psi+\left(\frac{1}{2} \mathcal{R}-2\left|\sigma_{+}\right|^{2}\right) \Psi \\
L \Psi=\lambda \Psi
\end{gathered}
$$

$\Psi: \mathcal{S} \rightarrow \mathbb{R}$ describes deformation, $\mathcal{R}=$ Ricci scalar of $\mathcal{S}, \sigma_{+}=$shear of \mathcal{S}
$\triangle=\left(\mathcal{D}_{A}-\omega_{A}\right)\left(\mathcal{D}^{A}-\omega^{A}\right), \omega_{A}=\ell_{\alpha}^{-} \nabla_{A} \ell_{+}^{\alpha}$, axisymmetry + no spin $\Rightarrow \triangle=\Delta_{\mathcal{S}}=$ Laplacian on \mathcal{S}

- Principal eigenvalue $\lambda_{0}>0 \rightarrow$ MOTS is strictly stable \Rightarrow barrier
- MOTS is a barrier $\Rightarrow \lambda_{0} \geq 0$

"Barrier"

"Stability"

- Definition: "Stability operator" (Vacuum) linear, 2nd order, elliptic, generally not self-adjoint (Andersson, Mars, Simon, PRL 95, 111102 (2005))

$$
\begin{gathered}
L \Psi=\delta_{2 \Psi \nu} \Theta_{+}=\left.\frac{d}{d s}\right|_{s=0} \Theta_{+}^{s} \\
L \Psi=-\triangle \Psi+\left(\frac{1}{2} \mathcal{R}-2\left|\sigma_{+}\right|^{2}\right) \Psi \\
L \Psi=\lambda \Psi
\end{gathered}
$$

$\Psi: \mathcal{S} \rightarrow \mathbb{R}$ describes deformation, $\mathcal{R}=$ Ricci scalar of $\mathcal{S}, \sigma_{+}=$shear of \mathcal{S}
$\triangle=\left(\mathcal{D}_{A}-\omega_{A}\right)\left(\mathcal{D}^{A}-\omega^{A}\right), \omega_{A}=\ell_{\alpha}^{-} \nabla_{A} \ell_{+}^{\alpha}$, axisymmetry + no spin $\Rightarrow \triangle=\Delta_{\mathcal{S}}=$ Laplacian on \mathcal{S}

- Principal eigenvalue $\lambda_{0}>0 \rightarrow$ MOTS is strictly stable \Rightarrow barrier
- MOTS is a barrier $\Rightarrow \lambda_{0} \geq 0$

MOTSs at $t=2.000000 \mathrm{M}$

A new picture of the full merger

The new picture

Area

The new picture

Area

The new picture

Area

The new picture

The new picture

Stability \rightarrow Black hole boundaries

- lighter = "more unstable" = larger number of negative stability eigenvalues

Cusps and self-intersections

- MOTSs with self-intersections inside \mathcal{S}_{1} and \mathcal{S}_{2}
- They touch pairwise and then intersect

Cusps and self-intersections

A MOTS with toroidal topology

- Multiple negative stability eigenvalues

Ingoing expansion

$\Theta_{-}<0$
$\Theta_{-}>0$ $\mathcal{S}_{\text {outer }}$

Ingoing expansion

\square| $\Theta_{-}<0$ |
| :--- |
| $\Theta_{-}>0$ |

Signature

Summary

- Two new methods for finding unexpected MOTSs
- Many bifurcations and annihilations
- Individual horizons annihilate independently
- Only three MOTSs are strictly stable: $\mathcal{S}_{1}, \mathcal{S}_{2}, \mathcal{S}_{\text {outer }} \rightarrow$ black hole boundaries
- We now know what to look for in fully generic cases

