3d Navier-Stokes equations & the multifractal model

J. D. Gibbon : Imperial College London

Banff 2022

J. D. Gibbon : Imperial College London 3d Navier-Stokes equations & the multifrac

Banff 2022 1 / 10

The aim & content of this talk

Aim of this talk :

What is the effect of blending the multifractal model (MFM) of Frisch & Parisi (1985) with the Navier-Stokes equations in a periodic box [0, L]³

 $(\partial_t + \boldsymbol{u} \cdot \nabla) \boldsymbol{u} = \nu \Delta \boldsymbol{u} - \nabla \boldsymbol{P} + \boldsymbol{f}(\boldsymbol{x}) \quad \text{div } \boldsymbol{u} = 0?$

 Berengere Dubrulle & JDG : A correspondence between the multifractal model of turbulence & the NSEs, Phil. Trans. R. Soc. A 380, 20210092.

Plan of this talk :

- Summary of relevant results on the NS equations in both 3-dimensions and d-dimensions (d = 2, 3).
- 2 Summary of the MFM in its "Large Deviation Theory" format.
- Solution 2 Lower bounds on the scaling parameter h & the multifractal spectrum C(h) (co-dimension).
- What are the consequences?

イロト イポト イヨト イヨト

Turbulent cascades & higher derivatives in the NSEs

Standard "cartoon" of a turbulent cascade to small scales.

Define a doubly-labelled set of volume integrals for $1 \le n < \infty$; $1 \le m \le \infty$

$$H_{n,m,d} = \int_{V_d} |
abla^n oldsymbol{u}|^{2m} dV_d$$
 in *d*-dimensions

In dimensionless form :

$$F_{n,m,d} = \nu^{-1} L^{1/\alpha_{n,m,d}} H^{1/2m}_{n,m,d}, \qquad \alpha_{n,m,d} = \frac{2m}{2m(n+1)-d},$$

Derivatives are sensitive to ever finer length scales in the flow.

2 Higher values of *m* pick out the larger spikes, with the $m = \infty$ case representing the maximum norm.

• I > • I > •

Invariance and Leray's weak solutions

 $\langle \cdot \rangle_{\tau}$ means time average up to time T : (JDG 2018, 2020 & based on FGT 1981)

Theorem

/ On periodic BCs with $n \ge 1$ & $1 \le m \le \infty$, *d*-dim NS-weak solutions obey (d = 2, 3)

$$\left\langle \mathcal{F}_{n,m,d}^{(4-d)lpha_{n,m,d}}
ight
angle _{\mathcal{T}}\leq c_{n,m,d}\,\mathcal{R}e^{3}+O\left(\mathcal{T}^{-1}
ight)\,.$$

For d = 3 when n = 1, m = 1 gives the standard ε ≤ L⁻⁴ν³Re³ from which the Kolmogorov length λ_k is estimated

$$\lambda_k^{-1} = \left(\frac{\varepsilon}{\nu^3}\right)^{1/4} \qquad \Rightarrow \qquad L\lambda_k^{-1} \le Re^{3/4}$$

• The above is a weak soln result : for full d = 3 regularity we would need

$$\left\langle F_{n,m,3}^{2\alpha_{n,m,3}}\right\rangle_{T}<\infty\,,$$

which is a result we **don't** have (JDG 2018).

イロト イポト イラト イラト

Definition of a sequence of length scales $\lambda_{n,m,d}(t)$

Define a set of *t*-dependent length-scales $\{\lambda_{n,m,d}(t)\}$ s.t.

$$\left(\frac{L}{\lambda_{n,m,d}}\right)^{-d}H_{n,m,d} = \lambda_{n,m,d}^{-2m(n+1)+d}\nu^{2m}$$

from which we discover

$$\left(L\lambda_{n,m,d}^{-1}\right)^{n+1} = F_{n,m,d}$$
 with $\alpha_{n,m,d} = \frac{2m}{2m(n+1)-d}$

Result

For NS weak solutions, when $n \ge 1$ and $1 \le m \le \infty$

$$\left\langle L\lambda_{n,m,d}^{-1}\right\rangle_{T}\leq c_{n,m,d} R e^{\frac{3}{(4-d)(n+1)\alpha_{n,m,d}}}+O\left(T^{-1}\right)\,.$$

The upper bound has a finite limit :

$$\lim_{n,m\to\infty}\frac{3}{(4-d)(n+1)\alpha_{n,m,d}}=\frac{3}{4-d}$$

a result which has important consequences.

J. D. Gibbon : Imperial College London 3d Navier-Stokes equations & the multifrac

< ロ > < 同 > < 回 > < 回 >

Scale invariance and K41

The Euler equations

$$(\partial_t + \boldsymbol{u} \cdot \nabla) \boldsymbol{u} + \nabla P = 0$$
 div $\boldsymbol{u} = 0$

have the scale invariance :

$$\mathbf{x}' = \lambda^{-1} \mathbf{x}, \qquad t' = \lambda^{h-1} t, \qquad \mathbf{u} = \lambda^h \mathbf{u}'$$

whereas the NS-equations are restricted to the value h = -1. All of the following can be found in Frisch (1995) or Benzi & Biferale (2008):

• K41 suggests that, at a point x in a homogeneous, isotropic NS flow, the *p*-th order velocity structure function S_p should scale as

$$\mathcal{S}_{p}(r) = \left\langle |oldsymbol{u}(oldsymbol{x}+oldsymbol{r}) - oldsymbol{u}(oldsymbol{x})|^{p}
ight
angle_{st.av.} \sim r^{hp} \, .$$

• It also suggests that $h = \frac{1}{3}$ to ensure that the energy dissipation rate ε is homogeneous in space and time. Thus

$$S_p \sim r^{p/3}$$
 .

• When p = 3 the right hand side is equal to $-\frac{4}{5}\varepsilon r$ (the four-fifths law).

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

The Multifractal Model (MFM) of Frisch and Parisi : I

- Parisi and Frisch (1985) relaxed the enforcement of h = ¹/₃ to allow a range values of h, provided the dissipation rate ε is constant "on the average".
- In the MFM's original formulation P_r(h), the probability of observing a given scaling exponent h at the scale r was computed by assuming that each value of h belongs to a given fractal set of dimension D(h).
- A more modern definition uses Large Deviation Theory where P_r(h) is chosen as (see Eyink (2008) http://www.ams.jhu.edu/~eyink/Turbulence/notes/)

$$P_r(h) \sim r^{C(h)}$$
.

C(h) is the multi-fractal spectrum. It has encoded within it all the properties of flow intermittency. One can write d = D(h) + C(h).

• The structure functions $S_p(r)$ are now expressed as

$$S_{p}(r) \sim r^{\zeta_{p}}, \qquad \qquad \zeta_{p} = \inf_{h} \left[hp + C(h) \right].$$

A classic sign of intermittency is that ζ_p is a *concave curve below linear*.

Paladin and Vulpiani (1987) suggested an h-dependent dissipation scale η_h

$$L\eta_h^{-1} \sim Re^{rac{1}{1+h}}$$
 .

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

The NSEs and the MFM : I

We use the Paladin-Vulpiani scaling η_h to obtain the correspondence

$$H_{n,m} = L^{-3} \int_{\mathcal{V}_{\Gamma}} |\nabla^{n} \boldsymbol{u}|^{2m} dV_{d} \quad \longleftrightarrow \quad \int_{h} \eta_{h}^{2m(h-n)} \boldsymbol{P}_{\eta_{h}}(h) dh,$$

To pursue the idea proposed by Nelkin (1990) we use $\eta_h \sim \nu^{1+h}$

$$H_{n,m} \sim L^3 \nu^{\chi_{n,m}}$$
 $\chi_{n,m} = \min_h \left(\frac{2m(h+1) + C(h) - 2m(n+1)}{1+h} \right)$.

Use this in the LHS of Theorem 1 : i.e. the estimate for $\langle F_{n,m,d}^{(4-d)\alpha_{n,m,d}} \rangle_{\tau}$, and compare the result with the RHS in powers of ν ($\nu \rightarrow 0$) :

$$C(h) \ge 2m(n+1)\left(1-\frac{3(1+h)}{4-d}\right)+\frac{3d(1+h)}{4-d}, \quad \forall (n,m) \ge 1.$$

In the limit $(n, m) \rightarrow \infty$ the RHS $\rightarrow \infty$ unless $h \ge (1 - d)/3$.

Result

The only scaling exponents that have a nonzero probability are

$$h \geq h_{min}$$
 $h_{min} = (1-d)/3$.

When d = 3 we have the lower bound $h \ge -\frac{2}{3}$.

The NSEs and the MFM : II

For $h \ge h_{min}$, the sharpest bound on C(h), uniform in n, m, comes from m = n = 1 $C(h) \ge 1 - 3h$, with $C(h_{min}) \ge d$,

which is no better than the 4/5ths law. $C(h_{min}) \ge d$ is a feature allowed by Large Deviation Theory (Eyink) but has a low probability of occurrence.

Figure: The admissibility range of C(h) when d = 3 including $C(h) \ge 1 - 3h$. The blue dotted line : log-normal model with b = 0.045; red dashed line : log-Poisson model with $\beta = 2/3$.

Avoidance of the CKN singular set?

In d = 3 dimensions, the range of h is now

 $-2/3 \le h \le 1/3$

thus implying a wide range of fractal dimensions.

- Caffarelli, Kohn and Nirenberg (1982) developed the idea of suitable weak solutions of the 3*d* NSEs. The singular set in space-time has zero one-dimensional Hausdorff measure.
- Their result shows that in the limit as solutions approach the CKN singular set, the velocity field u must obey

$$|\boldsymbol{u}| > \frac{const}{r}, \text{ as } r \to 0.$$

where $r^2 = (x - x_0)^2 + \nu (t - t_0)$ is the distance from a suitably chosen point (x_0, t_0) on the axis of a space-time parabolic cylinder. The r^{-1} lower bound on $|\boldsymbol{u}|$ suggests a minimal rate of approach to the the CKN singular set **corresponding to** h = -1.

Our lower bound $h \ge -2/3$ keeps solutions away from the singular set.