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Overview

What/Why iterated-integrals of curves?
Invariantization via cross-sections
Orthogonal action on iterated—integrals

Some examples
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Iterated-integrals of curves

- Consider a parameterized path C: [O, 1] — R?
- Want
- Geometrically relevant features of C 8% (t) (ZE (t) » Y (t) )

- Why?
- Crepresents some continuous sequential data
- Finite-dim useful for machine learning
- Shape Analysis, Human Activity Recognition

A primer on the signature method in machine
learning

Ilya Chevyrev, Andrey Kormilitzin (2016) ~(0)
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Iterated-integrals of curves

- Iterated-integrals of the path
- Iterated-integral signature

IIS(C) = (1,2,12,21,11,22,111,...)
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Why?

Theorem (Chen 54)

Two smooth paths have the same iterated-integral signature if and only if they are equal (up

to tree-like extensions and translations).
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Why?

Theorem (Chen 54)

Two smooth paths have the same iterated-integral signature if and only if they are equal (up
to tree-like extensions and translations).
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Why?

Theorem (Chen 54)

Two smooth paths have the same iterated-integral signature if and only if they are equal (up

to tree-like extensions and translations).
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- Note that the previous functions were Euclidean invariants.
- Invariants are nice for shape analysis, human activity recognition, etc.
- What does the space of iterated-integral invariants look like?

- Polynomial Invariants (Diehl, Reizenstein 18)

Order 2

11+ 22
-12+21

Order 4

1111 — 1122+ 1212 + 1221 + 2112 + 2121 — 2211 + 2222
—1112 — 1121 + 1211 — 1222 + 2111 — 2122 + 2212 + 2221
1111 +1122 — 1212 + 1221 + 2112 — 2121 + 2211 + 2222
—1112 + 1121 — 1211 — 1222 + 2111 + 2122 — 2212 + 2221
1111 41122 41212 — 1221 — 2112 4 2121 4 2211 + 2222
1112 - 1121 — 1211 — 1222 + 2111 + 2122 + 2212 — 2221



Invariants

- Note that the previous functions were Euclidean invariants.
- Invariants are nice for shape analysis, human activity recognition, etc.
- What does the space of iterated-integral invariants look like?

- Polynomial Invariants (Diehl, Reizenstein 18)

Order 2

11+ 22
-12+21

Order 4 Shuffle relation
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Invariants

- Note that the previous functions were Euclidean invariants.
- Invariants are nice for shape analysis, human activity recognition, etc.
- What does the space of iterated-integral invariants look like?

- Polynomial Invariants (Diehl, Reizenstein 18)

- Goals (Orthogonal action: Rotations + Reflections)
- Describe a minimal, functionally-independent set of invariants for each
truncation level of the IIS.

- Characterize the equivalence class of a curve’s IIS
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- We can accomplish this goal using the Moving Frame Method (Fels, Olver 99)
- Cross-section

- Intersects each orbit exactly once
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Cross-sections and Moving Frame

- We can accomplish this goal using the Moving Frame Method (Fels, Olver 99)

- Cross-section

Intersects each orbit exactly once
- Moving Frame p: R? — O,

- Group element taking a point to the cross section
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Cross-sections and Moving Frame

- We can accomplish this goal using the Moving Frame Method (Fels, Olver 99)

-

Cross-section

Intersects each orbit exactly once
- Moving Frame p: R? — O,

- Group element taking a point to the cross section

Two points are equivalent if
and only if they have the same
cross-section representative.
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Action on the IIS

- Consider the action of A € O 0on R®
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Action on the IIS

- Consider the action of A € O 0on R®
- Induces a joint action on I1S5(C)

A-IIS(C) :=IIS(A-C)

A-1=A(1,2,...,d)
A-2=A(1,2,...,d)

A-d=A(1,2,...,d
A-11 = A(11,12,13,...,1d,...,d1)



Action on the IIS

- Consider the action of A € O 0on R®
- Induces a joint action on I1S5(C)

Relationships between entries
(shuffle relations)!

A-IIS(C) :=IIS(A-C)

A-1=A(1,2,...,d)
A-2=A(1,2,...,d)

A-d=A1,2,...,d)

A-11= A(11,12,13,...,1d, ...
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- Log-signature map: bijection from space of iterated—integral signatures
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Log-signature Transform ci2 = [1,2] =12 - 21

- Log-signature map: bijection from space of iterated—integral signatures

II8(C) = (1,2,11,12,21,22,...)
!
logIIS(C) = (¢1,c¢2,cC19,---)

0 C12 C13 ... Ciq ]
—C12 0 C23 ... Cog
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C1 C1
Co 52 . :
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A-C=C AL =] r Y -
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_ —612 0 623 . é2d
| Cd | Cd | — | —é1i3 —@E» 0 ... &3

| —C14 —C2¢ —C34 ... 0
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Log-signature Transform

- Cross section on log IIS(C) equivalent to cross-section on R* @ s04(R)
A-(v,M) — (Av, AMAT)

1. Tteratively construct a relative section over C* @ s04(C)

2. Show this induces a cross-section over R @ so04(R)(for most curves)
K = {Ci :O,Cj(i+1) :O,Cd > O,Cz‘(i+1) > O|1 < ) < d — 1,1 S] < ?,}

K. ={c;=0,c4 >0|1<i<d-1}
Ko ={ci =0,¢4>0,c10 = coa == Ca—2a = 0,¢a-1a > 0[1 <i<d—1}
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Why?

Theorem (Diehl, Preif3, R., Tapia 20)
Two smooth paths are equivalent up to translations, rotations, and reflections (and tree-like
extensions) if and only if their log-signatures have the same value on the cross-section K

Theorem (Diehl, Preif3, R., Tapia 20)

Two smooth paths have equivalent truncated (of order k) iterated-integral signatures under
translations, rotations, and reflections (and tree-like extensions) if and only if their
log-signatures up to order k have the same value on the cross-section IC

- Cross-section characterizes equivalence classes of truncated IIS
- Gives an explicit method for vectorizing then invariantizing a curve.

- Don’t need to compute complicated invariants for high orders.
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What Next?

- How well do these invariantized features
perform in practice?

- Other Group Actions



Thank you!



