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The generating graph of a group

The generating graph of a group G has vertices G \ {1}, with vertices x
and y joined if and only if (x,y) = G.

Example: G = D1 = (a,b| a® = b®> = 1,bab = a~1).

The graph is not connected, but the non-isolated vertices form a

connected component of diameter 2.
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A hierarchy of graphs defined on G \ {1}

@ The complete graph
@ The non-generating graph
@ The commuting graph

@ The deep commuting graph
(defined by Cameron & Kuzma):
X ~ y <= their preimages in
every central extension commute

@ The enhanced power graph:
x~y <= (x,y) is cyclic

@ The power graph:
X~y < x€e(y)orye (x)

The generating graph is the difference between the first two graphs. We

will consider the next difference.
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The non-commuting, non-generating graph

Definition
The non-commuting, non-generating graph of G, denoted I'(G), has
vertices G \ Z(G), with vertices x and y joined if and only if:

xy # yx and (x,y) # G.
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Connectedness and diameter

Theorem (Breuer, Guralnick & Kantor, 2008)

The generating graph of a non-abelian finite simple group is connected
with diameter 2.
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Since the vertices of '(G) are the non-central elements of G, the graph is
empty if and only if G is abelian.

We can show that no connected component of ['(G) has diameter 1:

Suppose that x and y are vertices in
such a component.

X~y = y~xl = |x|=2.
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Connectedness and diameter

Our questions: When is '(G) connected? What are the diameters of the
connected components of ['(G)?

Since the vertices of '(G) are the non-central elements of G, the graph is
empty if and only if G is abelian.

We can show that no connected component of ['(G) has diameter 1:

Suppose that x and y are vertices in
such a component.

X~y = y~xl = |x|=2.

X~y = X~Xy~Yy.

Ix| = |y| = |xy| =2 = xy = yx.

A contradiction.
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['(G) has no edges < the elements of each non-generating pair
commute.

This is equivalent to the property that every proper subgroup of G is
abelian. A group with this property is called minimal non-abelian.

The finite minimal non-abelian groups were classified by Miller and
Moreno in 1903:

Such a group is either a p-group or a non-nilpotent group whose order
is divisible by two primes.

The infinite case is still open, but well-known examples are the Tarski
monsters, infinite simple groups where the order of every proper nontrivial
subgroup is a fixed prime p.
Ol'shanskit showed in 1982 that a Tarski monster exists for each prime
p > 107°.
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The minimal size of a generating set

Let d be the minimum size of a generating set for G.

The generating graph of G is only interesting if d = 2.

The same is true for [(G):

If d =1, then G is cyclic and hence abelian, and so I'(G) has no vertices.

If d > 3, then G has no generating pairs. Hence [(G) is the
non-commuting graph of G (with vertices G \ Z(G)).
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The non-commuting graph of a group

Proposition (Abdollahi, Akbari, Maimani, 2006)

If G is a non-abelian group, then the non-commuting graph of G is
connected with diameter 2.

If x,y € G\ Z(G), then Cg(x) < G
and Cg(y) < G.

The union of two proper subgroups
of G is a proper subset of G, so
Fhxy € G\ (Co(x) U Ca(y))-

(x, hy,y, y) is a path in the graph.

We are therefore only interested in I'(G) when G is 2-generated and
non-abelian. 8/18
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Let x € G, \ (Z(Gn) U J) and
y € Gg\ (Z(Gg) U J).

A2 = J < Gy and x ¢ Z(G,) = Cy(x) < J.
max
Similarly, C,(y) < J.

So there exists ry,, € J with (x, ry,,,y) a path in T'(G).
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Theorem (F., 2021+)

Let G := Ap,, n > 5. Then I'(G) is connected with diameter at most 4 if n
is odd, and at most 3 if n is even.

Strategy of proof: Let s,t € G be derangements. We show:
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So d(s,t) < 3.
Ex. 1: s:= (a1, 00,...) (01, Do), ti= (B0, 72, . ) (01,2 ) -+ (1, .).
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Jv,w € (Sp)ay st. sV =standsW =5, ic{2,....n—2}.
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Ex. 1: s:= (a1, 00, )(B1y oy )y 1= (G 72,2 ) (01, 2) -+ (61, ).
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d := deg((x,y)) = #(points moved by x or y) < 6.
d=n = d =6, (x,y) intransitive. So (x,y) < G and x ~ y.
Ex. 2: s = (ai,...,a,) (n odd).
Jv,w € (Sp)ay st. sV =standsW =5, ic{2,....n—2}.
Choose x € GN{v,w,w} # @; s" =5 #3s.
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Strategy of proof: Let s,t € G be derangements. We show:
(i) 3 non-derangements x,y € G s.t. s~ x and t ~ y.
d(x,y) <2,s0d(s,t) <4
(ii) s, t not n-cycles (e.g. if nis even) = Ix,y s.t. x ~ y.
So d(s,t) < 3.
Ex. 1: s:= (a1, 00,...)(51, 5o, .. ), ti= (01,72, .. )(01,...) - (61,...).
x = (a1, )01, 52),y = (a1,72,01) = s~x, t~y, xy # yx.
d := deg((x,y)) = #(points moved by x or y) < 6.
d=n = d =6, (x,y) intransitive. So (x,y) < G and x ~ y.

Ex. 2: s = (ai,...,a,) (n odd).

Jv,w € (Sp)ay st. sV =standsW =5, ic{2,....n—2}.
Choose x € GN{v,w,w} # @; s" =5 #3s.

sx # xs and (s,x) < Ng((s)) < G = s~ x.

10/18



Isolated vertices

Suppose that G is non-abelian and 2-generated. A vertex x of '(G) is

isolated if and only if each maximal subgroup of G containing x also
centralises x.
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Isolated vertices

Suppose that G is non-abelian and 2-generated. A vertex x of '(G) is
isolated if and only if each maximal subgroup of G containing x also
centralises x.

An element x € G \ Z(G) is centralised by at most one maximal subgroup
of G.
Hence x is isolated if and only if:

(i) x lies in a unique maximal subgroup M of G; and
(i) x € Z(M).
Question: If x is isolated, can M be non-abelian?

If M <G, no:
(x,y) = G for each element y ¢ M
= G/Z(M) is cyclic = M/Z(M) is cyclic = M is abelian.

We'll revisit this question later.
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More general than being nilpotent, but equivalent for finite groups.
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Theorem (Cameron, F. & Roney-Dougal, 2021)

Let G be a group with every maximal subgroup normal. Then A(G) is
either empty or connected with diameter 2 or 3. If A(G) is connected with
diameter 3, then A(G) =T(G).
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Groups with every maximal subgroup normal

Theorem (Cameron, F. & Roney-Dougal, 2021)

Let G be a group with every maximal subgroup normal. Then A(G) is
either empty or connected with diameter 2 or 3. If A(G) is connected with
diameter 3, then A(G) =T(G).

For a finite nilpotent group G, we can prove a more precise relationship
between the structures of G and ['(G). We use the fact that G is the
direct product of its Sylow subgroups.
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Direct products of groups
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Let A and B be arbitrary groups, with A non-abelian.
(i) If B is non-cyclic, then (A x B) is connected with diameter 2.
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Let A and B be arbitrary groups, with A non-abelian.
(i) If B is non-cyclic, then (A x B) is connected with diameter 2.

(ii) If B is cyclic and ['(A) is connected with diameter k, then ['(A x B)
is connected with diameter at most k.

Main idea of proof: if (a1, a2) # A then ((a1, b1), (a2, b2)) # A x B, and
if ajap # apas, then (a1, b1)(az, b2) # (a2, b2)(a1, b1).
Example:

@ [(S4) is connected with diameter 3.

@ (54 x () is connected with diameter 2.

@ (54 x G3) is connected with diameter 3.
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Direct products of groups

Lemma (Cameron, F. & Roney-Dougal, 2021)

Let A and B be arbitrary groups, with A non-abelian.
(i) If B is non-cyclic, then (A x B) is connected with diameter 2.

(ii) If B is cyclic and T'(A) is connected with diameter k, then ['(A x B)
is connected with diameter at most k.

Example:
@ [(Sy) is connected with diameter 3.
@ (54 x () is connected with diameter 2.
@ (54 x G3) is connected with diameter 3.

Theorem (Crestani & Lucchini, 2013)

Let k be a positive integer. There exists an odd prime p and a positive
integer n such that, excluding isolated vertices, the generating graph of
(PSL(2,2P))" is connected with diameter greater than k.
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Finite soluble groups

Theorem (Lucchini, 2017)

Let G be a 2-generated finite soluble group. Excluding isolated vertices,
the generating graph of G is connected with diameter 2 or 3.
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Finite soluble groups

There exist 2-generated finite soluble
groups G with maximal subgroups
My, ..., M,, where for all distinct i, j:
M; N Mj = Z(Ml) > Z(G)
Fori#1, Z(M;) = Z(G).

Here, ['(G) consists of two connected

components, each of diameter 2:
M; \ Z(My), and everything else.

We will call a group G a [2,2]-group if ['(G) consists of two connected
components of diameter 2.

Theorem (F., 2021+)

Let G be a finite soluble group. If G is not a [2,2]-group, then A(G) is
either empty or connected with diameter 2 or 3. If A(G) is connected with
diameter 3, then A(G) =T(G).
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Finite insoluble groups

Theorem (F., 2021+)
Let G be a finite insoluble group.

(i) If G/Z(G) has a proper non-cyclic quotient, then I'(G) is connected
with diameter 2 or 3.

(i) If Z(G) =1 and G is not simple, then A(G) is connected with
diameter 2 or 3.

(iii) If G is simple, then I'(G) is connected with diameter at most 5.

.‘ IMy| and |Mo] even, |a] = |b] = 2
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Finite insoluble groups

Theorem (F., 2021+)
Let G be a finite insoluble group.

(i) If G/Z(G) has a proper non-cyclic quotient, then I'(G) is connected
with diameter 2 or 3.

(i) If Z(G) =1 and G is not simple, then A(G) is connected with
diameter 2 or 3.

(iii) If G is simple, then I'(G) is connected with diameter at most 5.

Let H be a central extension of G. If Z(G) =1 and '(G) is connected
with diameter k, then I'(H) is connected with diameter at most k.

Question: Is there a finite insoluble group G with A(G) # I'(G)?

15/18



Isolated vertices, revisited

Suppose that G is non-abelian and 2-generated. A vertex x of I'(G) is
isolated if and only if:

(i) x lies in a unique maximal subgroup M of G; and
(i) x € Z(M).
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Isolated vertices, revisited

Suppose that G is non-abelian and 2-generated. A vertex x of I'(G) is
isolated if and only if:

(i) x lies in a unique maximal subgroup M of G; and
(i) x € Z(M).

Question: If x is isolated, can M be non-abelian?

No finite insoluble group contains an abelian maximal subgroup.

Hence if M cannot be non-abelian in the finite case, then every finite
insoluble group G has A(G) = I'(G) connected with diameter at most 5.

Using results of Guralnick & Tracey (2021+):
G finite and simple, x satisfies (i) = x ¢ Z(M). So A(G) =T(G).
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Finite simple groups

| G | diam((G)) |
My, M2, Ma2, Jo 2

Mby3, Jq 3

B, PSU(7,2) 4

Remaining sporadic groups (and 2F4(2)")

Apn: n even
An: n odd
PSL(n, q),Sz(q)

G2(9),G2(q), *Da(9), Fa(q), Es(q); g odd
Remaining finite simple groups

NN LN LIN L IN |
gla|lrlslw|s
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Remaining sporadic groups (and 2F4(2)")

Apn: n even
An: n odd
PSL(n, q),Sz(q)

G2(9),G2(q), *Da(9), Fa(q), Es(q); g odd
Remaining finite simple groups

NN LN LIN L IN |
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Question: Can these upper bounds be reduced?
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Some more infinite groups

Thompson's group F = (x,y | [xy ™1, x7Lyx] = [xy =1, x2yx?] = 1) is an

infinite group with [F, F] an infinite simple group.
[F, F] is the unique minimal normal subgroup of F, and F/[F, F] = Z2.

Using these facts, we can show that '(F) is connected with diameter 2.

The infinite dihedral group Dy is {a, b | a®> = b? = 1).

(Do) consists of the isolated vertices ab and ba, plus a connected
component of diameter 2.

The free group on two generators Fp is (a,b | =) = (a,b | a® = b>® = 1).
[(F2) is connected with diameter 2.

More generally, if G = (a,b| a" = b* = 1), with 2 < r, s < oo, then either
G = Dy or ['(G) is connected with diameter 2.
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