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Contextual bandits

• (X ,A,R) ∈ X × [K ]× [0, 1] X : context, A: action

R: reward

• Given x ∈ X , a ∈ [K ],

R ∼ PR|X ,A(·|x , a)

is the reward “generated”

• Value u(π) of policy π : X → ∆([K ]) is

u(π) =

∫
X

∑
a∈[K ]

π(a|x)r(x , a) dPX (x)

where

r(x , a) =

∫
y PR|X ,A(dy |x , a)



Contextual batch bandit value estimation

• Observed: S = ((X1,A1,R1), . . . , (Xn,An,Rn)) i.i.d.,

(Xi ,Ai ,Ri ) ∈ X × [K ]× R, i ∈ [n] := {1, . . . , n}

• Given: randomized behavior and target policies
πb, π : X → ∆([K ]), with

Ai ∼ πb(·|Xi ), i ∈ [n]

• Goal: Find f s.t
for all x > 0, w.p. 1− e−x ,

u(π) ≥ f (S , π, πb, x)

and u(π)− f (S , π, πb, x) is “small”



A 2-step approach

• Step #1: Find f0 such that u(π) is close to

U := f0(S , π, πb)

• Step #2: Find a high probability lower bound

ULB := f (S , π, πb, x)

for U.

Many ways to do this...



Mean estimation strategies in bandits

• Importance sampling estimator

• Double-robust estimator

• Weighted importance sampling estimator



Importance sampling estimator

Define the importance weights

Wi =
π(Ai |Xi )

πb(Ai |Xi )
i ∈ [n] .

The (unbiased) importance sampling (sicc!) estimator is

U is =
1

n

n∑
i=1

WiRi .

Value lower bounds?

• Disagreeing policies: Wi could be heavy-tailed

• Hack? W λ
i = π(Ai |Xi )/(πb(Ai |Xi ) + λ), λ > 0, λ =??
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The doubly-robust (DR) estimator

Choose η̂ : X × [K ] → [0, 1] and let

Udr =
1

n

∑
i ,a

π(a|Xi )η̂(Xi , a) +
1

n

∑
i

Wi (Ri − η̂(Xi ,Ai )) .

• Unbiased for any Wi ∈ σ(Xi ,Ai ) s.t. one of the following
hold:

1. ∀f : [K ] → [0, 1]: E[Wi f (Ai )|Xi ] =
∑

a π(a|Xi )f (a) a.s.
2. E[η̂(Xi ,Ai )|Xi ,Ai ] = r(Xi ,Ai )

• Reduces variance when η̂ ≈ r
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Weighted importance sampling (WIS)

WIS estimator:

UWIS =

∑n
i=1WiRi∑n
i=1Wi

.

• Biased (though bias vanishes as n → ∞)

• Empirically much better than IS; “low variance”
Efron-Stein + calculation:

Var(UWIS) ≤ 4E

[∑
k

(
Wk∑
i Wi

)2
]

︸ ︷︷ ︸
=: 1

neff

• How do we get value lower bounds?
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Semi-empirical Efron-Stein bound for WIS
WIS value estimate:

UWIS =
1

Z

n∑
i=1

WiRi , Z =
n∑

i=1

Wi .

Let

V =
n∑

k=1

E

[(
Wk

Z
+

W ′
k

Z (k)

)2
∣∣∣∣∣W k

1 ,X
n
1

]
(”variance”)

β = min

(
E
[ n
Z

∣∣∣ X n
1

]−1
, 1

)
. (bias)

Theorem ([KVGS21])

W.h.p.,

u(π) ≥

(
β ·

(
UWIS −

√
c ·
(
V +

1

n

))
− c ′√

n

)
+

where Z (k) = Z + (W ′
k −Wk), and W ′

k indep. dist. as Wk .



Semi-empirical Efron-Stein bound for WIS

u(π) ≥

(
β ·

(
UWIS −

√
c ·
(
V +

1

n

))
− c ′√

n

)
+

V =
n∑

k=1

E

[(
Wk

Z
+

W ′
k

Z (k)

)2
∣∣∣∣∣W k

1 ,X
n
1

]

β = min

(
E
[ n
Z

∣∣∣ X n
1

]−1

, 1

)
Z (k) = Z + (W ′

k −Wk), and W ′
k indep. dist. as Wk

• No truncation! No hyperparameters.
• Contexts are fixed.
• Needs knowledge of πb — only partly empirical:

V and β can be computed exactly. Cost: nK :-(
Can approximate using Monte-Carlo simulation! :-)
. . . and is “pretty good”!



Proof sketch
Let u(π|X n

1 ) :=
1
n

∑n
i=1

∑
a π(a|Xi )r(Xi , a).

Then u(π)− UWIS =

u(π)− u(π|X n
1 )︸ ︷︷ ︸

Context concentration

+ u(π|X n
1 )− E

[
UWIS | X n

1

]︸ ︷︷ ︸
Bias (fixed X n

1 )

+E
[
UWIS | X n

1

]
− UWIS︸ ︷︷ ︸

Concentration

1. Context concentration: Hoeffding

2. Bias:

E
[
UWIS

∣∣ X n
1

]
= E

[∑n
k=1 Wk r(Xk ,Ak)∑n

k=1 Wk

∣∣∣∣ X n
1

]
≤ E

[
1∑n

k=1 Wk

∣∣∣∣ X n
1

]
E

[
n∑

k=1

Wk r(Xk ,Ak)

∣∣∣∣∣ X n
1

]

= E
[

n∑n
k=1 Wk

∣∣∣∣ X n
1

]
u(π,X n

1 )

Proof: ∼ Harris’ inequality.
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Proof sketch

u(π)− u(π|X n
1 )︸ ︷︷ ︸

Concentration of contexts

+ u(π|X n
1 )− E

[
UWIS | X n

1
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Bias

+E
[
UWIS | X n

1

]
− UWIS︸ ︷︷ ︸

Concentration

Concentration
(Remember) some challenges

• Even for basic importance sampling (W1R1 + · · ·+WnRn)/n it’s
non-trivial: unbiased, but Wi are unbounded

• Excludes Hoeffding/Bernstein/McDiarmid
• We can “truncate”, e.g. W λ

i = π(Ai |Xi )/(πb(Ai |Xi ) + λ) for
some h.p. λ > 0.

• Ugly! Needs tuning, doesn’t always work...

• Variance is important: need bounds with empirical variance.

• Sometimes, estimator is not a sum of indep. elements
(self-normalization).
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(New) Efron-Stein tail bound

Theorem ([KS19, KS21])

Assume elements of S = (X1,X2, . . . ,Xn) are independent, and let

∆ = f (S)− E[f (S)] , V =
n∑

k=1

E
[
(f (S)− f (S (k)))2

∣∣∣X1, . . . ,Xk

]
.

Then, for any x ≥ 0, y > 0, w.p. 1− e−x ,

|∆| <

√
2(V + y)

(
x +

1

2
ln(1 + V /y)

)



Application to WIS tail bounds

Take f = UWIS, condition on X n
1 . Algebra gives that V obeys

V ≤
n∑

k=1

E

[(
Wk

Z
+

W ′
k

Z (k)

)2
∣∣∣∣∣W k

1 ,X
n
1

]
.

Choose y = 1/n.



Proof of Efron-Stein tail bound

Step #1: (∆,
√
V ) is a canonical pair

Step #2: Use self-normalized bounds available for canonical pairs



Canonical pairs – [dlPLS08]

We call (A,B) a canonical pair if B ≥ 0 and

sup
λ∈R

E
[
exp

(
λA− λ2

2
B2

)]
≤ 1 .



Step #2: Tail bounds for canonical pairs

Let (A,B) be a canonical pair.

Theorem (Thm 2.7 of [dlPLS08])

For all x > 0, w.p. 1−
√
2e−x ,

|A| < 2
√
x(B2 + (E[B])2)

Theorem ([KS21])

For all x ≥ 0 and y > 0, w.p. 1− e−x ,

|A| <

√
2(B2 + y)

(
x +

1

2
ln

(
1 +

B2

y

))



Step #2: Tail bounds for canonical pairs

Let (A,B) be a canonical pair.

Theorem (Thm 2.7 of [dlPLS08])

For all x > 0, w.p. 1−
√
2e−x ,
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√
x(B2 + (E[B])2)

Theorem ([KS21])

For all x ≥ 0 and y > 0, w.p. 1− e−x ,

|A| <

√
2(B2 + y)

(
x +

1

2
ln

(
1 +

B2

y

))



Proof of 2nd result: Method of mixtures

Proof.
Markov: For x > 0, w.p. 1− e−x , X < lnE[eX ] + x .

Let Λ ∼ N (0, σ2), Λ ⊥ (A,B).
Choose

X = lnE
[
eΛA−

Λ2

2
B2

∣∣∣∣A,B]
Apply previous inequality, calculate (on the RHS use Fubini).
Set y = 1/σ2.

Note: Thm 12.4 of [dlPLS08] is almost the same, the proof here is
shorter and the result is slightly improved.



Proof of 2nd result: Method of mixtures

Proof.
Markov: For x > 0, w.p. 1− e−x , X < lnE[eX ] + x .
Let Λ ∼ N (0, σ2), Λ ⊥ (A,B).
Choose

X = lnE
[
eΛA−

Λ2

2
B2

∣∣∣∣A,B]
Apply previous inequality, calculate (on the RHS use Fubini).
Set y = 1/σ2.

Note: Thm 12.4 of [dlPLS08] is almost the same, the proof here is
shorter and the result is slightly improved.



Proof of 2nd result: Method of mixtures

Proof.
Markov: For x > 0, w.p. 1− e−x , X < lnE[eX ] + x .
Let Λ ∼ N (0, σ2), Λ ⊥ (A,B).
Choose

X = lnE
[
eΛA−

Λ2

2
B2

∣∣∣∣A,B]
Apply previous inequality, calculate (on the RHS use Fubini).
Set y = 1/σ2.

Note: Thm 12.4 of [dlPLS08] is almost the same, the proof here is
shorter and the result is slightly improved.



Step #1: (∆,
√
V ) is a canonical pair. Part I

Let Ek [·] := E[· | X1, . . . ,Xk ]. Recall

∆ = f (S)− E[f (S)] , V =
n∑

k=1

Ek

[
(f (S)− f (S (k)))2

]
︸ ︷︷ ︸

=:Vk

.

Proof: We have

∆ =
n∑

k=1

Dk and V =
n∑

k=1

Vk

where
Dk = Ek [f (S)− f (S (k))]

Indeed, Ek−1[f (S)] = Ek [f (S
(k))], so

Dk = Ek [f (S)]− Ek−1[f (S)], use telescoping.
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Proof of Step #1: Part II
Assume for now

Ek−1

[
exp

(
λDk −

λ2

2
Vk

)]
≤ 1 a.s.∀k ∈ [n] (1)

Then

E
[
exp

(
λ∆− λ2

2
V

)]

= E

En−1

[
exp

(
λDn −

λ2

2
Vn

)]
︸ ︷︷ ︸

≤1 a.s

n−1∏
k=1

exp

(
λDk −

λ2

2
Vk

)

≤ E

En−2

[
exp

(
λDn−1 −

λ2

2
Vn−1

)]
︸ ︷︷ ︸

≤1 a.s

n−2∏
k=1

exp

(
λDk −

λ2

2
Vk

)
≤ · · · ≤ 1 .
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Proof of Step #1: Part III
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Conclusions

• Nontrivial tail bounds for the weighted importance sampling
(WIS) estimator

• Bias: Harris inequality
• Concentration: Novel concentration ≤ using an Efron-Stein

variance proxy

• PAC-Bayes variants

• Proof: self-normalized inequalities using canonical pairs

• Bandit value estimation: Exploit small Var[R]?

• Other applications?
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Is it any good?

The Best Policy Identification problem

• We have a finite set of target policies Π.

• We do π̂ ∈ argmaxπ∈Π v̂ est(π).

• We want to maximize u(π̂)
— we’ll use confidence bounds as v̂ est.

(Xi, Ai, Ri)i=1...n

behavior policy: πb

Best policy
selection

(scoring
function)

π1

π2

πm

π̂ ∈ argmaxπ∈Π v̂
est(π)

Logged dataset
(contexts, actions chosen,

rewards)

Candidate target policies
(possibly trained on logged

data)



Synthetic experiments – setup

• Fix K > 0, τ > 0

• πb(a) ∝ e
1
τ
I{a=1}

• π(a) ∝ e
1
τ
I{a=2}

• Ri = I{Ai = k}, Ai ∼ πb(·)

• As τ → 0, πb and π become increasingly misaligned
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E-S — Our bound

B-M — Empirical Bernstein’s bound with ε-truncated weights



Numerical tightness in error probability

error probability error probability error probability error probability

Similar setup as before, sample size = 104, left to right:

• E-S — our bound.

• Chebyshev’s ineq.-based CI for WIS.

• Empirical Bernstein’s ineq.-based CI for DR estimator with

W λ
i = π(Ai |Xi )

πb(Ai |Xi )+λ for some λ = 1/
√
n.

• Empirical Bernstein’s ineq.-based CI for IS with W λ
i .



Nonsynthetic experiments – setup

Target policies are
{
πideal, πΘ̂IS , πΘ̂WIS

}
where

πΘ(y = k | x) ∝ e
1
τ
x⊤θk

with two choices of parameters given by the optimization problems:

Θ̂IS ∈ argmin
Θ∈Rd×K

U is(πΘ) , Θ̂WIS ∈ argmin
Θ∈Rd×K

UWIS(πΘ) .

• Trained by GD with η = 0.01, T = 105.

• τ = 0.1 — cold! Almost deterministic.



Table: Average test rewards of the target policy when chosen by each
method of the benchmark.

name Ecoli Vehicle Yeast
Size 336 846 1484
ESLB 0.913 ± 0.263 0.716 ± 0.389 0.912 ± 0.267
DR 0.656 ± 0.410 0.610 ± 0.443 0.563 ± 0.392

IS (trunc+Bern) −∞ −∞ 0.916 ± 0.262
Chebyshev-WIS −∞ −∞ −∞

Emp.Lik. 0.511 ± 0.298 0.455 ± 0.405 0.312 ± 0.325

PageBlok OptDigits SatImage PenDigits
5473 5620 6435 10992

0.910 ± 0.270 0.843 ± 0.325 0.910 ± 0.270 0.910 ± 0.270
0.888 ± 0.291 0.616 ± 0.344 0.423 ± 0.361 0.565 ± 0.382
0.910 ± 0.270 0.748 ± 0.404 0.658 ± 0.413 0.810 ± 0.345

−∞ −∞ −∞ −∞
0.669 ± 0.409 0.285 ± 0.359 0.634 ± 0.409 0.549 ± 0.426


