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Attainable Region
Theory

Attainable Region (AR) theory is a branch of
chemical reaction engineering that incorporates
elements of geometry and mathematical
optimization to understand how chemical reactor
networks—termed reactor structures—can be
designed and improved.

AR theory is unique in that it is geometric in
nature, and is particularly useful for
understanding complex reactions (involving many
competing reactions and species).

Learn AR theory

Textbook

Learn the fundamentals of AR theory

Home Resources  Contact
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Chemical Reaction Networks (CRN)
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Species - Xi for i ∈ {1, . . . , 5}.
Complexes - {X1 + X3,X4,X2 + 2X5}.
Reaction Rates - κi for i ∈ {1, . . . , 5}.

Definition (Chemical Reaction Networks)

A chemical reaction network (CRN) is a graph whose vertices are
chemical complexes and edges are the chemical reactions weighted
by their reaction rates.
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X2 + 2X5

κ
5

X1 + X3

κ 3
κ 4

X4
κ1
κ2

ẋ =
dx

dt
= Ψ(x) · Aκ · Y

Ψ(x) =
[
x1x3 x4 x2x

2
5

]

Aκ =

−κ1 − κ5 κ1 κ5
κ2 −κ2 − κ4 κ4
0 κ3 −κ3



Y =

1 0 1 0 0
0 0 0 1 0
0 1 0 0 2


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X2 + 2X5

κ
5

X1 + X3

κ 3
κ 4

X4
κ1
κ2

ẋ =
dx

dt
= Ψ(x) · Aκ · Y

ẋ1 =
dx1
dt

= −κ1x1x3 − κ5x1x3 + κ2x4

ẋ2 =
dx2
dt

= κ5x1x3 + κ4x4 − κ3x2x25

ẋ3 =
dx3
dt

= (−κ1 − κ5)x1x3 + κ2x4

ẋ4 =
dx4
dt

= κ1x1x3 + (−κ2 − κ4)x4 + κ3x2x
2
5

ẋ5 =
dx5
dt

= 2(κ5x1x3 + κ4x4 − κ3x2x25 ).
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Attainable Region

Definition (Forward Closed)

A subset S ⊂ Rn is forward closed if the initial condition x0 ∈ S
holds for the dynamical system then x(t) ∈ S for all t > 0.

Definition (Attainable Region)

For a given reaction network and starting point x0 in Rn, the
attainable region, A(x0), is the smallest subset of Rn that contains
x0 and is both convex and forward closed.
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Linear Chemical Reaction Networks

Definition (Spectrahedral Shadow)

S = {(x1, x2, . . . , xm) ∈ Rm| ∃ (y1, y2, . . . , yp) ∈ Rp : A0+
∑
i

xiAi+
∑
j

yjBj < 0}

where A0, Ai and Bj are real symmetric matrices. We use the
symbol A < 0 to denote that the matrix A is positive semidefinite.
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Linear Chemical Reaction Networks

A chemical reaction network is linear if all the complexes are single
unit species.

ẋ =
dx

dt
= Ψ(x) · Aκ · Y
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Linear Chemical Reaction Networks

A chemical reaction network is linear if all the complexes are single
unit species.

Proposition (K.)

The convex hull of the trajectory of a linear chemical reaction
network whose Laplacian has eigenvalues in rational ratio is a
spectrahedral shadow.

Theorem (K.)

The attainable region of linear chemical reaction networks whose
Laplacian has eigenvalues in rational ratio is spectrahedral shadow.
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ẋ =
dx

dt
= f (x)

9



9



Using Bensolve
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Using Bensolve
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Computing Convex Hulls

The main idea involves computing the polytope given the points
on the trajectories. More the points, the closer it is to actual
convex hull.

10



Computing Convex Hulls

The main idea involves computing the polytope given the points
on the trajectories. More the points, the closer it is to actual
convex hull.

10



Computing Convex Hulls

The main idea involves computing the polytope given the points
on the trajectories. More the points, the closer it is to actual
convex hull.

We use this to develop a theory on limiting faces of the polyhedral
approximations.
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Computing Convex Hulls

Definition (ε-Approximation)

An ε-approximation of a given curve C is a finite subset Aε ⊂ C
such that

∀y ∈ C ∃x ∈ Aε : ‖y − x‖ ≤ ε.

Let Aε = conv(Aε).
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Computing Convex Hulls

Definition (ε-Approximation)

An ε-approximation of a given curve C is a finite subset Aε ⊂ C
such that

∀y ∈ C ∃x ∈ Aε : ‖y − x‖ ≤ ε.

Let Aε = conv(Aε).

Definition (Hausdorff Distance)

The Hausdorff distance of two compact sets B1 and B2 in Rn is
defined as

d(B1,B2) = max
{

max
x∈B1

min
y∈B2

‖x − y‖ , max
y∈B2

min
x∈B1

‖x − y‖
}
.
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Limiting Faces

Theorem (Ciripoi, K., Löhne, Sturmfels)

With some genericity assumptions, let {Fε}ε↘0 be a Hausdorff
convergent sequence of proper faces Fε of Aε. Then its limit F is a
proper face of conv(C).

Theorem (Ciripoi, K., Löhne, Sturmfels)

Let every point on the curve C that is in the boundary of conv(C)
is an extremal point of conv(C). If F is a simplex which is a
uniquely exposed face of conv(C), then F is the Hausdorff limit of
a sequence {Fε}ε↘0 of facets of Aε.
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Patches

• The figure has four regions
of 1-dimensional family of
1-dimensional faces.

• There are two 2-dimensional
faces.

We call these family of faces as patches. How do we define them?
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Patches

Let C be a convex set and C∨ be its dual. Let E ⊆ ∂C∨ be the set
of exposed points of C∨. We define Normal Cycle as follows.

N(C ) =
{

(u, v) ∈ ∂C × ∂C∨ : v · (u − u′) ≥ 0 for all u′ ∈ C
}
.

Let π1 and π2 be the projection on ∂C and ∂C∨ respectively. A
subset ψ of N(C ) is a patch if

• ψ is a connected differentiable manifold

• π2(ψ) ⊂ E and the fibers of π2 vary continuously in the
Hausdorff metric.

• dim(π1(ψ)) = n − 1

• ψ is maximal with these properties.
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Boundary of Planar Convex Hulls

Algorithm
(Detection of edges and arcs for n = 2)

input : A list A of points on a curve C in R2; a threshold value δ > 0

1 Compute the vertices V and edges H of A = conv (A)
2 Build a graph G with node set H such that two distinct edges H1,H2 of A form an

edge of G if H1 ∩ H2 6= ∅ and both H1 and H2 have length ≤ δ.
3 Output the number #1 of isolated nodes of G and the number #0 of remaining

connected components Gi .
4 foreach nonsingleton connected component Gi do
5 Output a list of curve points that are endpoints of those edges of A, that

belong to Gi . This represents the ith arc of ∂C.
6 end
7 The edges Hj of A that correspond to isolated nodes of G represent edges of C.

output: The numbers #0 and #1 of arcs and edges of C = conv (C)
For each i: list of curve points that represent the ith arc of ∂C.
List of line segments that represent the edges of C.
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degree 2d 6 8 10 12 14 16 18 20 22 24 26 28
max #2 6 9 13 16 20 21 24 26 28 30 30 34

tritangents 8 80 280 672 1320 2288 3640 5440 7752 10640 14168 18400
max #1 10 14 20 25 30 32 35 37 41 42 43 50

edge surface 30 70 126 198 286 390 510 646 798 966 1150 1350

Table: Census of random trigonometric curves in 3-space

Theorem (Ranestad, Sturmfels)
Let C be a general smooth compact curve of degree d and genus g in R3. The
algebraic boundary ∂C of its convex hull C is the union of the edge surface and the
tritangent planes. The edge surface is irreducible of degree 2(d − 3)(d + g − 1), and
the number of complex tritangent planes equals
8
(d+g−1

3

)
− 8(d + g − 4)(d + 2g − 2) + 8g − 8.
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All implementations are available at
http://tools.bensolve.org/trajectories.
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Thank You.
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