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How complex do the models need to be?

• The advent of automated technology for data collection and of
cheap storage capacity provides access to a previously
undreamt of wealth of data. The parallel development of
computational horsepower enables us to fit quite
sophisticated models.

• Should we always fit the complex nonparametric models
whenever possible?

• Many evidences have shown that although nonparametric
models provide great flexibility for modeling, they can also
lead to large estimation variances.
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Bayes factors

• The Bayes factor is one of the most important and most
widely used tools for Bayesian hypothesis testing and model
comparison.

• Given two models M1 and M2, we have

BM1,M2 =
m(x;M1)
m(x;M2)

=

∫
f1(x | θ1)π1(θ1)dθ1∫
f2(x | θ2)π2(θ2)dθ2

,

which can be viewed as a “weighted" likelihood ratio of M1 to
M2.
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Bayes factors (Cont.)

• The value of a Bayes factor reflects the relative evidence for
the two models in the data

• Jeffreys’ rule of thumb of interpreting Bayes factors (Jeffreys
1961, app. B)
• 1 < Bayes factor ≤ 3: weak evidence for M1
• 3 < Bayes factor ≤ 10: substantial evidence for M1
• 10 < Bayes factor ≤ 100: strong evidence for M1
• 100 < Bayes factor: decisive evidence for M1
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Improper objective priors?

• In computing Bayes factors, prior elicitation of the model
parameters can have a big impact, even with a large amount
of data.

• As the number of parameters grows, careful subjective
specification of priors for all the parameters is often
precluded. Thus, it is necessary to resort to specifications of
priors using some formal methods

• Improper “noninformative" priors are problematic, because
they are determined only up to an arbitrary constant.
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Proper diffuse priors?

• In practice, many use a standard proper but vague prior
distribution, as famously illustrated in the BUGS manual.

• However, the Bayes factors can be very sensitive to the
arbitrary diffuseness of the priors.

• Example 1. Suppose the Yi | θ,σ
2 iid
∼ N(θ,σ2).

M1 : θ = 0

M2 : θ ∈ R.

For each model, assume σ2 ∼ IG(0.1,0.1); and for M2, further
assume θ ∼ N(0, τ2), where τ2 is set to be 10, 100, 1000, and
10,000, respectively.
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Proper diffuse priors? (Cont.)
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Figure: Set the true parameter θ = 1. The expected log Bayes factor curves from
the bottom to top are under the normal priors with variances 10, 100, 1000 and
10000. For each sample size, we simulate 300 data sets and compute the Bayes
factors based on 5,000 MCMC iterations following a burn-in of 500 iterations.
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A connection with predictive distributions
• An important relationship between the Bayes factor and a

sequence of predictive distributions:

log(BM1,M2) = log
m(y1:n;M1)
m(y1:n;M2)

=

n−1∑
i=1

log
m(Yi+1 |Y1:i,M1)
m(Yi+1 |Y1:i,M2)

.

• Under weak priors, when the sample size is small, the simple
model tend to yield better predictive performance. When the
sample size is large enough, the complex model can often
provide a better approximation to the true model because of
its larger support.

• it is worth noting that at moderate sample sizes, the complex
model performs better and the log Bayes factor is on a
decreasing trend. But the log Bayes factor is still positive and
sizable because of the big lead built up by the simple model at
the beginning. The size of the lead is determined by the
arbitrary diffuseness levels of the priors.
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Nonparametric priors
Example 2. Suppose that we have n = 176 i.i.d. observations from
a skew-normal(location=0, scale=1.5, shape=2.5). Compare
a Gaussian parametric model M1:

Yi | θ,σ
2 iid
∼ N(θ,σ2), θ ∼ N(µ,τ2)

with a Mixture of Dirichlet Processes (MDP) nonpara model M2:

Yi | θi,σ
2 ind
∼ N(θi,σ

2), θi |G
iid
∼ G, G ∼ DP(M = 2,N(µ,τ2))

Common priors are placed on hyper-parameters:

µ ∼ N(0,500), σ2 ∼ IG(7,0.3), τ2 ∼ IG(11,9.5)

We can envision that with sufficiently large sample size, the MDP
nonparametric model would outperform the Gaussian model.
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Nonparametric priors (Cont.)
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Barlett’s paradox

• The above phenomenon is closely related to Barlett’s paradox
(1957), which is a situation where the Bayesian and
frequentist approaches to a hypothesis testing problem give
opposite results for certain choices of the prior.

• Suppose that in testing H0 : θ = θ0, the data estimate θ̂x is far
from θ0, then standard sampling theory suggest to reject H0

• However, if we use a “noninformative" prior with very large
spread on θ under Ha, since this prior assigns little mass
around the true parameter value, the data could be even more
unlikely under Ha, and thus the Bayes factor favors H0.

• The fundamental reason underlying the paradox: the prior for
the complex model is much more diffuse than that for the
simple model
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Barlett’s paradox (Cont.)

• This phenomenon can be more pronounced in model
comparisons involving nonparametric models, where it is
usually difficult to evaluate the diffuseness of priors.

• As Jeffreys recognized, to avoid the problem of Bayes factors,
priors on model parameters must be proper and not have too
big a spread.

• Where should we make the prior on nonparametric models be
centered at, that is, where to shrink toward? And how to
measure the diffuseness level of nonparametric priors?
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Data-dependent shrinkage priors
• We develop data-dependent shrinkage priors, by

• using part of the data as training samples to update the priors,
so that the partial-posteriors have a reasonable level of
concentration around good nonparametric models

• and then computing the Bayes factor based on the remainder
of the data.

• The use of training samples has been studied for Bayesian
model selection, e.g.
• Lempers (1970)
• Berger and Pericchi (1995, 1996): intrinsic Bayes factor
• O’ Hagan (1995): fractional Bayes factor

• There are two main differences between our approach and
existing methods:
• Starting point: we don’t require the initial priors to be improper

or the models to be parametric
• Destination: our goal is not only to obtain proper priors, but

also to obtain reasonably concentrated priors
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Information metric

• Suppose that yi | θ
iid
∼ fθ and θ ∼ π. It can be hard to measure

the amount of information contained in a general prior π.

• Possible approaches:
• Fisher information?
• Variance?
• Effective sample size?
• The distance between two distributions fθ1 and fθ2 , where θ1

and θ2 are two random draws from π
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Information metric (Cont.)

• We measure the closeness between fθ1 and fθ2 under the
Symmetric - Kullback-Leibler (SKL) divergence

SKL(fθ1 , fθ2) =
1
2

[
Eθ1 log

fθ1

fθ2

+Eθ2 log
fθ2

fθ1

]
.

• The distribution on (θ1, θ2) induces a distribution on
SKL(fθ1 , fθ2)

• We evaluate the information contained in π using the
percentiles of this distribution in SKL divergence.
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Target information level

• To calibrate the Bayes factor and select a training sample size,
we need to choose a benchmark prior and then require the
updated priors to contain at least as much information as this
benchmark prior.

• In order to perform a reasonable analysis where subjective
input has little impact on the final conclusion, we set the
benchmark to be a “minimally informative" prior – the unit
information prior (Kass and Wasserman 1995), which contains
the amount of (Fisher) information as that in one observation

• It is easy to verify that under the Gaussian model Y ∼ N(θ,σ2),
a unit information prior on θ is N(0,σ2), under which
SKL(fθ1 , fθ2) follows a χ2

1 distribution
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Constructing data-dependent shrinkage priors

• Step 1: Randomly draw a training sample with a pre-specified
sample size from the data

• Step 2: Update the prior based on this training sample. Take
M pairs of (θj

1, θ
j
2), where j = 1, · · · ,M, and compute

SKL(f
θ

j
1
, f
θ

j
2
) based on each pair

• Step 3: Repeat Steps 1 and 2 for N times. Pool all MN values
of the SKLs to evaluate the information in the posterior

• Step 4: Compare the information amount in the posterior with
that in the benchmark distribution. If the information amount is
comparable, terminate the search and report the current
sample size as the calibration sample size. Otherwise reset
the sample size and repeat Steps 1 to 4.
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Calibrated Bayes factor (CBF)
• The calibration sample size might be larger than the sample

size n when n is too small or the initial prior is very diffuse and
the model dimension is very large.

• Let s1 and s2 represent the calibration sample sizes for models
M1 and M2 and assume n > s =max(s1,s2). Based on a
training sample X(s), the updated Bayes factor is

logB∗12(x | x(s)) = logB12(x)− logB12(x(s)),

• Let {x1
(s),x

2
(s), · · · ,x

H
(s)} denote all possible subsets of x of size s.

Then the calibrated Bayes factor (CBF) is defined by

logCB12(x) = logB12(x)−
1
H

H∑
h=1

logB12(xh
(s)).

Therefore, it shares the same consistency properties as the
original Bayes factor.
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Calibrated Bayes factors (Cont.)

• Proposition. Under a set of regularity conditions that ensure
the posterior concentration in a neighborhood of the “best
fitting" model (see Berk 1966), the calibration sample size is
finite. Moreover, as the sample size n→∞, the CBF is
consistent.

• When the models are parametric and the initial priors are
improper, the CBF provides similar results as Berger’s intrinsic
Bayes factors. Furthermore, it is applicable in situations where
the models are nonparametric or the initial priors are proper
but over-dispersed.



Bayesian model comparison Prior elicitation Calibrated Bayes Factors Simulations and data analysis Discussions

Revisiting the examples

Example 1 revisited: For the normal mean test, all four diffuse
priors (with τ2 = 10, 100, 1000, and 10000) achieve the “unit
information" level with calibration sample size 7. The four CBF
curves are almost on top of one another.

0 50 100 150 200 250 300

−3
−2

−1
0

1
2

Sample Size

C
um

ul
at

ive
 lo

g−
BF



Bayesian model comparison Prior elicitation Calibrated Bayes Factors Simulations and data analysis Discussions

Revisiting the examples (Cont.)

• Example 2 revisited: For the parametric versus
nonparametric density estimation, our search leads to a
calibration sample size of 50.

• The peak of the CBF is 2.34 in favor of the parametric model,
which is not worth more than a bare mention under Jeffrey’s
criterion. At the full sample size 350, the CBF is 13.62 in favor
of the nonparametric MDP model.

• These CBF are consistent with the posterior predictive
performances.
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The simulation setup

• To investigate the patterns of log Bayes factors and to
illustrate the effect of calibration, we compare the Gaussian
parametric model to the MDP model under the following
distributions with various shapes:
• Skew-normal with varying shape parameter α (skewness)
• Student-t with varying degrees of freedom ν (thick-tails)
• Symmetric mixture of normals with varying component means
±δ (Bimodality)

• In all cases, the distributions have been centered and scaled
to have mean 0 and standard deviation 1.

• By specifying α, ν and δ, we tune the KL distances from the
true distributions to the best fitting Gaussian distributions.
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Simulation results
• Small divergences from the Gaussian
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Simulation results (Cont.)
• Moderate divergences from the Gaussian
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Simulation results (Cont.)
• Large divergences from the Gaussian
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Simulation results (Cont.)
• Very large divergences from the Gaussian
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Simulation results summary

• In all cases, the calibration is driven by the MDP model rather
than the Gaussian model (which is typically calibrated after
two or three observations)

• In all cases, the peaks of the log calibrated Bayes factors
remain below two, leading to better agreement between the
Bayes factor and the models’ predictive performances.

• In the same scenario (the same KL divergence from the true
distribution to the best fitting Gaussian distribution), the
calibration sample size varies little

• Across different scenarios, the further the underlying true
distribution is from normality, the larger the calibration sample
size will be.
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Model comparisons in OFHS analysis

• The OFHS (Ohio Family Health Survey) was conducted
between August 2008 and January 2009 to study the health
insurance coverage for the people in Ohio.

• An important health measurement in this survey is the BMI
(Body Mass Index).

• We focus on the subpopulation consists of male adult aged
between 18 and 24. There are 895 non-missing BMI values in
this group.
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Model comparisons in OFHS analysis (Cont.)
• The log transformed data is close to a skew-normal

distribution with the skewness parameter α̂MLE = 2.41.
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Modle Comparison in OFHS analysis (Cont.)

• Based on the full data set, the log Bayes factor is −12.19,
translating to a Bayes factor of 196,811 favoring MDP.

• We further investigate the expected log Bayes factor for a
range of smaller sample sizes. For each sample size, we
generate 300 subsamples.

• If we only had a subset of the observations with size n = 106,
the Bayes factor is BP;NP ≈ e4.64 ≈ 104, which provides strong
evidence for the Gaussian parametric model
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Modle Comparison in OFHS analysis (Cont.)

• After matching the prior concentration with the unit information
prior, we calibrate the priors using training samples with size
50.

• At the sample size n = 106, the calibrated Bayes factor is
CBP;NP ≈ e0.64 ≈ 1.9, which provides very weak model
preference; at the full sample size, the eventual calibrated
Bayes factor is CBP;NP ≈ e−16.18, which leads to a Bayes factor
of 10.6 million to one in favor of the MDP model.

• We find the swing from inconclusive evidence for modest
sample sizes to conclusive evidence in favor of the MDP
model for the full sample far more palatable than the swing
from very strong evidence in one direction to conclusive
evidence in the opposite direction.
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Discussions
• The Bayes factor might be unreliable when the prior for one

model is much more diffuse than that of the other.

• To make a fair comparison between small and large models,
we calibrate the prior distributions using training samples, so
that the partial posteriors achieve a reasonable level of
concentration. These partial posteriors can be used as new
data-dependent shrinkage prior for computing CBFs based on
the remainder of the data.

• CBF can also be applied to model comparison among a group
of models, and can generate more reliable posterior model
weights for Bayesian model averaging.

• The implications of this work extend beyond parametric
versus nonparametric model comparisons, instead it is widely
applicable in small vs. large model comparisons.
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