Predictive Density Estimation : recent results

Éric Marchand (Banff International Research Station, April 9, 2019)

(Collaborators : Tatsuya Kubokawa, Bill Strawderman, Dominique Fourdrinier, Aziz L'Moudden)

OUTLINE

- 1. INTRODUCTION
- 2. LOSS and RISK
- 3. PLUG-IN, DUALITY, and EXTENSIONS
- 4. APPLICATIONS
- 5. IMPROVEMENTS BY SCALE EXPANSION
- 6. SPHERICALLY SYMMETRIC DISTRIBU-TIONS with UNKNOWN LOCATION and SCALE
- 7. SUMMARY AND CONCLUDING REMARKS

1. INTRODUCTION

- Suppose $X,Y \in \mathbb{R}^d$, continuous, with $X \sim p_\theta$, $Y \sim q_\theta$. X is observed, Y unobserved or missing.
- We seek a predictive density estimator $\widehat{q}(\cdot;X)$ for q_{θ} , and assess its performance via a distance ρ and corresponding loss $L(\theta,\widehat{q})=\rho(q_{\theta},\widehat{q})\,,\theta\in\Theta.$
- Bayesian Approach \Rightarrow prior π and posterior density $\pi(\cdot|x)$, so that a natural estimator for q_{θ} is (when X and Y are conditionally independent on θ)

$$q_{\pi}(y|x) = \int_{\Theta} q_{\theta}(y) \pi(\theta|x) d\theta$$

i.e., a posterior distribution mixture of q_{θ} .

— The estimator $q_{\pi}(y|x)$ is attractive from a Bayesian perspective (e.g., Jeffreys, 1939). Also formal Bayes rule for both integrated L_2 and Kullback-Leibler (KL) losses.

2. LOSS and RISK

Several loss functions are at our disposal:

(I) Kullback-Leibler.

$$L_{KL}(\theta, \widehat{q}) = \int_{\mathbb{R}^d} q_{\theta}(y) \log \frac{q_{\theta}(y)}{\widehat{q}(y)} dy$$

(II) α -divergence (Csiszár, 1967).

$$L_{h_{\alpha}}(\theta, \widehat{q}) = \int_{\mathbb{R}^d} h_{\alpha} \left(\frac{\widehat{q}(y)}{q_{\theta}(y)} \right) q_{\theta}(y) dy,$$

with
$$h_{\alpha}(z) = \begin{cases} \frac{4}{1-\alpha^2} (1-z^{\frac{(1+\alpha)}{2}}) & |\alpha| \leq 1\\ z \log(z) & \alpha = 1\\ -\log(z) & \alpha = -1. \end{cases}$$

Hellinger (α = 0), Kullback-Leibler (α = -1), Reverse Kullback-Leibler (α = 1)

(III) Integrated L^s , namely L^1 and L^2 .

$$L^s(\theta, \widehat{q}) = \int_{\mathbb{R}^d} |\widehat{q}(y) - q_{\theta}(y)|^s dy.$$

Frequentist risk can be evaluated by

$$R(\theta, \hat{q}) = \mathbb{E}_{\theta} L(\theta, q(\cdot; X))$$

.

3. PLUG-IN, DUALITY, and EXTENSIONS

- Plug-in predictive density estimator of q_{θ} is $q_{\widehat{\theta}}$, where $\widehat{\theta}(X)$ is a point estimator of θ . Includes $\widehat{q}_{\mathsf{mle}} = q_{\widehat{\theta}_{\mathsf{mle}}}$.
- Loss incurred is $L(\theta, q_{\widehat{\theta}})$, i.e. a point estimation loss incurred by $\widehat{\theta}$ in estimating θ .
- **Duality.** The efficiency of the plug-in $q_{\widehat{\theta}}$ for estimating q_{θ} is dual to the efficiency of $\widehat{\theta}$ for estimating θ .
- **Example.** $q_{\theta} \sim Gamma(a, \theta)$. Dual loss for plug-in's is :

$$L(\theta,q_{\widehat{\theta}}) = a\left(rac{ heta}{\widehat{ heta}} - \lograc{ heta}{\widehat{ heta}} - 1
ight)$$

- The above idea extends to the comparison of predictive densities of the form $f_{\widehat{\theta}}$ with dual loss given by $L(\theta, f_{\widehat{\theta}})$.
- Here are several dominance results derived with the above.

4. APPLICATIONS

(a) $X \sim N_d(\theta, \sigma_X^2 I_d)$, $Y \sim N_d(\theta, \sigma_Y^2 I_d)$. Consider

$$f_{\widehat{\theta}} \sim N_d(\widehat{\theta}(X), (\sigma_X^2 + \sigma_Y^2)I_d)$$
.

Under KL loss, $\widehat{\theta}_0(X) = X$ yields the MRE predictive density (also minimax). Dual loss is $L(\theta, f_{\widehat{\theta}}) \propto ||\widehat{\theta} - \theta||^2$. So, for $d \geq 3$, dominating estimators of $\widehat{\theta}_0$, yield improvements on \widehat{q}_{mre} . Inadmissibility of \widehat{q}_{mre} is due to Komaki (2001).

- (b) Same as (a) for reverse Kullback-Leibler, but with $\widehat{q}_{\text{mre}} \sim N_d(X, \sigma_Y^2 I_d)$.
- (c) Model as in (a) , α -divergence loss. Consider the subclass

$$f_{\widehat{\theta}} \sim N_d(\widehat{\theta}(X), (\frac{(1-\alpha)}{2}\sigma_X^2 + \sigma_Y^2)I_d),$$

which includes $\widehat{q}_{\mathrm{mre}}$ (also minimax) for $\widehat{\theta}(X) = X$. Here, reflected normal loss L_{γ} is dual, with $L_{\gamma}(\theta,\widehat{\theta}) = 1 - e^{-\frac{\|\widehat{\theta} - \theta\|^2}{2\gamma}}$, for some γ function of $\sigma_X^2, \sigma_Y^2, \alpha$. For $d \geq 3$, dominating estimators of X (KMS, 2015), yield dominating predictive densities $f_{\widehat{\theta}}$ of $f_{\widehat{\theta}_{\Omega}}$.

Lemma 1. (KMS 2015) Let $X \sim N_d(\theta, \sigma_X^2 I_d)$ with known σ_X^2 . $\hat{\theta}(X)$ dominates X under L_γ whenever $\hat{\theta}(Z)$ dominates Z for $Z \sim N_d(\theta, \frac{\gamma \sigma_X^2}{\gamma + 1} I_d)$ under loss $\|\hat{\theta} - \theta\|^2$.

- (d) Same as (c) for L^2 loss. Similar results, but with $\widehat{q}_{\text{mre}} \sim N_d(X, (\sigma_X^2 + \sigma_Y^2)I_d)$.
- (e) Consider $Y = (Y_1, \dots, Y_d)' \sim q(\|y \theta\|^2)$ with unimodal q and L^1 loss. Consider plug-in predictive densities $q(\|y \widehat{\theta}(X)\|^2)$. Lemma 2. (KMS, 2017; Dasgupta & Lahiri, 2012) Dual loss is given by

$$\int_{\mathbb{R}^d} |q(\|y-\widehat{\theta}\|^2) - q(\|y-\theta\|^2) |\, dy = 4F(\frac{\|\widehat{\theta}-\theta\|}{2}) - 2\,,$$
 where $F(t) = P(Y_1 \le t)$, is the cdf of Y_1 .

Via the dual point estimation problem, KMS (2017) obtain for $d \geq 4$ dominating predictive densities $q(\|y-\widehat{\theta}(X)\|^2)$ of $\widehat{q}_{\text{mle}} \sim q(\|y-X\|^2)$ using Stein estimation techniques for losses which are concave in $\|\widehat{\theta}-\theta\|^2$, and with further developments for scale mixtures of normals.

TECHNICAL DETAILS: A SKETCH

A. $X \sim f(\|x-\theta\|^2)$ scale mixture of normals (SMN); loss is $\rho(\|\delta-\theta\|^2)$ with ρ' completely monotone (CM)

$$(-1)^n \rho^{(n+1)} \ge 0$$
 for $n = 0, 1, \dots$

B. Concave ρ , $\rho(b) - \rho(a) \le \rho'(a)(b-a)$. $\rho(\|\delta - \theta\|^2) - \rho(\|X - \theta\|^2) \le \rho'(\|X - \theta\|^2) \{\|\delta - \theta\|^2 - \|X - \theta\|^2\}$

$$R_{\rho}(\theta,\delta) - R_{\rho}(\theta,X) \leq 0$$

$$\iff \mathbb{E}_{f^*}\{\|\delta(X) - \theta\|^2\} - \|X - \theta\|^2\} \leq 0$$
 with

$$X \sim f^*(\|x-\theta\|^2) \propto f(\|x-\theta\|^2) \rho'(\|x-\theta\|^2).$$

C.

f is a SMN density \iff f is CM f is CM and $\rho'CM \implies f\rho'CM$ $\implies f^*$ is a SMN density

D.

- (1) Strawderman (1974) : Conditions for which $\delta(X)$ dominates X under $\|\delta \theta\|^2$ for $X \sim f^*$ (SMN)
- (2) Implies conditions for which $\delta(X)$ dominates X under $\rho(\|\delta-\theta\|^2)$ for $X \sim f$
- (3) Implies conditions for which the density $q(\|y-\delta\|^2)$ dominates the plug-in $q(\|y-x\|^2)$ for estimating $q(\|y-\theta\|^2)$ for L_1 loss and based on $X \sim p(\|y-\theta\|^2)$ with p,q SMN.

(f) MRE ESTIMATORS

- Location models $X \sim p(x-\theta), Y \sim q(y-\theta)$, indep., $x,y,\theta \in \mathbb{R}^d$.
- Choice of uniform prior $\pi(\theta) = 1$ yields a Bayes estimator which is MRE and Minimax.
- **LEMMA.** For KL and L^2 losses,

$$qmre(y;x) = \int_{\mathbb{R}^d} q(y-\theta) p(x-\theta) d\theta$$
$$= (q*g)(y-x),$$

where g(t) = p(-t), q * g is convolution.

 To search for improved predictive density estimators, we consider

$$f_{\widehat{\theta}} \sim (q * p)(y - \widehat{\theta}(X)).$$

For L^2 loss, dual loss is

$$\int_{\mathbb{R}^d} (p(t-\widehat{\theta}) - q(t-\theta))^2 dt =$$

$$q * q(0) + p * p(0) - 2f * q(\theta - \hat{\theta}).$$

— KMS (2015) provide improvements for scale mixture of normals and $d \ge$ 3 by analyzing this loss.

5. IMPROVEMENTS by SCALE EXPAN-SION

- $X \sim p(x-\theta), Y \sim q(y-\theta), x, y, \theta \in \mathbb{R}^d$. Plug-in density is $q(y-\widehat{\theta})$ where $\widehat{\theta}$ is an estimator of θ .
- For Kullback-Leibler or L_2 loss, Bayes predictive density is $\widehat{q}_{\pi}(y|x) = \int_{\mathbb{R}^d} q(y-\theta) \pi(\theta|x) \, d\nu(\theta)$
- Useful insight is : (illustrated for d=1) For densities $Y \sim q(t-\theta)$ vs. $Y \sim \hat{q}_{\pi}(\cdot|x)$:

$$E_{\theta}(Y) = E_{0}(Y) + \theta, Var_{\theta}(Y) = \sigma_{Y}^{2}$$

$$E_{\widehat{q}_{\pi}}(Y) = E_{0}(Y) + E(\theta|x),$$

$$Var_{\widehat{q}_{\pi}}(Y) = \sigma_{Y}^{2} + Var(\theta|x).$$

(assuming expectations and variances exist)

— Hence, for such losses, Bayes density estimators always inflate the variance (unless $\theta|x$ is degenerate). And plug-in densities are **not** Bayes. Similar analysis for d>1.

- Deficiency of plug-in estimators not a new theme and also depend on loss.
- For reverse Kullback-Leibler loss and exponential families, Bayes estimators are always plug-in estimators!(Yanagimoto, Ohnishi, 2009)

EXAMPLE Consider $X \sim N_d(\theta, \sigma_X^2 I_d)$, $Y \sim N_d(\theta, \sigma_Y^2 I_p)$, KL loss.

THEOREM. Let $\widehat{\theta}(X)$ be an estimator of $\theta \in C$, with risk $R(\theta, \widehat{\theta}) = E(\|\widehat{\theta}(X) - \theta\|^2)$ and $\underline{R} = \inf_{\theta \in C} R(\theta, \widehat{\theta}) > 0$. Let $\widehat{q}_c \sim N_d(\widehat{\theta}(X), c\sigma_Y^2 I_d)$. Then the density \widehat{q}_c dominates the plug-in density \widehat{q}_1 under KL loss if $1 < c \le (1 + \frac{\underline{R}}{d\sigma_Y^2})$, and iff $1 < c \le c_0(1 + \frac{\underline{R}}{d\sigma_Y^2})$, with $c_0(m)$ the root in c of $(1 - \frac{1}{c})m - \log(c)$ on (m, ∞) .

Remarks

- General $\hat{\theta}$, d. $\hat{\theta}(X)$ can be proper Bayes, Generalized Bayes, MLE, Shrinkage or Stein estimator, etc.
- C can be \mathbb{R}^d , or a subset (i.e., restricted parameter space) of \mathbb{R}^d .
- Inflation of variance \Leftrightarrow performance of $\widehat{\theta}(X)$ for estimating θ .
- $c_0(m) \ge m^2$ for all m > 1.
- Dominating predictive densities are not Bayesian, but they do extend to scale mixtures of normals

$$\int_1^{c_0} \widehat{q}_c \, dF(c) \, .$$

EXAMPLE. Similar result with Aziz LMoudden for α -divergence, $-1 < \alpha < 1$. Applies to a large class of plug-in densities (e.g., James-Stein and other shrinkage estimators).

EXAMPLE. (Gamma model; LMoudden et al. 2017.)

$$X \sim Ga(\alpha_1, \theta), Y \sim Ga(\alpha_2, \theta), \alpha_1, \alpha_2 \text{ known}.$$

Consider any non-degenerate estimator $\hat{\theta}(X)$ of θ and the subclass of predictive densities $\hat{q}_c \sim Ga(\frac{\alpha_2}{c}, c\hat{\theta}(X)), c \geq 1$. A rationale for the choice lies in the fact that for all x:

$$\mathbb{E}_{\widehat{q}_c}(Y) = \alpha_2 \widehat{\theta}(x), \, Var_{\widehat{q}_c}(Y) = c\alpha_2(\widehat{\theta}(x))^2,$$

which expands the variance as c increases.

A key finding is that \hat{q}_c dominates the plugin \hat{q}_1 for $c \in (1, c_0]$, c_0 depending of $\hat{\theta}, \alpha_1, \alpha_2$.

THEOREM. Let $q_{\widehat{\theta}}(\cdot;X) \sim \operatorname{Ga}(\alpha_2,\widehat{\theta}(X))$ be a plug-in density for estimating the density of $Y \sim \operatorname{Ga}(\alpha_2,\theta)$ under KL loss with $\theta \in C = (a,b)$, and based on $X \sim \operatorname{Ga}(\alpha_1,\theta)$. Denote $R(\theta,\widehat{\theta}) = E(\frac{\theta}{\widehat{\theta}(X)} - \log(\frac{\theta}{\widehat{\theta}(X)}) - 1)$ and let $\underline{R} = \inf_{\theta \in C} R(\theta,\widehat{\theta})$. Then, $q_{\widehat{\theta}}(\cdot;X)$ is dominated by $q_{\widehat{\theta},c}(\cdot;X) \sim \operatorname{Ga}(\frac{\alpha_2}{c},c\widehat{\theta}(X))$ with $1 < c \le c_0(\underline{R})$, $c_0(\underline{R})$ being the unique solution in $c \in (1,\infty)$ of $G_R(c) = 0$, with

$$G_s(c) = \alpha_2(\frac{1}{c} - 1) \left(s + 1 - \psi(\alpha_2) \right) + \frac{\alpha_2}{c} \log c + \log \frac{\Gamma(\frac{\alpha_2}{c})}{\Gamma(\alpha_2)}.$$

EXAMPLE. $X \sim p(|x - \theta|), Y \sim q(|y - \theta|),$ L_1 loss, q decreasing and log-concave. KMS (2017) obtain predictive densities

$$\widehat{q}_c(y;x) = \frac{1}{c}\widehat{q}(\frac{|y-x|}{c})$$

that dominate the plug-in \hat{q}_1 for $1 < c \le c_0$. Important case is normal case.

NO MORE TIME

6. SPHERICALLY SYMMETRIC DISTRIBUTIONS with UNKNOWN LOCATION and SCALE

(a) MODEL

We observe $(X, U) \in \mathbb{R}^{d+k}$, wish to predict $Y \in \mathbb{R}^d$ for the spherically symmetric model density :

$$(X,Y,U)\sim \eta^{d+\frac{k}{2}}f(\eta(\|x-\theta\|^2+\|y-c\theta\|^2+\|u\|^2)$$
 with known f,c , unknown $\theta\in\mathbb{R}^d$, $\eta>0$.

Includes normal case with X_1, \ldots, X_n, Y i.i.d. $N_d(\mu, \sigma^2 I_d)$ Also, scale mixtures of normals with :

$$f(t) = \int_{\mathbb{R}_+} (2\pi z)^{-(d+k/2)} e^{-t/2z} dG(z),$$

with known mixing cdf G.

(b) PREDICTIVE DENSITIES

Based on (x, u), we wish to obtain a predictive density $\widehat{q}(\cdot; x, u)$ for the conditional density Y|x,u (simply the marginal density of Y in the normal case) and evaluate its efficiency under Kullback-Leibler loss and risk.

Benchmark predictive density. \widehat{q}_{mre} , also minimax, Bayes \widehat{q}_{π_0} with respect to prior density $\pi_0(\theta, \eta) = \frac{1}{\eta}$, is given by a multivariate Student density

$$\widehat{q}_{\pi_0}(\cdot;(x,u)) \sim T_d(k,cx,\sqrt{\frac{(1+c^2)||u||^2}{k}}).$$

(Aitchison and Dunsmore, 1975; Liang and Barron, 2004; for normal case), for all model densities f!

Extension of the class of predictive density estimation improvements for $d \geq 3$ by considering class of alternative densities

$$T_d(k, c\,\hat{\theta}(X, U), \sqrt{\frac{(1+c^2)\|U\|^2}{k}}).$$

7. CONCLUDING REMARKS

- Informative (defective) properties of plugin estimators.
- Techniques for improvements include variance expansion and improving the plugin through a dual loss.
- Different loss functions and models.

SOME REFERENCES

- Aitchison, J. (1975). Goodness of prediction fit. *Biometrika*, **62**, 547-554.
- Boisbunon, A. et Maruyama, Y. (2014). Inadmissibility of the best equivariant density in the unknown variance case. *Biometrika*, **101**, 733-740.
- Brandwein, A.C., Ralescu, S. and Strawderman, W.E. (1993). Shrinkage estimators of the location parameter for certain spherically symmetric distributions. *AISM*, **45**, 551-565.
- Brandwein, A.C and Strawderman, W.E. (1980). Minimax estimation of location parameters for spherically symmetric distributions with concave loss. *AOS*, **8**, 279-284
- Brown, L.D., George, E.I., Xu, X. (2008). Admissible predictive density estimation. *Annals of Statistics*, **36**, 1156-1170.
- Csiszár, I. (1967). Information-type measures of difference of probability distributions and indirect observations. Studia Sci. Math. Hungar., 2, 299-318.
- DasGupta, A. and Lahiri, S.N. (2012). Density estimation in high and ultra dimensions, regularization, and the L1 asymptotics.
 - Contemporary Developments in Bayesian analysis and Statistical Decision Theory A Festschrift for William E. Strawderman, IMS Volume Series, 8, 1-23.

- Fourdrinier, D., Marchand, É., Righi, A. & Strawderman, W.E. (2011). On improved predictive density estimation with parametric constraints. *EJS*, **5**, 172-191.
- George, E. I., Liang, F. and Xu, X. (2012). From minimax shrinkage estimation to minimax shrinkage prediction. *Stat. Sc.*, **27**, 82-94.
- George, E.I., Liang, F., and Xu, X. (2006). Improved minimax predictive densities under Kullback-Leibler loss. *AOS*, **34**, 78-91.
- George, E.I. & Xu, X. (2010). Bayesian predictive density estimation. Frontiers of Statistical Decision Making and Bayesian Analysis. In honor of James O. Berger, 83-95. Springer.
- Kato, K. (2009). Improved prediction for a multivariate normal distribution with unknown mean and variance. *AISM*, **61**, 531-542.
- Komaki, F. (2007). Shrinkage priors for Bayesian prediction. *AISM*, **59**, 135-146.
- Komaki, F. (2006). Shrinkage priors for Bayesian prediction. AOS, 34, 808-819.
- Komaki, F. (2001). A shrinkage predictive distribution for multivariate normal observables. *Biometrika*, **88**, 859-864.
- Kubokawa, T., Marchand, É., Strawderman, W.E., Turcotte, J.P. (2013). Minimaxity in predictive density estimation

- with parametric constraints, *JMA*, **116**, 382-397
- Kubokawa, T., Marchand, É. & Strawderman, W.E. (2015). On improved shrinkage estimators under concave loss. Statistics & Probability Letters, 96, 241-246
- Kubokawa, T., Marchand, É & Strawderman, W.E. (2017). On predictive density estimation for location families under integrated absolute value loss. *Bernoulli*, **23**, 3197-3212.
- Kubokawa, T., Marchand, É. & Strawderman, W.E. (2015). On predictive density estimation for location families under integrated L_2 loss. *JMA*, **142**, 57-74.
- Lawless, J.F. and Fredette, M. (2005). Frequentist prediction intervals and predictive distributions. *Biometrika*, **92**, 529-542.
- Liang, F. and Barron, A. (2004). Exact minimax strategies for predictive density estimation, data compression, and model selection. *IEEE T. Inf. Theo.*, **50**, 2708-2726.
- L'Moudden, A., Marchand, É., Kortbi, O. & Strawderman, W.E. (2017). On predictive density estimation for Gamma models with parametric constraints. *Journal of Statistical Planning and Inference*, **185**, 56-68.

- Maruyama, Y. (2003). A robust generalized Bayes estimator improving on the James-Stein estimator for spherically symmetric distributions. Statistics & Decisions, 1-9.
- Murray, G.D. (1977). A note on the estimation of probability density functions. *Biome* **64**, 150-152.