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1. INTRODUCTION

— Suppose X.Y € R% continuous, with
X ~pp, Y ~qg. X is observed, Y unob-
served or missing.

— We seek a predictive density estimator
q(-; X) for gy, and assess its performance
via a distance p and corresponding loss
L(0,q) = p(4p,9) ,0 € O.

— Bayesian Approach = prior m and pos-
terior density w(:|z), so that a natural
estimator for ¢y is (when X and Y are
conditionally independent on 6)

ax(yla) = |_ ao(y) w(Olw)do

i.e., a posterior distribution mixture of
q6-

— The estimator ¢ (y|x) is attractive from
a Bayesian perspective (e.g., Jeffreys,
1939). Also formal Bayes rule for both
integrated L and Kullback-Leibler (KL)
losses.



2. LOSS and RISK
Several loss functions are at our disposal :

(I) Kullback-Leibler.

N qe(y)
Lr(0,q) = /que(y) log A(y)

(II) a—divergence (Csiszar, 1967).

Ly (0,q) = / ha (a(y)> q9(y) dy,

6(y)
( (1+a)
| 21—z 2) Jo/<1
with ha(z) = 4 > 109(z) o =1
—log(z) a=—1.

Hellinger (o« = 0), Kullback-Leibler (o =
—1), Reverse Kullback-Leibler (o« = 1)

(III) Integrated L5, namely L1 and LZ.

L*(6,q) = /Rdlfi(y) —ap(y)|” dy..

Frequentist risk can be evaluated by

R(0,q) =Eg L(0,q(-; X))



. PLUG-IN, DUALITY, and EXTENSIONS

— Plug-in predictive density estimator of
qp 1S g5, where 0(X) is a point estimator

of 0. Includes ¢q — :
qmle q9m|e

— Loss incurred is L(0,qp), i.e. a point es-
timation loss incurred by 6 in estimating
0.

— Duality. The efficiency of the plug-in dp
for estimating gy is dual to the efficiency
of 6 for estimating 6.

— Example. gy ~ Gamma(a, ). Dual loss
for plug-in's is :

0 0
LQ, n) — —~—lo 7\—1)
(6.99) = a(5~log

— The above idea extends to the compa-
rison of predictive densities of the form
fa with dual loss given by L(9, f3).

— Here are several dominance results de-
rived with the above.



4. APPLICATIONS

(a)

(b)

(c)

X ~ Ng(0,0%1,), Y ~ Ng(0,0%1;). Consi-
der

fg ~ Ng(0(X), (6% + 09)1a) -
Under KL loss, 05(X) = X vyields the
MRE predictive density (also minimax).
Dual loss is L(6, f5) « || — 6||2. So, for
d > 3, dominating estimators of 6g, yield

improvements on gmre. Inadmissibility
of gmre is due to Komaki (2001).

Same as (a) for reverse Kullback-Leibler,
but with gmre ~ Ny(X,021,).

Model as in (@) , a—divergence loss.
Consider the subclass

fg~ Na(@), (S Po% 021,

which includes gmre (also minimax) for

0(X) = X. Here, reflected normal loss
_ _l9=9112
L, is dual, with L(6,0) = 1—e~ 27,

for some « function of 0%, 02, a. For d >
3, dominating estimators of X (KMS,
2015), yvield dominating predictive den-
sities fé\ of fgo




Lemma 1. (KMS 2015) Let X ~ Ny(0,0%14)
with known o%. 8(X) dominates X un-
der L, whenever (Z) dominates Z for

70.2 ~
Z ~ Nq(0, 7% 1g) under loss [|§ — 02,
(d) Same as (c¢) for L? loss. Similar results,
but with gmre ~ Ny(X, (6% 4+ 02)1,).
(e) Consider Y = (Y1,...,Yy) ~ q(|ly — 6||2)
with unimodal ¢ and L1 loss. Consider

plug-in predictive densities ¢(|ly—0(X)||?).

Lemma 2. (KMS, 2017, Dasgupta &
Lahiri, 2012) Dual loss is given by

19— 6]

[ laCls=017)=aCly=01) | dy = ar¢

where F(t) = P(Y1 < t), is the cdf of
Y7,

)—2,

Via the dual point estimation problem,
KMS (2017) obtain for d > 4 domina-
ting predictive densities ¢(|ly — 8(X)||?)
of Gmie ~ a(lly — X||?) using Stein esti-
mation techniques for losses which are
concave in |6 — 6||?, and with further
developments for scale mixtures of nor-
mals.



TECHNICAL DETAILS : A SKETCH
A. X ~ f(||lz—6]|?) scale mixture of nor-
mals (SMN) ; loss is p(||6 — 6]|%) with p/
completely monotone (CM)
(—1)"p("*t1) >0 forn=0,1,...
B. Concave p, p(b) —p(a) < p'(a)(b—a).
p([16—0112)—p(I|X =0]1*) < p'(IX=011?) {[l6—0]I°—[| X —6]|?
Rp(8,6) — Rp(0,X) <O

= Ep{I6(X) —0[I?) — X —0]°} <0

with

X ~ f*(la=0]%) o< f(|lz—0[1*)p'(lz—0]|%).

C.

f isa SMN density <— fis CM
fisCMand f)CM = fp'CM
— f*isa SMN density



(1) Strawderman (1974) : Conditions
for which §(X) dominates X under ||§ —
0|2 for X ~ f* (SMN)

(2) Implies conditions for which §(X)
dominates X under p(||6—6||2) for X ~ f

(3) Implies conditions for which the den-
sity ¢(|ly — 6||?) dominates the plug-in
q(|ly — x|?) for estimating q(||y — 8]|?) for
L1 loss and based on X ~ p(|ly — 6||?)
with p,q SMN.



(f) MRE ESTIMATORS

— Location models X ~ p(x —0),Y ~
q(y — 0) ,indep., z,v,0 € RY.

— Choice of uniform prior 7#(08) = 1
yields a Bayes estimator which is MRE
and Minimax.

— LEMMA. For KL and L? losses,

amre(yiz) = [ aly—0)p(z—06)do
= (gxg)(y—=z),
where ¢g(t) = p(—t), q * g is convolu-
tion.

— To search for improved predictive den-
Sity estimators, we consider

fa~ (a*p)(y —0(X)).
For L2 loss, dual loss is

L, =0 —at—0)2dt =

g*q(0) +p*p(0) —2f xq(0—0).

— KMS (2015) provide improvements
for scale mixture of normals and d >
3 by analyzing this loss.



5. IMPROVEMENTS by SCALE EXPAN-
SION
— X ~p(z—0),Y ~qly—6) ,z,y,0 € RY.
Plug-in density is q(y — 0) where 0 is an
estimator of 6.
— For Kullback-Leibler or Lo loss, Bayes
predictive density is gr(y|lz) = [fraq(y —
0) w(0|x) dv ()
— Useful insight is : (illustrated for d = 1)
For densitiesY ~ q(t—0) vs. Y ~ gz(:|x) :

Eg(Y) = Eg(Y) + 0, Varg(Y) = 0
By (Y) = Eo(Y) + E(6]z)

Varg (V) = 032/ + Var(0|x) .

(assuming expectations and variances exist)

— Hence, for such losses, Bayes density es-
timators always inflate the variance (un-
less 0|z is degenerate). And plug-in den-
sities are not Bayes. Similar analysis for
d>1.



— Deficiency of plug-in estimators not a
new theme and also depend on |0sSs.

— For reverse Kullback-Leibler loss and ex-
ponential families, Bayes estimators are
always plug-in estimators !(Yanagimoto,
Ohnishi, 2009)



EXAMPLE Consider X ~ Ny(6,0%1;),Y ~
Ny(0,0%1,), KL loss.

THEOREM. Let 0(X) be an estimator
of § € C, with risk R(6,0) = E(]|0(X) —
9||?) and R = infgcc R(9,0) > 0. Let Ge ~
Ng(0(X),co21,). Then the density g. domi-
nates the plug-in density g7 under KL loss if
1 <c<(14+-E), andiff 1 < ¢ < cg(14+-L,),
dO’Y doY

with cg(m) the root in ¢ of (1—%)m—log(c)

on (m,oo).

Remarks

— General 0, d. 8(X) can be proper Bayes,
Generalized Bayes, MLE, Shrinkage or
Stein estimator, etc.

— (' can be Rd, or a subset (i.e., restricted
parameter space) of R?.

— Inflation of variance < performance of
6(X) for estimating 6.

— ¢o(m) > m?2 for all m > 1.

— Dominating predictive densities are not
Bayesian, but they do extend to scale
mixtures of normals

co _
/1 gedF(c) .



EXAMPLE. Similar result with Aziz LMoud-
den for a—divergence, —1 < a < 1. Applies
to a large class of plug-in densities (e.g.,
James-Stein and other shrinkage estima-
tors).

EXAMPLE. (Gamma model; LMoudden
et al. 2017.)

X ~ Galay,0),Y ~ Ga(ar,0), a1, an known .

Consider any non-degenerate estimator (X))
of 6 and the subclass of predictive densities

gc ~ Ga(%2,c0(X)),c > 1. A rationale for

the choice lies in the fact that for all x :

Eg (V) = af(z), Varg, (V) = caz(8(x))?,
which expands the variance as c increases.

A key finding is that g. dominates the plug-
in g1 for c € (1, cp], co depending of 8, a1, ao.



THEOREM. Let ¢3(; X) ~ Ga(ap,0(X)
be a plug-in density for estimating the den-
sity of Y ~ Ga(ao,0) under KL loss with
0 € C = (a,b), and based on X ~ Ga(aq,0).
Denote R(0,0) = E(Q(X) |og(§(LX)) —1)
and let R = infgec R(6,0). Then, q5(-; X)
is dominated by g5 .(-; X) ~ Ga(%2, (X))
with 1 < ¢ <c¢g(R), cg(R) being the unique
solution in c € (1,00) of Gr(c) = 0, with

r(<2)
M(az2)

Go(e) = aa(-~1) (s+1-(a2)) + 22 log e +log

EXAMPLE. X ~ p(|lz —0]),Y ~ q(ly —6)),
L4 loss, g decreasing and log-concave. KMS
(2017) obtain predictive densities

iy o) = Ta(Y ")

that dominate the plug-in ¢q; for 1 < ¢ < ¢g.
Important case is normal case.



NO MORE TIME

6. SPHERICALLY SYMMETRIC DISTRI-
BUTIONS with UNKNOWN LOCATION
and SCALE

(a) MODEL

We observe (X,U) € R4tk wish to pre-
dict Y € RY for the spherically symme-
tric model density :

k .
(X,Y,U) ~ 02 f(n(||a—0]|%+]|jy—ch]|*+||ul/?

with known f, ¢, unknown 6 € R%, n > 0.

Includes normal case with X1,...,Xn,Y
i.i.d. Ny(u,o2I;) Also, scale mixtures of
normals with :

£(t) = /R+<2m>—<d+k/2> e 127 4G (2)

with known mixing cdf G.



(b) PREDICTIVE DENSITIES

Based on (z,u), we wish to obtain a pre-
dictive density ¢(-; x,u) for the conditio-
nal density Y|z,u (simply the marginal
density of Y in the normal case) and
evaluate its efficiency under Kullback-
Leibler loss and risk.

Benchmark predictive density. gmre,
also minimax, Bayes gr, with respect to
prior density ng(6,n) = % is given by a
multivariate Student density

%(1 + ) |ul|?
k

Zl\ﬁo('; (33, ’U,)) ~ Td(ka cx, ) .

(Aitchison and Dunsmore, 1975 ; Liang
and Barron, 2004 ; for normal case), for
all model densities f!

Extension of the class of predictive den-
Sity estimation improvements for d > 3
by considering class of alternative den-
sities

(1+c2>||UH2)




7. CONCLUDING REMARKS

— Informative (defective) properties of plug-
in estimators.

— Techniques for improvements include va-
riance expansion and improving the plug-
in through a dual loss.

— Different loss functions and models.
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