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Bootstrap for sample covariance matrices

@ Suppose we have i.i.d. observations X, ..., X, € RP, and let ¥ be the
sample covariance matrix.

~

@ Let T = ¢(X) denote a statistic of interest.

@ We would like to estimate y/var(T), or more generally, approximate the
sampling distribution of T.

@ The non-parametric bootstrap offers a general way to solve these problems.
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Non-parametric bootstrap.

For: b=1,...,B:
@ Sample n points X7, ..., X, with replacement from {Xi,..., X,}.
@ Form the sample covariance matrix $* associated with X{y .o, X
@ Compute T; := np(f*)

Return: the empirical distribution of T7,..., T5.



Some past work and recent developments

In 1985, Beran and Srivastava showed that the standard bootstrap generally
works for smooth functionals of X when p < n. (Exceptions arise for non-smooth
functionals, or tied population eigenvalues.)

The paper Hall, Lee, Park, Paul (2009) develops a remedy for tied eigenvalues, as
well as a generalization to functional data. (A good literature survey is also
provided for many other papers in the p < n setting.)

When p = n, relatively little is known about bootstrap consistency.

Recently, El Karoui and Purdom (2016), have studied the non-parametric
bootstrap, and have demonstrated some negative empirical results for Al(f).
They also prove bootstrap consistency for a fixed number of the largest sample
eigenvalues when X is effectively low-dimensional (e.g. when the true spectrum
decays).
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Difficulties in high dimensions

@ Why do difficulties arise when p is large?

@ If it were possible, we would prefer to draw an i.i.d. sample from the
(unknown) distribution P underlying D = {Xi,..., Xy}

@ Instead, the bootstrap uses an i.i.d. sample from the empirical distribution

-~

P, which places mass 1/n at each point in D.

@ Key issue: If pis large, then P is often a poor substitute for P.

4/
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Alternatives to the non-parametric bootstrap?

@ The empirical distribution P can fail because it “tries too hard” to
approximate the “entire” distribution P.

@ We only need to approximate P with respect to the parameters that are
“relevant” for our statistic.

@ For certain classes of statistics T, we can rely on probability theory to
determine the relevant parameters (i.e. invariance principles or universality
results).

@ Then, we can sample from a suitable parametric distribution Pg.

(This is similar to the “parametric bootstrap”, but not quite the same, since
we are not trying to model all of IP.)

Question: This viewpoint can be used to understand “spectral statistics” and
“max statistics” in high dimensions. Perhaps there are more examples?



A basic model for studying covariance matrices

Let ¥ € RP*P be a population covariance matrix.
Suppose X € R™P is a data matrix with i.i.d. rows generated as
X; =x2z (1)

where the vectors 71, ..., Z, € RP have i.i.d. entries with E[Z;] = 0,
E[Zf] =1 and E[Z]] = &.

Define the sample covariance matrix

T =1xTx. (2)
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Linear Spectral Statistics (LSS)

A natural class of prototype statistics for investigating bootstrap consistency are
linear spectral statstics, which have the form

T =130, fN(E),

where f is a smooth function on [0, o).

3)
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Linear Spectral Statistics (LSS)

A natural class of prototype statistics for investigating bootstrap consistency are
linear spectral statstics, which have the form

T=15P f(N(E), (3)

where f is a smooth function on [0, o).

Examples:

The choice f(x) = log(x) leads to log(det(%)).

The choice f(x) = x*, leads to tr(¥)  (cf. Schatten norms)

The normal log-likelihood ratio statistic for testing sphericity is

plog(tr(L)) — log(det(X)).

Raj Rao et al (2008) developed testing procedures based on tr(£¥).

Various tests of sphericity are “asymptotically equivalent” to transformations of
LSS (Dobriban 2016)



Background ideas for developing a new bootstrap

Bai and Silverstein established an important CLT for LSS in 2004. (See also
Jonsson 1982.)

If E[Zj] =3, and p/n — ¢ € (0,00), then under “standard assumptions” we have

p(T —E[T]) —2— N(0,0?).
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Background ideas for developing a new bootstrap

Bai and Silverstein established an important CLT for LSS in 2004. (See also
Jonsson 1982.)

If E[Zj] =3, and p/n — ¢ € (0,00), then under “standard assumptions” we have

p(T —E[T]) —2— N(0,0?).

Note: The normalization is O(p) rather than O(/n).

g

2 _ ;1 f(zl)f(zz) im z im Z>)dz1dz;
22 Jf (m(z1) — m(z))? dzlf( 1)dzzf( 2)dz1d2
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Background ideas for developing a new bootstrap

p(T —E[T]) —%— N(0,5°).

Important property: Under the setup of Bai and Silverstein (2004), the
parameter o only depends on the limiting spectral distribution of %.

So, roughly speaking, this result says that under certain conditions, the
laws of LSS are asymptotically governed by just the eigenvalues
N\ = diag(A1(X), ..., Ap(X)), rather than the entire matrix X.

This is a major reduction in complexity.



A “parametric bootstrap” approach

More good news: The eigenvalues A can be estimated well in high
dimensions — under modest assumptions.

(Sparsity and/or low-rank conditions are not needed; cf. Ledoit and Wolf
(2015), Kong and Valiant (2017), Chaudhuri, Jun, and Paul (Friday),
among others.)
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A “parametric bootstrap” approach

More good news: The eigenvalues A can be estimated well in high
dimensions — under modest assumptions.

(Sparsity and/or low-rank conditions are not needed; cf. Ledoit and Wolf
(2015), Kong and Valiant (2017), Chaudhuri, Jun, and Paul (Friday),
among others.)

Intuitive procedure: Generate a “new dataset” X* that nearly matches
the observed data X with respect to A.

Then, we just compute the statistic T* arising from the “new data” X*.
(This is akin to a parametric bootstrap.)

One extra detail: The kurtosis k = E[Zﬁ] matters too, but that's ok.
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Goal. Approximate the distribution of T = % J'-le f()\j(f)).
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Proposed method: Spectral Bootstrap

Goal. Approximate the distribution of T = % J'-le f()\j(f)).

Before resampling, first compute estimates < and A.

Algorithm. (Spectral Bootstrap)

Forb=1,...,B:

@ Generate a random matrix Z* € R"*P whose entries Z,-j-‘ are drawn

i.i.d. from Pearson(0, 1,0, %). (Recall X; = ¥/2Z7))
@ Compute £ := %Rlﬂ(Z*TZ*)Kl/z. (Note Y= iy1/27T7zy1/?)
@ Compute the eigenvalues of £*, and denote them by (A%, ..., M%)

o Compute the statistic, Ty := 2 -7, (A7)

Return: the empirical distribution of the values T7,..., T5.
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Generalizing to other spectral statistics

Let ¢ : RP — R be a generic (non-linear) function, and consider the
statistic R R

T =9Y(M(X),..., (X))
Key point: To bootstrap T, we only need change the last step.

(This is a distinct benefit of the bootstrap in relation to formulas.)
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Generalizing to other spectral statistics

Let ¢ : RP — R be a generic (non-linear) function, and consider the
statistic R R

T =9Y(M(X),..., (X))
Key point: To bootstrap T, we only need change the last step.

(This is a distinct benefit of the bootstrap in relation to formulas.)

For b=1,...,B:

o ...
@ Compute the eigenvalues of ¥*, and denote them by (AL, Ap)-
e Compute the statistic, T} :=1¥()\],...,\})

Return: the empirical distribution of the values T7,..., T5.
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Estimating kurtosis

Recall x = E[Z{], and all row vectors satisfy X; = ¥'/2Z;.

Our estimate of k is based on a general formula for the variance of a
quadratic form
Var(|| X1 [2)—2| = |2
k=34 ar(]| 1L|2) 4|| 2

j=19;

It turns out that all the quantities on the right side have ratio-consistent
estimators when p =< n under standard conditions.
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Estimating kurtosis (cont.)

Recall the kurtosis formula

n Var([[X1][3) — 2|[= |7
P4 :

j=19]

k=3

Remarks.

@ Estimating ||Z||% is somewhat tricky because the naive estimate is biased,
and so the bias must be corrected. It is known from Bai and Saranadasa
(1996) that as (n, p) — oo

IZ]E — er(2)?

=1+ op(1).
=%
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Recall the kurtosis formula

n Var([[X1][3) — 2|[= |7
P4 :

j=19]

k=3

Remarks.

@ Estimating ||Z||% is somewhat tricky because the naive estimate is biased,
and so the bias must be corrected. It is known from Bai and Saranadasa
(1996) that as (n, p) — oo

IZ]E — er(2)?

=1+ op(1).
(a2
@ Also, it can be shown that
2
Pl x2
j=1\n ZI:]. iy
( EE— ) =1+ op(1).

j=19j

14 / 28



Estimating eigenvalues

We use the QUEST method (Ledoit and Wolf, 2015).

Let H, denote the spectral the distribution function associated with A1(X), ..., A\p(X),
Hp(t) := 5 357 H{A(T) < t}.
The QUEST method provides an estimate ﬁp of this distribution.

In turn, the quantiles of ﬁp can be used to estimate A1(X),..., Ap(X).
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Estimating eigenvalues

We use the QUEST method (Ledoit and Wolf, 2015).

Let H, denote the spectral the distribution function associated with A1(X), ..., A\p(X),
Ho(t) = 1 50, 1A(E) < 8},

The QUEST method provides an estimate ﬁp of this distribution.

In turn, the quantiles of ﬁp can be used to estimate A1(X),..., Ap(X).

Consistency. If there is a limiting population distribution H such that
H, 2 H,
then the QUEST estimator is consistent in the sense that (under standard assumptions)

Hy, —%— H almost surely.

The QUEST method also performs well in practice.
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Main result: bootstrap consistency

Main assumptions for bootstrap consistency.
e p/n— c € (0,00)
@ A\p(X) and A\1(X) bounded away from 0 and co
o Finite 8th moment: E[Z] < occ.
o H, > H

e Asymptotic “regularity” of population eigenvectors (more later)
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Main result: consistency of spectral bootstrap

Let dip be the Lévy-Prohorov metric on distributions.

Note: Convergence in dip is equivalent to weak convergence.

Theorem 1 (LBA 2019, consistency of spectral bootstrap)

Under the stated assumptions, as (n, p) — oo,

de(E(p( T* —E*[T))IX), £(p(T — E[T]))) 50 in Px-probability.
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Regularity of eigenvectors

Let U be the matrix of eigenvectors of ¥, and consider the non-random quantity

p

Ap(zl’z2) = %Z I:UDn(Zl)UT]jjI:UDn(ZZ)UTL'j

Jj=1

where z1,z, € C\ R, and D,(-) € CP*” is a diagonal matrix that only depends on the
spectrum of X.
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Let U be the matrix of eigenvectors of ¥, and consider the non-random quantity

p

Ap(zl’z2) = %Z I:UDn(Zl)UT]jjI:UDn(ZZ)UTL'j

Jj=1

where z1,z, € C\ R, and D,(-) € CP*” is a diagonal matrix that only depends on the
spectrum of X.

Also define )

1
S CE R DICICH NI

=
Regularity of eigenvectors. We say that the eigenvectors of ¥ are regular if for any

71,22 € C\R, as (n,p) = o0

Ap(z1,2) = A;,(Zl,zz) + o(1).
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Regularity of eigenvectors

Let U be the matrix of eigenvectors of ¥, and consider the non-random quantity

Dp(z1,22) = 1 Zp: [UDn(z1)U '] [UDW(22) U],
p 4 J

Jj=1

where z1,z, € C\ R, and D,(-) € CP*” is a diagonal matrix that only depends on the
spectrum of X.

Also define

P

Az, 22) ;:% >~ [Dn(2)], [Dlz)]

Regularity of eigenvectors. We say that the eigenvectors of ¥ are regular if for any
71,22 € C\R, as (n,p) = o0

Ap(z1,22) = Ap(z1, 22) + o(1).
Note: This assumption is not needed when xk = 3. Empirical results suggest that
this assumption is not too much of a concern.
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Regularity of eigenvectors (cont.)

Example 1. (Rank k perturbations, k — c0).

Suppose A1(X) is bounded away from oo, and let A be otherwise
unrestricted.

If U is of the form
U - IPXP - 2I—I7

where [T is any orthogonal projection matrix of rank k, and k = o(p), then
the eigenvectors are regular.

This is a fairly substantial perturbation from the diagonal case.
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Regularity of eigenvectors (cont.)

Example 2. (Spiked covariance models).

Suppose A is of the form
/\:diag()\l,...,)\k,l,...,l)

where k = o(p), and A\; = A1(X) is bounded away from infinity.

Then, any choice of U will be regular.
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Comments on proof ideas

The proof builds on recent work by Najim and Yao (2016), which develops a CLT
for LSS of the form
oo (L(p(T ~EIT]) , L(Va)) =0,

where V,, is a Gaussian rv with the appropriate mean and variance.
The formulation of the CLT in terms of a metric (as opposed to a weak limit) is
helpful in analyzing the bootstrap.
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Comments on proof ideas

The proof builds on recent work by Najim and Yao (2016), which develops a CLT
for LSS of the form

die (L(P(T ~E[T]) . L(V2)) =0,

where V,, is a Gaussian rv with the appropriate mean and variance.
The formulation of the CLT in terms of a metric (as opposed to a weak limit) is
helpful in analyzing the bootstrap.

Another ingredient worth mentioning is the Helffer-Sjostrand formula, which
shows that LSS can be represented as a linear functional of the empirical Stieltjes
transform. Namely, if

mpy(z) = %t"((i - Z/PXP)_l)’
then
T = ¢f(’/7\7p),
where ¢r is a linear functional depending on f.
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Simulations for LSS (k > 3)
Recall X; = ¥/2Z;.

°
@ kurtosis Kk ~ 3.4

Z; generated with standardized i.i.d. t-dist (df=20)

decaying population spectrum is \; = j~1/2

population eigenvectors uniformly drawn from Haar measure

We tabulate the std. dev., 95th percentile, and 99th percentile of p(T — E[T]).
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Simulations for LSS (k > 3)

Recall X; = ¥1/27,.

@ Z; generated with standardized i.i.d. t-dist (df=20)

@ kurtosis Kk ~ 3.4

@ decaying population spectrum is \; = j~1/2

@ population eigenvectors uniformly drawn from Haar measure

We tabulate the std. dev., 95th percentile, and 99th percentile of p(T — E[T]).

f(x) = x f(x) = log(x)
(n,p) std. dev. 95th 99th std. dev. 95th 99th

(500 200) 0.16 0.27 0.36 1.07 1.82 2.41

: 0.17 (0.01) 0.28 (0.03) 0.39 (0.06) || 1.08 (0.08) 1.76 (0.20) 2.51 (0.35)
(500 400) 0.18 0.29 0.41 4.41 7.03 9.77

: 0.18 (0.02) 0.30 (0.04) 0.42 (0.06) || 4.27 (0.33) 6.72 (0.70) 9.29 (1.18)

0.17 0.29 0.40

(500600) | 918 (0.02) 0.30 (0.04) 0.43 (0.07) - -
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Simulations for LSS (k < 3)

Recall X; = ¥1/27;.

o Z; generated with standardized i.i.d. Beta(6,6)

@ kurtosis kK = 2.6

@ decaying population spectrum is A; = j1/2
@ population eigenvectors uniformly drawn from Haar measure
f(x) = x f(x) = log(x)
(n,p) std. dev. 95th 99th std. dev. 95th 99th
(500.200) | 04 0.23 033 093 151 1.92
' 0.14 (0.01) 0.23 (0.03) 0.32 (0.05) || 0.93 (0.08) 1.52 (0.17) 2.15 (0.31)
(500,400) | 015 0.25 0.34 1.65 2.64 3.64
: 0.14 (0.01) 0.24 (0.03) 0.34 (0.05) || 1.70 (0.13) 2.81 (0.31) 3.97 (0.56)
0.16 0.26 0.34
(500.600) | g 15 (0.01) 0.25 (0.03) 0.35 (0.05) - - -
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What about other spectral statistics?

In principle, the proposed method can be applied to any other spectral
statistic.

Below, we present some simulation results for some non-linear statistics:
0 Thax = A1(X).

0 Tap = Mi(Z) — Xao(T)
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Simulations for non-linear statistics (k < 3)

Recall X; = ¥1/27;.
@ Z; generated with standardized i.i.d. Beta(6,6)
@ kurtosis k = 2.6
@ decaying population spectrum is \; =j1/2

@ population eigenvectors uniformly drawn from Haar measure
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Simulations for non-linear statistics (k < 3)

Recall X; = ¥1/2Z;.
@ Z; generated with standardized i.i.d. Beta(6,6)

@ kurtosis k = 2.6

@ decaying population spectrum is \; =j1/2

@ population eigenvectors uniformly drawn from Haar measure

Tmax - IE[Tmax] Tgap - ]E[Tgap]
(n,p) std. dev. 95th 99th std. dev. 95th 99th

(500.200) | 0% 0.11 015 0.08 013 017

: 0.06 (0.01) 0.09 (0.01) 0.13 (0.02) || 0.07 (0.01) 0.11 (0.01) 0.16 (0.03)
(500,400) | %98 0.10 0.15 0.08 0.13 0.18

’ 0.06 (0.01) 0.09 (0.01) 0.13 (0.02) || 0.07 (0.01) 0.11 (0.01) 0.16 (0.03)
(500,600) | 0% 0.11 0.14 0.07 0.13 0.17

: 0.06 (0.01) 0.09 (0.01) 0.13 (0.02) || 0.07 (0.01) 0.11 (0.02) 0.16 (0.03)
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Simulations for non-linear statistics (k > 3)

Recall X; = ¥1/27,.

e Z; generated with standardized i.i.d. t-dist (df=20)

@ kurtosis k ~ 3.4

@ decaying population spectrum is A; = j1/2

@ population eigenvectors uniformly drawn from Haar measure

Tmax - IE:[Tmax] Tgap - ]E[Tgap]
(n,p) std. dev. 95th 99th std. dev. 95th 99th

(500.200) | 0% 0.10 015 0.07 0.12 017

' 0.07 (0.01) 0.11 (0.02) 0.17 (0.03) | 0.08 (0.01) 0.13 (0.02) 0.19 (0.03)
(500,400) | %98 0.10 0.14 0.07 0.13 0.17

: 0.07 (0.01) 0.11 (0.02) 0.17 (0.03) || 0.08 (0.01) 0.13 (0.02) 0.19 (0.03)
(500,600) | 020 0.11 0.16 0.08 0.13 0.18

' 0.07 (0.01) 0.11 (0.02) 0.16 (0.03) | 0.08 (0.01) 0.13 (0.02) 0.19 (0.03)
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Summary of bootstrap for spectral statistics

@ We have identified LSS as a general class of statistics for which
bootstrapping can succeed in high dimensions.

@ This offers general-purpose way to approximate the laws of LSS without
relying on asymptotic formulas.

@ The method is akin to the parametric bootstrap — using the fact that
spectral statistics may depend on relatively few parameters of the full
data-generating distribution.

@ Numerical results are encouraging.

@ The method appears to extend to some non-linear spectral statistics — for
which asymptotic formulas are often unavailable.

@ Further work on non-linear statistics is underway ...
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