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Bootstrap for sample covariance matrices

Suppose we have i.i.d. observations X1, . . . ,Xn ∈ Rp, and let Σ̂ be the
sample covariance matrix.

Let T = ϕ(Σ̂) denote a statistic of interest.

We would like to estimate
√

var(T ), or more generally, approximate the
sampling distribution of T .

The non-parametric bootstrap offers a general way to solve these problems.

Non-parametric bootstrap.

For: b = 1, . . . ,B:

Sample n points X ∗1 , . . . ,X
∗
n with replacement from {X1, . . . ,Xn}.

Form the sample covariance matrix Σ̂∗ associated with X ∗1 , . . . ,X
∗
n .

Compute T ∗b := ϕ(Σ̂∗).

Return: the empirical distribution of T ∗1 , . . . ,T
∗
B .
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Some past work and recent developments

In 1985, Beran and Srivastava showed that the standard bootstrap generally
works for smooth functionals of Σ̂ when p � n. (Exceptions arise for non-smooth
functionals, or tied population eigenvalues.)

The paper Hall, Lee, Park, Paul (2009) develops a remedy for tied eigenvalues, as
well as a generalization to functional data. (A good literature survey is also
provided for many other papers in the p � n setting.)

When p � n, relatively little is known about bootstrap consistency.

Recently, El Karoui and Purdom (2016), have studied the non-parametric

bootstrap, and have demonstrated some negative empirical results for λ1(Σ̂).
They also prove bootstrap consistency for a fixed number of the largest sample
eigenvalues when Σ is effectively low-dimensional (e.g. when the true spectrum
decays).
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Difficulties in high dimensions

Why do difficulties arise when p is large?

If it were possible, we would prefer to draw an i.i.d. sample from the
(unknown) distribution P underlying D = {X1, . . . ,Xn}.

Instead, the bootstrap uses an i.i.d. sample from the empirical distribution
P̂, which places mass 1/n at each point in D.

Key issue: If p is large, then P̂ is often a poor substitute for P.
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Alternatives to the non-parametric bootstrap?

The empirical distribution P̂ can fail because it “tries too hard” to
approximate the “entire” distribution P.

We only need to approximate P with respect to the parameters that are
“relevant” for our statistic.

For certain classes of statistics T , we can rely on probability theory to
determine the relevant parameters (i.e. invariance principles or universality
results).

Then, we can sample from a suitable parametric distribution Pθ̂.

(This is similar to the “parametric bootstrap”, but not quite the same, since
we are not trying to model all of P.)

Question: This viewpoint can be used to understand “spectral statistics” and
“max statistics” in high dimensions. Perhaps there are more examples?
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A basic model for studying covariance matrices

Let Σ ∈ Rp×p be a population covariance matrix.

Suppose X ∈ Rn×p is a data matrix with i.i.d. rows generated as

Xi = Σ1/2Zi (1)

where the vectors Z1, . . . ,Zn ∈ Rp have i.i.d. entries with E[Zij ] = 0,
E[Z 2

ij ] = 1 and E[Z 4
ij ] = κ.

Define the sample covariance matrix

Σ̂ = 1
nX
>X . (2)
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Linear Spectral Statistics (LSS)

A natural class of prototype statistics for investigating bootstrap consistency are
linear spectral statstics, which have the form

T = 1
p

∑p
j=1 f (λj(Σ̂)), (3)

where f is a smooth function on [0,∞).

Examples:

The choice f (x) = log(x) leads to log(det(Σ̂)).

The choice f (x) = xk , leads to tr(Σ̂k) (cf. Schatten norms)

The normal log-likelihood ratio statistic for testing sphericity is

p log(tr(Σ̂))− log(det(Σ̂)).

Raj Rao et al (2008) developed testing procedures based on tr(Σ̂k).

Various tests of sphericity are “asymptotically equivalent” to transformations of
LSS (Dobriban 2016)
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Background ideas for developing a new bootstrap

Bai and Silverstein established an important CLT for LSS in 2004. (See also
Jonsson 1982.)

If E[Z 4
ij ] = 3, and p/n→ c ∈ (0,∞), then under “standard assumptions” we have

p(T − E[T ])
w−−−→ N(0, σ2).

Note: The normalization is O(p) rather than O(
√
n).

σ2 =
−1

2π2

‹
f (z1)f (z2)

(m(z1)−m(z2))2

d

dz1
m(z1)

d

dz2
m(z2)dz1dz2
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Background ideas for developing a new bootstrap

p(T − E[T ])
w−−−→ N(0, σ2).

Important property: Under the setup of Bai and Silverstein (2004), the
parameter σ only depends on the limiting spectral distribution of Σ.

So, roughly speaking, this result says that under certain conditions, the
laws of LSS are asymptotically governed by just the eigenvalues
Λ = diag(λ1(Σ), . . . , λp(Σ)), rather than the entire matrix Σ.

This is a major reduction in complexity.
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A “parametric bootstrap” approach

More good news: The eigenvalues Λ can be estimated well in high
dimensions — under modest assumptions.

(Sparsity and/or low-rank conditions are not needed; cf. Ledoit and Wolf
(2015), Kong and Valiant (2017), Chaudhuri, Jun, and Paul (Friday),
among others.)

Intuitive procedure: Generate a “new dataset” X ∗ that nearly matches
the observed data X with respect to Λ.

Then, we just compute the statistic T ∗ arising from the “new data” X ∗.

(This is akin to a parametric bootstrap.)

One extra detail: The kurtosis κ = E[Z 4
ij ] matters too, but that’s ok.
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Proposed method: Spectral Bootstrap

Goal. Approximate the distribution of T = 1
p

∑p
j=1 f (λj(Σ̂)).

Before resampling, first compute estimates κ̂ and Λ̂.

Algorithm. (Spectral Bootstrap)

For b = 1, . . . ,B :

Generate a random matrix Z∗ ∈ Rn×p whose entries Z∗ij are drawn

i.i.d. from Pearson(0, 1, 0, κ̂). (Recall Xi = Σ1/2Zi )

Compute Σ̂∗ := 1
n Λ̂1/2(Z∗>Z∗)Λ̂1/2. (Note Σ̂ = 1

nΣ1/2Z>ZΣ1/2)

Compute the eigenvalues of Σ̂∗, and denote them by (λ∗1 , . . . , λ
∗
p).

Compute the statistic, T ∗b := 1
p

∑p
j=1 f (λ∗j )

Return: the empirical distribution of the values T ∗1 , . . . ,T
∗
B .
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Generalizing to other spectral statistics

Let ψ : Rp → R be a generic (non-linear) function, and consider the
statistic

T = ψ(λ1(Σ̂), . . . , λp(Σ̂)).

Key point: To bootstrap T , we only need change the last step.

(This is a distinct benefit of the bootstrap in relation to formulas.)

For b = 1, . . . ,B :

. . .

Compute the eigenvalues of Σ̂∗, and denote them by (λ∗1, . . . , λ
∗
p).

Compute the statistic, T ∗b := ψ(λ∗1, . . . , λ
∗
p)

Return: the empirical distribution of the values T ∗1 , . . . ,T
∗
B .

12 / 28



Generalizing to other spectral statistics

Let ψ : Rp → R be a generic (non-linear) function, and consider the
statistic

T = ψ(λ1(Σ̂), . . . , λp(Σ̂)).

Key point: To bootstrap T , we only need change the last step.

(This is a distinct benefit of the bootstrap in relation to formulas.)

For b = 1, . . . ,B :

. . .

Compute the eigenvalues of Σ̂∗, and denote them by (λ∗1, . . . , λ
∗
p).

Compute the statistic, T ∗b := ψ(λ∗1, . . . , λ
∗
p)

Return: the empirical distribution of the values T ∗1 , . . . ,T
∗
B .

12 / 28



Estimating kurtosis

Recall κ = E[Z 4
ij ], and all row vectors satisfy Xi = Σ1/2Zi .

Our estimate of κ is based on a general formula for the variance of a
quadratic form

κ = 3 +
Var(‖X1‖2

2)−2‖Σ‖2
F∑p

j=1 σ
4
j

.

It turns out that all the quantities on the right side have ratio-consistent
estimators when p � n under standard conditions.
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Estimating kurtosis (cont.)

Recall the kurtosis formula

κ = 3 +
Var(‖X1‖2

2)− 2‖Σ‖2
F∑p

j=1 σ
4
j

.

Remarks.

Estimating ‖Σ‖2
F is somewhat tricky because the naive estimate is biased,

and so the bias must be corrected. It is known from Bai and Saranadasa
(1996) that as (n, p)→∞

‖Σ̂‖2
F − 1

n tr(Σ̂)2

‖Σ‖2
F

= 1 + oP(1).

Also, it can be shown that∑p
j=1

(
1
n

∑n
i=1 X

2
ij

)2

∑p
j=1 σ

4
j

= 1 + oP(1).
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Estimating eigenvalues

We use the Quest method (Ledoit and Wolf, 2015).

Let Hp denote the spectral the distribution function associated with λ1(Σ), . . . , λp(Σ),

Hp(t) := 1
p

∑p
j=1 1{λj(Σ) ≤ t}.

The Quest method provides an estimate Ĥp of this distribution.

In turn, the quantiles of Ĥp can be used to estimate λ1(Σ), . . . , λp(Σ).

Consistency. If there is a limiting population distribution H such that

Hp
w−−→ H,

then the Quest estimator is consistent in the sense that (under standard assumptions)

Ĥp
w−−−→ H almost surely.

The Quest method also performs well in practice.
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Main result: bootstrap consistency

Main assumptions for bootstrap consistency.

p/n→ c ∈ (0,∞)

λp(Σ) and λ1(Σ) bounded away from 0 and ∞

Finite 8th moment: E[Z 8
11] <∞.

Hp
w−−→ H

Asymptotic “regularity” of population eigenvectors (more later)
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Main result: consistency of spectral bootstrap

Let dLP be the Lévy-Prohorov metric on distributions.

Note: Convergence in dLP is equivalent to weak convergence.

Theorem 1 (LBA 2019, consistency of spectral bootstrap)

Under the stated assumptions, as (n, p)→∞,

dLP
(
L
(
p(T ∗ − E∗[T ∗])|X

)
, L
(
p(T − E[T ])

))
→ 0 in PX -probability.
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Regularity of eigenvectors

Let U be the matrix of eigenvectors of Σ, and consider the non-random quantity

∆p(z1, z2) :=
1

p

p∑
j=1

[
UDn(z1)U>

]
jj

[
UDn(z2)U>

]
jj

where z1, z2 ∈ C \ R, and Dn(·) ∈ Cp×p is a diagonal matrix that only depends on the
spectrum of Σ.

Also define

∆′p(z1, z2) :=
1

p

p∑
j=1

[
Dn(z1)

]
jj

[
Dn(z2)

]
jj
.

Regularity of eigenvectors. We say that the eigenvectors of Σ are regular if for any
z1, z2 ∈ C \ R, as (n, p)→∞

∆p(z1, z2) = ∆′p(z1, z2) + o(1).

Note: This assumption is not needed when κ = 3. Empirical results suggest that
this assumption is not too much of a concern.
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Regularity of eigenvectors (cont.)

Example 1. (Rank k perturbations, k →∞).

Suppose λ1(Σ) is bounded away from ∞, and let Λ be otherwise
unrestricted.

If U is of the form
U = Ip×p − 2Π,

where Π is any orthogonal projection matrix of rank k , and k = o(p), then
the eigenvectors are regular.

This is a fairly substantial perturbation from the diagonal case.
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Regularity of eigenvectors (cont.)

Example 2. (Spiked covariance models).

Suppose Λ is of the form

Λ = diag(λ1, . . . , λk , 1, . . . , 1)

where k = o(p), and λ1 = λ1(Σ) is bounded away from infinity.

Then, any choice of U will be regular.
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Comments on proof ideas

The proof builds on recent work by Najim and Yao (2016), which develops a CLT
for LSS of the form

dLP

(
L(p(T − E[T ]) , L(Vn)

)
→ 0,

where Vn is a Gaussian rv with the appropriate mean and variance.
The formulation of the CLT in terms of a metric (as opposed to a weak limit) is
helpful in analyzing the bootstrap.

Another ingredient worth mentioning is the Helffer-Sjöstrand formula, which
shows that LSS can be represented as a linear functional of the empirical Stieltjes
transform. Namely, if

m̂p(z) = 1
p tr
(
(Σ̂− zIp×p)−1

)
,

then
T = φf (m̂p),

where φf is a linear functional depending on f .
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shows that LSS can be represented as a linear functional of the empirical Stieltjes
transform. Namely, if

m̂p(z) = 1
p tr
(
(Σ̂− zIp×p)−1

)
,

then
T = φf (m̂p),

where φf is a linear functional depending on f .
21 / 28



Simulations for LSS (κ > 3)

Recall Xi = Σ1/2Zi .

Zi generated with standardized i.i.d. t-dist (df=20)

kurtosis κ ≈ 3.4

decaying population spectrum is λj = j−1/2

population eigenvectors uniformly drawn from Haar measure

We tabulate the std. dev., 95th percentile, and 99th percentile of p(T − E[T ]).

f (x) = x f (x) = log(x)

(n,p) std. dev. 95th 99th std. dev. 95th 99th

(500,200)
0.16
0.17 (0.01)

0.27
0.28 (0.03)

0.36
0.39 (0.06)

1.07
1.08 (0.08)

1.82
1.76 (0.20)

2.41
2.51 (0.35)

(500,400)
0.18
0.18 (0.02)

0.29
0.30 (0.04)

0.41
0.42 (0.06)

4.41
4.27 (0.33)

7.03
6.72 (0.70)

9.77
9.29 (1.18)

(500,600)
0.17
0.18 (0.02)

0.29
0.30 (0.04)

0.40
0.43 (0.07)

- - -
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Simulations for LSS (κ < 3)

Recall Xi = Σ1/2Zi .

Zi generated with standardized i.i.d. Beta(6,6)

kurtosis κ = 2.6

decaying population spectrum is λj = j−1/2

population eigenvectors uniformly drawn from Haar measure

f (x) = x f (x) = log(x)

(n,p) std. dev. 95th 99th std. dev. 95th 99th

(500,200)
0.14
0.14 (0.01)

0.23
0.23 (0.03)

0.33
0.32 (0.05)

0.93
0.93 (0.08)

1.51
1.52 (0.17)

1.92
2.15 (0.31)

(500,400)
0.15
0.14 (0.01)

0.25
0.24 (0.03)

0.34
0.34 (0.05)

1.65
1.70 (0.13)

2.64
2.81 (0.31)

3.64
3.97 (0.56)

(500,600)
0.16
0.15 (0.01)

0.26
0.25 (0.03)

0.34
0.35 (0.05)

- - -
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What about other spectral statistics?

In principle, the proposed method can be applied to any other spectral
statistic.

Below, we present some simulation results for some non-linear statistics:

Tmax := λ1(Σ̂).

Tgap := λ1(Σ̂)− λ2(Σ̂)
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Simulations for non-linear statistics (κ < 3)

Recall Xi = Σ1/2Zi .

Zi generated with standardized i.i.d. Beta(6,6)

kurtosis κ = 2.6

decaying population spectrum is λj = j−1/2

population eigenvectors uniformly drawn from Haar measure

Tmax − E[Tmax] Tgap − E[Tgap]

(n,p) std. dev. 95th 99th std. dev. 95th 99th

(500,200)
0.06
0.06 (0.01)

0.11
0.09 (0.01)

0.15
0.13 (0.02)

0.08
0.07 (0.01)

0.13
0.11 (0.01)

0.17
0.16 (0.03)

(500,400)
0.06
0.06 (0.01)

0.10
0.09 (0.01)

0.15
0.13 (0.02)

0.08
0.07 (0.01)

0.13
0.11 (0.01)

0.18
0.16 (0.03)

(500,600)
0.06
0.06 (0.01)

0.11
0.09 (0.01)

0.14
0.13 (0.02)

0.07
0.07 (0.01)

0.13
0.11 (0.02)

0.17
0.16 (0.03)
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Summary of bootstrap for spectral statistics

We have identified LSS as a general class of statistics for which
bootstrapping can succeed in high dimensions.

This offers general-purpose way to approximate the laws of LSS without
relying on asymptotic formulas.

The method is akin to the parametric bootstrap — using the fact that
spectral statistics may depend on relatively few parameters of the full
data-generating distribution.

Numerical results are encouraging.

The method appears to extend to some non-linear spectral statistics — for
which asymptotic formulas are often unavailable.

Further work on non-linear statistics is underway . . .
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