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Teacher Value Added (TVA)

o Leading research questions in education economics:
o how to use student test results to evaluate teachers performance?
o what is the short and long term impacts of teachers?

o Typical data environment:
o Detailed administrative data with longitudinal structure

@ We have obtained data from North Carolina which covers all public school students from
fourth and fifth grade from 1996 - 2010 with many detailed demographic data. (= 2.7
million student-year observations and 35,000 teachers)

o Data of similar quality from Los Angeles (11,000 teachers) is also available.

o Focus on primary school where it is easy to match student with teacher.
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Motivation

o Current statistical approach of the TVA literature: James-Stein shrinkage estimator
assuming Gaussian teacher effect (Kane and Staiger (2008), citation 804; Chetty et
al. (2014), citation 729)

Question on effect estimation: To what extent are parametric shrinkage methods
different from Robbins’ nonparametric shrinkage estimator for TVA in real data?

o TVA is used in high-stakes decision making:
o As of 2017, thirty nine states require TVA to be incorporated into teacher evaluation

scores and incentive pay schemes.
o TVA is used to evaluate education policies (releasing teachers for test score gains).

Question on ranking: how do we implement such policy - select the best and worst.

3/21 Jiaying Gu Nonparametric empirical Bayes for TVA



Statistical Model

o Index student by i, teacher by j and year by t:
T .
A;;-t:X;jtﬂ-l-Oéj—l-E,‘jt, i=1,2,...,n;
o A}, are students’ test scores centered and scaled for each grade-year.

@ X includes polynomials of lagged test scores, students’ demographic background,
teacher’s experience etc.
Test score residuals Aj: = A}, — X,;B ~ aj + €
o We work with y;s = n% SOV A ~ N (o, 02 /nje) to estimate TVA oy
J

Classroom size nj in the range of [8, 39] for both NC and LA data.

©

©
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Effect Estimation: The Compound Decision Problem

o Longitudinal Data: y;: ~ N(aj,02/n), t =1,2,..., T;.
C oy 2 2 2
@ MLE for Q) yj = Zt njt)/jt/ Z: nje ~ N(aj7gj)7 o; = Ue/zt njt
o For teachers with small total class size >, njx, MLE is going to be a poor estimator
for .
o If ¢ % G, then we can borrow strength from each other.

@ Compound decision problem with heterogeneous variances (Jiang and Zhang (2010),
Xie, Kou, Brown (2012, 2016), Weinstein, Ma, Brown, Zhang(2018)):
a shrinkage estimator for o; performs better than MLE under £; loss

-1 J 2
N7 28 — o).
@ The loss function considers all teachers and treats every teachers equally.
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Linear shrinkage estimator

o If o X (0,02), then we get a linear shrinkage rule
2
~ Oq
& = v
=Y o? + 02
o Larger total class size >, nj:, less shrinkage towards the common mean (zero).
o Practical implementation in the TVA literature: plug-in estimator with MLE, MoM,
SURE for (02, 02).

o Deviation from Gaussian «;: Xie, Kou, Brown (2016) suggests a linear rule

(1 — by)y; with optimal b; minimizing L2 loss subject to b; < by if o7 < o}.

But why linear?
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Nonlinear shrinkage estimator |

For a; % G, the Bayes rule is (Tweedie formula)

©

8 = E(aly;, 05) = yj + o} £ (%)) /fi(y;)  with £i( yj)f/ -¢((y; — j)/07)dG(ey)

@ Marginal density fj(y) is difficult to estimate due to heterogeneous variances.

o Nonparametric empirical Bayes estimator through NPMLE of G: Robbins (1956),
Jiang and Zhang (2010), Gu and Koenker (2017a)

5 = fOéd>((yj - Ol)/(Tj)dAG(a)
' Jo((yj — @)/0;)dG(a)

Convex optimization for G (Koenker and Mizera (2014))

©

G= argmgax{ Z log i (y;) | /¢ -« /UJ)/JJdG(a)}

o Restriction: iidness of a; imposes independence between «; and ;.
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Nonlinear shrinkage estimator |l

©

Exploit the longitudinal structure:
Yie = o + uje,  uje ~ N(0,0;/nje)
o Sufficient statistics for (o, ;)
Yi=_meyie) > e~ N(ay, 0,/ i)
t t t
1 .
S =3 > (e = i) mie ~ (13,0, ) with 1 = (T; = 1)/2
Iy

. . . . TR jid
o We can identify and nonparametrically estimate the joint distribution of («a;,0;) ~ G

where arbitrary dependence is allowed. (Gu and Koenker (2017a, b))

©

Bayes rule is a nonlinear function of (y;, S;): ¢; = E(aly;, S)).
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Unbalanced Panel

4 of occurrence  Absolute % % cumulative
1 10180 29.00 29.00
2 6486 18.50 47.50
3 4706 13.40 61.00
4 3217 9.20 70.10
5 2446 7.00 77.10
6 1910 5.40 82.60
7 1281 3.70 86.20
8 1120 3.20 89.40
9 975 2.80 92.20
10 735 2.10 94.30
11 676 1.90 96.20
12 588 1.70 97.90
13 302 0.90 98.80
14 249 0.70 99.50
15 182 0.50 100.00
Total 35053 100%
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Estimated Distribution using North Carolina Data

o Linear shrinkage under Gaussian assumptions
o aj ~ N(0,0.047).

o 52 =0.249.
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Effect estimation: linear vs nonlinear

nonlinear

T T T T T
-1.0 -0.5 0.0 0.5 1.0

linear
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Bayes Rule: linear vs nonlinear
Bayes rule (total class size = 20)

- — linear
—— nonlinear
45 degree

-1.0 -0.5 0.0 0.5 1.0 15

y

Jiaying Gu Nonparametric empirical Bayes for TVA




Bayes Rule: linear vs nonlinear
Bayes rule (total class size = 100)
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Policy Evaluation

o All the action seems to be in the tail. But this is exactly what is relevant for
educational policy (Chetty et al. 2014).

o Left tail policy: evaluate the magnitude of test score gains by replacing bottom g%
of the teachers by a mean quality teacher (zero effect).
+oo
E[al{a > 6 (q)}] :/ adG(a)

G~ Ha)

@ Depending on the thickness of the true distribution tail, this gain can be over/under
estimated if the Gaussian effect assumption is misplaced.

How do we pick these teachers?
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-
Empirical Bayes Ranking

@ One approach is to rank the teachers by posterior mean. But although £, loss is
natural for effect estimation,it may not be natural for selecting good/bad teachers.

©

There are some available alternatives in the literature, notably posterior expected
rank: Laird and Louis (1989), Xie, Singh, Zhang (2009)
o We've come up with two types of loss function that leads to

o ranking criteria based on posterior tail probability P(a < G~1(q)ly, o) (see also
Henderson and Newton (2016))
o ranking criteria based on posterior expected shortfall E[al{a < G~1(q)}|y, o].

©

How to choose loss function? Economists/education policy maker may be able to
link loss function specification to welfare consideration.

15 /21 Jiaying Gu Nonparametric empirical Bayes for TVA



-
Tail probability rule

©

Let ag := G '(q), consider loss function for a binary action §; : (y;,07) — {0,1}

L(dj, ) = (1 = 6;)1{ey < ag}

©

Loss function only considers the tail population instead of the whole.

©

Minimizing the Bayes risk subject to a size constraint P(§; = 1) = g leads to the
Bayes rule §; = 1{v4(y;, 0j) > Aq} with
J25 o((y; — a)/0;)dG(a)

J ¢((y; — @)/0;)dG(a)

va(ys, 05) = Pla < agly;, o)) =

©

Choose Aq to satisfy the size constraint.

@ Under mild conditions, which are satisfied for the normal model, there is a nested
structure of the set Qq = {j : v4(yj,0j) > Ag}: Qg, C Qq, for q1 > qo.
@ A close connection to multiple testing problem: v4(y;, o}) is one minus the local
FDR (Efron et al. 2001, Sun and McLain 2012))
o Composite one-sided null Hy; : o > aq.
o FDR literature: thresholding value on v4(y;j, 0}) is chosen to satisfy FDR size
restriction.
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Expected shortfall rule

o Introduce effect size weights into the previous loss function, focusing on lower tail
ag <0
L(9j, o) = —(1 = 6;)H{ej < aq}
o Loss function has the interpretation as the lost gain of not replacing teacher j with a
(better) mean teacher.

@ Minimizing the Bayes risk subject to a size constraint P(§; = 1) = q leads to the
Bayes rule §; = 1{sq(yj, 0j) > 74} with

Qq « i —a)/oj dG(a
sa(3-0) = ~E(al{a < ag}ly;. o) = ‘I}O ¢(?y(j(y— a)/z)rj/-)d)c(a() )

o Choose 74 to satisfy the size constraint.
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Comparison: q = 1% Posterior Mean

o grey points: agreed by both tailp, shortfall and posterior mean (201 teachers)
extra 49 teachers selected by posterior mean criteria.

@ green points:
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N
Comparison: q = 1% Shortfall

o grey points: agreed by both tailp, shortfall and posterior mean (301 teachers)
o blue points: extra 49 teachers selected by shortfall criteria.
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-
Comparison: q = 1% Tailp

o grey points: agreed by both tailp, shortfall and posterior mean (301 teachers).
@ red points: extra 49 teachers selected by tailp criteria.
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Conclusions

o Teacher evaluation is involved in high-stakes decision making.

@ We show the possibility of deviating from the Gaussian assumption and linear
shrinkage rules and that it is empirically relevant.

o Efron’'s G-modeling: We take a nonparametric approach for G, which seems to open
doors to many different Bayes rules depending on the type of loss function under
consideration.
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