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Introducing the Spike-and-Slab LASSO

For known X, with standardized columns ||X;|[2 = n, suppose
Y:anpﬁ0+s, ENN(O,In),

where ||Bollo = q, p large, g << p. Goal is the recovery of 3.
~+ Popular Bayesian approach: Point-Mass Spike-and-Slab Prior
m(B|7) =TI [id(Bi | A) + (1 —1)do(B7)],
605 \) = %e*A‘ﬁ’|, Yirevesp| 8 iid ~ Bern(6), 6~ n(6)

» |deal posterior concentration
» MCMC posterior simulation slow for p large

~+ Popular penalized-likelihood approach: LASSO
m(B1A) =TI, ¢(Bi | A)

» Fabulously fast identification of the mode
» Problematic bias and posterior issues
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The Essence of the LASSO
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Select the “best” LASSO estimator of the form

- 1 , P

B = argmax {ZIY Xp|1? - A; ﬂ,}
for an increasing sequence of A values.

Each 3 is a posterior mode under (B ) = [T, #(8i| \),
an iid prior.

As ) increases, all 3/’s are uniformly shrunk more, and larger
subsets of §;’'s are thresholded to zero.

As XA — oo, m(B| \) — do(8), a point mass at 0.

Dynamic Posterior Exploration is made practical by fast convex
optimization.



Hybrid Idea: The Spike-and-Slab LASSO Prior

A mixture of two LASSO priors with penalties A\ and \g

mssL(B]7) = H[% (Bi| A1) + (1 =208 | M)

Vs--,Yp | 0 did ~ Bern(f), 0~ m(0)
Ay small: slab distribution holds large coefficients steady
Ao large: spike distribution thresholds small coefficients
0 controls the sparsity
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The Essence of the Spike-and-Slab LASSO
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s

Select the “best” SSL (Spike-and-Slab LASSO) estimator of the
form

~

1
B —argmax {11V - X8I + log s ()}

for an increasing sequence of A\g values, with A fixed at a small
value.

Each B is a posterior mode under the wgg; (3) mixture prior.

As )\ increases, small 3/s are thresholded to zero by the “spike”
while large ones are held steady by the “slab”.

Simultaneous variable selection and (nearly) unbiased
estimation, occurring directly in the 3 space.

As )y — o0, Tss.(8B) goes to the point mass spike-and-slab prior.

Dynamic Posterior Exploration is made practical by fast
non-convex optimization.



The LASSO and the Spike-and-Slab LASSO in Action

~ Consider p =12 and n =50

~ 4 indep groups of correlated (p; = 0.9) predictors X; ~ A/(0, X)

~ Y ~ N(XBy, In), where g, = (1.3,0,0,1.3,0,0,1.3,0,0,1.3,0,0)".
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~ LASSO neveor correct. After cross validation, 4 Ufalse positives.
~ Spike-and-Slab LASSO path stabilizes at the correct model.
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What is new?

Other non-convex regularizers such as MCP and SCAD serve to
mitigate the bias of the LASSO. However, in comparison:
(1) Spike-and-Slab LASSO is a hierarchical Bayes procedure

~+ Underlying latent model indicators v = (1,...,7p)
~ () can be used to target regions of interest

(2) Spike-and-Slab LASSO penalty is non-separable

~ @ adapts to the unknown sparsity of 3,

~» Automatic hyper-parameter tuning (avoids cross-validation)
~ Automatic adjustment for multiplicity

~+ Coordinate ascent for a non-separable regularizer
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The Separable SSL Penalty
(When @ is fixed)



Focusing First on mss (3| 0)

~ Recall the full SSL prior

o

mss(B17) = [ [1is(Bi1 M) + (1 = 71)é(Bi | Xo)]

i=1

Yy, | 0 did ~ Bern(d), 0~ w(6)
~ This prior is a mixture of Laplace priors both within and across
the coordinates of 3.

~ Such Bayesian penalty mixing yields penalization that
adaptively tailors shrinkage effects to the underlying 3,

~ To better understand this, let’s integrate out the ~;’s, and first
focus on wsg (3| ), treating 6 as if it were fixed and known.
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The Separable SSL Penalty

~+ The conditional SSL prior is an independent product

p
mwss(B10) = [J166(8i | M) + (1 = 0)6(Bi | Ao)]
i=1

$

Here, the latent +; indicators have been margined out.
~ The conditional SSL estimator is the solution to

~ 1
B —argmax {311V - X8I + log s (5 0)

§

This SSL penalty is a separable sum of component penalties

log mss.(B16) Z'09[9¢ Bil M) + (1 =0)o(Bi | Mol

i=1
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The Separable SSL Penalty

~ Each component of the SSL penalty is a smooth mix of two
LASSO:-like penalties

-p(B.6)
3
|
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The Adaptive Effect of Bayesian Penalty Mixing

Via the first order conditions for @ the derivative of the penalty

determines the amount of shrinkage,

dlog(5i|0)
91 8il

0“‘3/‘

dlog ¢(Bi | \o)

= —[ps(Bi) M+ 1 = ps(B)] o] = =A5(51)
where

0p(Bi| M)
(Bil M)+ (1 = 0)d(Bi | Ao)

is the conditional probability that 8; was drawn from ¢(5; | A1).

P (Bi) = P(vi =1 5,0) = 0%

~ A;(B;) is an adaptive convex combination of Ay and Ao.

~ A;(B;) puts more weight on the slab penalty Ay when g; is large,
and puts more weight on the spike penalty \y when 5; is small.
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SSL is a “Self-adaptive LASSO"
Letzj = Xje;where e; = Y -3, X 5k. By the first order conditions

The LASSO mode satisfies

$

~ 1 .
5= 1171~ \l:sign(z).

~ Constant penalty regardless of the size of |z - Toooo bad!

~ The Spike-and-Slab LASSO mode satisfies

) 1 *x (7 .
By = 1zl = A5(6))]+sign(Z)-

~ “Self-adaptive" property of the shrinkage term - Wonderful!

~+ Immediately suggests optimization by coordinate-wise ascent!
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Refined Characterization of the Global Mode
~ As \g — o0, the posterior becomes multimodal (non-concave), and
~ 1 ~
By = 11zl = A5(5))]+sign(z)
is not sufficient to characterize the global mode.

~ Further refinement reveals the SSL global mode Btobea
thresholding rule satisfying

5= 0 when |[z;| <A

" 3lzl = X6(B))ysign(z) when |z] > A.

where

X1-10
~4/2nlog [1+ —=—| + X
A \/nog{+/\1 6.}-1—1
~ Bis a blend of hard and soft thresholding.

~ The selection threshold A drives the minimax properties of the mode
and can be calibrated through suitable choices of (g, A1, 6).
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The Non-Separable Fully Bayes SSL Penalty
(When 6 is random)
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The Limitations of Separable Penalties

~ Separable penalties Pen(8) = 37, pen(;) are limited by their
inability to adapt to common features across the components of 3.

~ This includes the ¢y LASSO penalty, pen(5;) = —A|Sil, the o, L2,
SCAD, MCP penalties, the separable SSL penalty and many more.

~ Such separable penalties implicitly assume iid priors, namely
7(B|n) = [1r- 7(8i | n) with some (possibility multivariate)
hyperparameter 7.
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Borrowing Strength via Non-Separable Penalties

~ Moving beyond such penalties, exchangeable priors from mixing
over 7

o
~(8) = / T (5 | n)e(m)dn
i=1

yield non-separable penalties that “borrow strength” across

Bt Bp.

~ The adaptive potential of log 7(3), from such hierarchical Bayesian
penalty mixing, is reflected by the adaptive nature of its derivative

dlogn(B) _ [ dlogn(B|n)
| 8i] a|Bil

m(n|B)dn.

~ Such constructions require penalty components that correspond to
proper priors, ruling out penalties such as SCAD and MCP.
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The Non-Separable Fully Bayes SSL Penalty
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Mixing mss (3| 6) over w(0), the components of 3 become apriori
dependent.

1p
mssu(8) = [ T[100(811 )+ (1 = )51 | 2] (o).
j=1

The SSL penalty log rss.(3) is now non-separable, and the lack of a
closed form for 7gg; (3) complicates its tractability.

Fortunately, a revealing and simple form can still be obtained for its
derivative.

It is useful to focus on the i direction, while keeping all other
coordinates fixed at 3,;



Further Adaptivity From Bayesian Penalty Mixing

~ The derivative of log w(3) now reveals doubly adaptive penalization
that borrows strength across coordinates

logm(B) = uip.a
a|ﬁﬁ| - A (ﬁﬁvﬂav)a

where
N (Bi By) = P*(Bi: By) M +[1 = p*(Bi: Byl Mo
and

1
P*(Bi; Byi) = /O P (B) (0] B)de.

~ By averaging over (0| 3), the shrinkage term is given an opportunity
to borrow strength and learn about the sparsity level of 3. - Hooray!

A Surprising and Useful Simplification!
p*(ﬁi; /3\/') - pg,(/jl)* 0 = E[Q | IB\i]
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Implications for the Global Mode

~ Building on the separable case, the global mode satisfies
~ 0 when |zj] < A;
Pi= {;nz,- X (B)]sign(z) when |z > A

where 0, = E[¢0| 3], and

Aj =~ \J2n|og

~ ﬂA, is now a doubly adaptive blend of soft and hard thresholding with
adaptive coordinate-specific thresholds A;.

~ When 6 ~ B(1, D p) for some D > 0,

~

14 =
M E(9]8y)

m—E(eﬁ\,)] Y

E(0] B,) ~ g a=1Bllo

~ More refined tuning of the A; for improved minimax rates becomes
available through suitable choices of (Ao, A1).
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Automatic Multiplicity Control

Assume p = 2 with 8 = (81, 82)’, and suppose 6 ~ B(1,1).

The univariate SSL penalty for 15t direction, while keeping /3. fixed:

Ao=5

-p(B.0)
3
Il

~ If fo=0—E[f| B2 = 0] = 0.34 A, goes up
~ If =4 > E[0| B2 =4]=2/3 A goes down

21/1



The Spike-and-Slab LASSO:

Implementation
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Dynamic Posterior Exploration

LASSO:
A path-following algorithm indexed by a sequence of Laplace priors

Spike-and-Slab LASSO:
A path-following algorithm indexed by a sequence of Laplace mixtures
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EMVS

Find (7, 0) = argmaxg ) 7(3,0| Y) iteratively with an

EM algorithm by treating v as missing data

~ E-step: Let 3% and 6 be the most recent updates of (3, 6).
Forj=1,...,pcompute A} (B/(k)) where

Ao(B) = pa(B)) A+ [1 = P5(B7)] Ao
~ M-step: An adaptive LASSO regression

~(k+1) 1 > P * (k)
B =af921€%§{—2||Y—X3|| _;Ae(k)(ﬂ/ )18j]
Update the weight

k
gk+1) — pg(“(ﬁj( )) ta—1

at+b+p-2
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Refined Coordinate Ascent
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Refined Coordinate Ascent:
(Mazumder et al. (2011), Breheny and Huang (2011))

Targeted towards local maxima that are global maximizers in each
direction

Beginning with 39, proceed iteratively with
a0 _ Uz > 4)) . (Bk- ,
Bl = ==L g -, (BYY)]sien(2)
~(k—1)
0 =E {9 By ]
where z; = Xje; for e = ¥ — 3", Xy Bk

Our non-separable penalty requires only a simple additional step!



The Spike-and-Slab LASSO in Action

~ p=1000and n= 100
~ 50 indep groups of 20 correlated (p; = 0.9) predictors X; ~ N (0,X)

~ B, assigned g = 6 nonzero entries %(—2.5, -2,-1.5,1.5,2,2.5),
one within each of the first 6 blocks

Separable Separable (oracle) Non-separable

Ao

6 =05 6 = 6/1000 0~ B(1,p)

The non-separable SSL adapts and mimics the oracle choice!
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Comparison with the MCP Penalty

2 .
ABl- 5 if Bl <A

en, =
peor () {;7% it 18] > A

MCP (best-subset) MCP (best gamma) MCP (~LASSO)

Hard Tresholding Best Cross-validated Towards the LASSO
7%1 7:4185 7:85

As opposed to the Spike-and-Slab LASSO:
Cross-validation needed over a two-dimensional grid of values (), )
The regularization path does not stabilize.
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A Simulation Comparison with Competing Methods

Correlated Block Design
A ¢ "MSE FDR FNR g TRUE TIME HAM
SSL 1 s 321 0253 0253 6 21 034 3.04
SSL 0.1 B(1,p) 332 0.255 0257 599 23 0.69  3.07
SSL 1 B(1,p) 333 026 026 6 22 048  3.12

Horseshoe 3.19 0.246 0.417 4.64 1 465.84 3.64
EMVS 589 0.074 0.688 2.02 0 0.78 4.28
MCP* 6.77 0.563 0.483 7.09 1 2.04 6.89

Adaptive-LASSO  2.79 0.549 0.192 10.75 2 5.37 7.05
SSL 1 05 598 0.574 0.31 9.71 2 0.33 7.43
SCAD* 839 077 057 112 0 0.52 12.04
LASSO 347 0.845 0.113 34.35 0 0.74 29.71

Table: Simulation study using 100 repetitions; MSE (average mean squared error),
FDR (false discovery rate), FNR (false non-discovery rate), DIM (average size of the
model), TRUE (# true model detected), TIME (average execution time in seconds),
HAM (average Hamming distance); Methods have been sorted based on the Hamming
distance. (x: ncvreg implementation using cross-validation over a one-dimensional
grid with a default value of the second tuning parameter).
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Fast Bayesian Factor Analysis With
The Spike-and-Slab LASSO
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An SSL Application to Bayesian Factor Analysis

Generic factor model for fixed number K of latent factors:
Yi|wi, B, ¥ Ng(Bwi,X), wi~Nk(0,lk) 1<i<n,

| “““\ | “““““‘\
G K G

~ E=[er, ... €0 with € % Ng(0,X), T = diag{c?} ¢,
~ Q= [wy,...,wy]’: latent factors
~ B = (b)f~, : factor loadings
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An SSL Application to Bayesian Factor Analysis

Integrating out w; ~ Nk(0, Ix) yields
fly;| B,£) =Ng(0,BB' +X),1<i<n.

~ Because BB’ = (BP)(BP)’, for any orthogonal matrix P, the
likelihood is invariant under factor rotation.

~ Components of B are unidentifiable.

~ Effective factor cardinality K is unknown.
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The Prior and Algorithm Underlying Our Approach
An SSL-IBP prior on infinite-dimensional B = {Bjk}ﬁfo which
anchors on sparsity inducing factor orientations.

~ A Spike-and-Slab LASSO (SSL) prior
T(Bikl i) ~ Yk (Bix| A1) + (1 = %) (Bjx | Ao),

controlled by an Indian Buffet Process (IBP) on 0-1 ’y]{ks

k
Yk ~ Bern[f], Ok = HV/, v i B(a, 1).
1=1

~ Set A\ << Ao to adaptively threshold smaller Sj.
~ Prespecification of K and identifiability constraints are avoided.

~ Implementation with a parameter expanded likelihood EM algorithm
yields automatic rotations which converge rapidly to excellent sparse
modal estimates.
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The SSL-IBP Prior with Automatic Rotations

A challenging problem with n =100, G = 2000, K = 5:

Bue
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The SSL-IBP Prior with Automatic Rotations

A challenging problem with n =100, G = 2000, K = 5:

I
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The SSL-IBP Prior with Automatic Rotations
A challenging problem with n =100, G = 2000, K = 5:

Buue SPCA Varimax AFTER SPCA
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The SSL-IBP Prior with Automatic Rotations
A challenging problem with n =100, G = 2000, K = 5:

Buue SPCA Varimax AFTER SPCA

33/1



Some Final Remarks
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Implementation of the Spike-and-Slab LASSO with the C-written R
package SSLASSO, is available on CRAN.

By suitable tuning of )\, the LASSO mode can achieve the near
minimax rate of convergence. However, the concentration of the full
posterior of the LASSO is a disaster. For the minimax choice of ), it
puts essentially no mass on balls around 5y with a radius of a
substantially larger order than the minimax rate. (Castilio et al. (2015)) .

By suitable tuning of A;’s, both the global mode and the posterior
concentration of the Spike-and-Slab LASSO can achieve the
near-minimax rate of convergence. Unlike the LASSO, the
Spike-and-Slab LASSO posterior keeps pace with the global mode!

The SSL prior can be incorporated naturally into general Bayesian
methodology. For example, R&G (2016) used an SSL prior coupled
with an Indian Buffet Process = (-y) for fast Bayesian Factor Analysis.
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Thank you!
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