Testing relevant hypotheses for functional data

Holger Dette, Ruhr-Universität Bochum
Kevin Kokot, Ruhr-Universität Bochum
Alex Aue, University of California, Davis

$$
\text { April 11, } 2019
$$

Outline

(1) Motivation
(2) Relevant hypotheses
(3) Two Sample problems - theory
(4) Two more take home messages (how I got in to this) Stanislav Volgushev
(5) Technical assumptions

Two sample problem

Figure: Annual temperature recorded in Sydney and Cape Otway, Australia.

"classical" hypotheses

- Scientific question: "Does there exist a difference in the (mean) annual temperature curves μ_{X} and μ_{Y} at both locations"
- Mathematical formulation ("classical" hypotheses):

$$
H_{0}: d\left(\mu_{X}, \mu_{Y}\right)=0 \quad \text { versus } \quad H_{1}: d\left(\mu_{X}, \mu_{Y}\right)>0
$$

where

- d is any metric
- μ_{X}, μ_{Y} are mean functions of two (independent) functional time series defined on the interval $[0,1]$

Relevant hypotheses

- Are we really interested in small differences? I do not think so!
- It is very unlikely that the two mean functions are exactly the same (thus we are testing a hypothesis, which we know to be not true)
- Berkson (1938):

Any consistent test will detect any arbitrary small difference in the parameters if the sample size is sufficiently large

- If we do not reject the null hypothesis

$$
H_{0}: d\left(\mu_{X}, \mu_{Y}\right)=0,
$$

how can we control the type II error?

Relevant hypotheses

- Are we really interested in small differences? I do not think so!
- It is very unlikely that the two mean functions are exactly the same (thus we are testing a hypothesis, which we know to be not true)
- Berkson (1938):

Any consistent test will detect any arbitrary small difference in the parameters if the sample size is sufficiently large

- If we do not reject the null hypothesis

$$
H_{0}: d\left(\mu_{X}, \mu_{Y}\right)=0,
$$

how can we control the type II error?

- It might be more reasonable to test if the mean functions do not differ substantially

Relevant hypotheses I

- Question: "Does there exist a (scientifically) relevant difference between the (mean) annual temperature curves μ_{X} and μ_{Y} at both locations"
- Mathematical formulation (relevant hypotheses):

$$
H_{0}: d\left(\mu_{X}, \mu_{Y}\right) \leq \Delta \quad \text { versus } \quad H_{1}: d\left(\mu_{X}, \mu_{Y}\right)>\Delta
$$

where

- d is a suitable metric
- μ_{X}, μ_{Y} are mean functions of two (independent) functional time series defined on the interval $[0,1]$
- $\Delta>0$ is a threshold defining a relevant difference between the mean functions

Relevant hypotheses II

- Relevant hypotheses:

$$
H_{0}: d\left(\mu_{X}, \mu_{Y}\right) \leq \Delta \quad \text { versus } \quad H_{1}: d\left(\mu_{X}, \mu_{Y}\right)>\Delta
$$

- Note:
- "Classical" hypotheses are obtained for $\Delta=0$
- For relevant $(\Delta>0)$ hypotheses the metric matters
- The choice of Δ depends on the metric and the concrete application
- For simplicity one often uses $\Delta=0$,
but we argue that one should carefully think about this choice

Relevant hypotheses II

- Relevant hypotheses:

$$
H_{0}: d\left(\mu_{X}, \mu_{Y}\right) \leq \Delta \quad \text { versus } \quad H_{1}: d\left(\mu_{X}, \mu_{Y}\right)>\Delta
$$

- Note:
- "Classical" hypotheses are obtained for $\Delta=0$
- For relevant $(\Delta>0)$ hypotheses the metric matters
- The choice of Δ depends on the metric and the concrete application
- For simplicity one often uses $\Delta=0$,
but we argue that one should carefully think about this choice
- By investigating the hypotheses (of similarity)

$$
H_{0}: d\left(\mu_{X}, \mu_{Y}\right)>\Delta \quad \text { versus } \quad H_{1}: d\left(\mu_{X}, \mu_{Y}\right) \leq \Delta
$$

we are able to decide for "similar mean functions" at a controlled type I error! (related to bioequivalence)

Hilbert- versus Banach spaces

- L^{2}-Hilbert space methodology is predominant in this context, i.e.

$$
d_{2}\left(\mu_{X}, \mu_{Y}\right)=\left(\int_{0}^{1}\left(\mu_{X}(t)-\mu_{Y}(t)\right)^{2} d t\right)^{1 / 2}
$$

- In this talk we focus on maximum deviation

$$
d_{\infty}=\left\|\mu_{X}-\mu_{Y}\right\|_{\infty}=\sup _{t \in[0,1]}\left|\mu_{X}(t)-\mu_{Y}(t)\right|
$$

- Functions with different shapes may have small L^{2}-distance
- Interpretation of the threshold Δ seems to be easier for the maximum deviation
- Mathematics is a little more difficult (\rightarrow Banach space)

Hilbert- versus Banach spaces

- L^{2}-Hilbert space methodology is predominant in this context, i.e.

$$
d_{2}\left(\mu_{X}, \mu_{Y}\right)=\left(\int_{0}^{1}\left(\mu_{X}(t)-\mu_{Y}(t)\right)^{2} d t\right)^{1 / 2}
$$

- In this talk we focus on maximum deviation

$$
d_{\infty}=\left\|\mu_{X}-\mu_{Y}\right\|_{\infty}=\sup _{t \in[0,1]}\left|\mu_{X}(t)-\mu_{Y}(t)\right|
$$

- Functions with different shapes may have small L^{2}-distance
- Interpretation of the threshold Δ seems to be easier for the maximum deviation
- Mathematics is a little more difficult (\rightarrow Banach space)
- Note: The results provided in this talk are also new, if only "classical" hypotheses

$$
H_{0}: d_{\infty}=\left\|\mu_{X}-\mu_{Y}\right\|_{\infty}=0 \quad \text { versus } \quad d_{\infty}>0
$$

are considered (but not so exciting)

The Banach space $C([0,1])$

Setup:

- $\left(X_{j}\right)_{j=1}^{m},\left(Y_{j}\right)_{j=1}^{n}$ (independent) samples from two stationary time series in $\left(C([0,1]),\|\cdot\|_{\infty}\right)$ with
- Expectations

$$
\begin{aligned}
& \mu_{X}(t)=\mathbb{E}\left[X_{i}(t)\right] \\
& \mu_{Y}(t)=\mathbb{E}\left[Y_{i}(t)\right]
\end{aligned}
$$

- Long run variances:

$$
\begin{aligned}
& C_{X}(s, t)=\sum_{i=-\infty}^{\infty} \operatorname{Cov}\left(X_{1}(s), X_{1+i}(t)\right) \quad\left(=\operatorname{Cov}\left(X_{1}(s), X_{1}(t)\right)\right) \\
& C_{Y}(s, t)=\sum_{i=-\infty}^{\infty} \operatorname{Cov}\left(Y_{1}(s), Y_{1+i}(t)\right) \quad\left(=\operatorname{Cov}\left(Y_{1}(s), Y_{1}(t)\right)\right)
\end{aligned}
$$

The Banach space $C([0,1])$

Theorem 1 (CLT)

Under suitable assumptions (($2+\nu$)-moments, φ-mixing, \ldots), we have $(m /(n+m) \rightarrow \lambda)$

$$
Z_{m, n}=\sqrt{n+m}\left(\bar{X}_{m}-\bar{Y}_{n}-\left(\mu_{X}-\mu_{Y}\right)\right) \rightsquigarrow Z \quad \text { in } C([0,1]),
$$

where $Z \in C([0,1])$ is a centered Gaussian random variable with

$$
\operatorname{Cov}(Z(s), Z(t))=\frac{1}{\lambda} C_{X}(s, t)+\frac{1}{1-\lambda} C_{Y}(s, t)
$$

The Banach space $C([0,1])$

Theorem 1 (CLT)

Under suitable assumptions (($2+\nu$)-moments, φ-mixing, \ldots), we have $(m /(n+m) \rightarrow \lambda)$

$$
Z_{m, n}=\sqrt{n+m}\left(\bar{X}_{m}-\bar{Y}_{n}-\left(\mu_{X}-\mu_{Y}\right)\right) \rightsquigarrow Z \quad \text { in } C([0,1]),
$$

where $Z \in C([0,1])$ is a centered Gaussian random variable with

$$
\operatorname{Cov}(Z(s), Z(t))=\frac{1}{\lambda} C_{X}(s, t)+\frac{1}{1-\lambda} C_{Y}(s, t)
$$

In particular: if $\mu_{X}=\mu_{Y}$, we have

$$
Z_{m, n}=\sqrt{n+m}\left(\bar{X}_{m}-\bar{Y}_{n}\right) \rightsquigarrow Z \quad \text { in } C([0,1])
$$

First application: "classical" hypotheses in $C([0,1])$

- Reject the "classical" hypothesis,

$$
H_{0}: d_{\infty}=\left\|\mu_{X}-\mu_{Y}\right\|_{\infty}=0 \quad \text { versus } H_{1}: d_{\infty}>0
$$

for large values of the statistic

$$
\hat{d}_{\infty}=\left\|\bar{X}_{m}-\bar{Y}_{n}\right\|_{\infty}=\sup _{t \in[0,1]}\left|\bar{X}_{m}(t)-\bar{Y}_{n}(t)\right|
$$

First application: "classical" hypotheses in $C([0,1])$

- Reject the "classical" hypothesis,

$$
H_{0}: d_{\infty}=\left\|\mu_{X}-\mu_{Y}\right\|_{\infty}=0 \quad \text { versus } H_{1}: d_{\infty}>0
$$

for large values of the statistic

$$
\hat{d}_{\infty}=\left\|\bar{X}_{m}-\bar{Y}_{n}\right\|_{\infty}=\sup _{t \in[0,1]}\left|\bar{X}_{m}(t)-\bar{Y}_{n}(t)\right|
$$

- Critical values:
- Under the null hypothesis we have $\mu_{X} \equiv \mu_{Y}$ and therefore (continuous mapping)

$$
\sqrt{n+m} \hat{d}_{\infty}=\left\|Z_{m, n}\right\|_{\infty} \rightsquigarrow\|Z\|_{\infty}=\sup _{t \in[0,1]}|Z(t)|
$$

- Note: The quantiles of the limiting distribution can be estimated, if the long run variance can be well estimated
- Later: bootstrap

Relevant hypotheses are more difficult

- Reject the relevant hypothesis,

$$
H_{0}: d_{\infty}=\left\|\mu_{X}-\mu_{Y}\right\|_{\infty} \leq \Delta \text { versus } H_{1}: d_{\infty}>\Delta
$$

for large values of the statistic

$$
\hat{d}_{\infty}=\left\|\bar{X}_{m}-\bar{Y}_{n}\right\|_{\infty}=\sup _{t \in[0,1]}\left|\bar{X}_{m}(t)-\bar{Y}_{n}(t)\right|
$$

- Critical values:
- We have to find the limiting distribution of \hat{d}_{∞} for any $d_{\infty} \geq 0$
- If $d_{\infty}>0$ the statistic \hat{d}_{∞} is not a functional of the process

$$
Z_{m, n}=\sqrt{n+m}\left(\bar{X}_{m}-\bar{Y}_{n}-\left(\mu_{X}-\mu_{Y}\right)\right) \rightsquigarrow Z
$$

- Continuous mapping is not applicable

Relevant hypotheses $\quad H_{0}: d_{\infty} \leq \Delta$

Question: what is the limit distribution of the statistic

$$
\sqrt{m+n}\left(\hat{d}_{\infty}-d_{\infty}\right)=\sqrt{m+n}\left(\left\|\bar{X}_{m}-\bar{Y}_{n}\right\|_{\infty}-\left\|\mu_{X}-\mu_{Y}\right\|_{\infty}\right)
$$

Relevant hypotheses $H_{0}: d_{\infty} \leq \Delta$

- Take home message: Asymptotic distribution is a maximum of a Gaussian process, calculated with respect to the set of extremal points

$$
\mathcal{E}=\left\{t \in[0,1]:\left|\mu_{X}(t)-\mu_{Y}(t)\right|=d_{\infty}\right\}
$$

of the difference of the mean functions μ_{X} and μ_{Y}.

- Note:

$$
\mathcal{E}=\mathcal{E}^{-} \cup \mathcal{E}^{+},
$$

where

$$
\begin{aligned}
\mathcal{E}^{-} & =\left\{t \in[0,1]: \quad \mu_{X}(t)-\mu_{Y}(t)=-d_{\infty}\right\} \\
\mathcal{E}^{+} & =\left\{t \in[0,1]: \quad \mu_{X}(t)-\mu_{Y}(t)=d_{\infty}\right\}
\end{aligned}
$$

Example:

Extremal sets

More details

Theorem 2

Under suitable assumptions (($2+\nu$)-moments, φ-mixing, \ldots), we have

$$
\sqrt{n+m}\left(\hat{d}_{\infty}-d_{\infty}\right) \xrightarrow{\mathcal{D}} T(\mathcal{E})=\max \left\{\sup _{t \in \mathcal{E}^{+}} Z(t), \sup _{t \in \mathcal{E}^{-}}-Z(t)\right\}
$$

and $Z \in C([0,1])$ is a centered Gaussian random variable with

$$
\operatorname{Cov}(Z(s), Z(t))=\frac{1}{\lambda} C_{X}(s, t)+\frac{1}{1-\lambda} C_{Y}(s, t)
$$

Note: the asymptotic distribution depends on the functions μ_{1} and μ_{2} through the set \mathcal{E}

Testing relevant hypotheses

Reject the null hypothesis

$$
H_{0}: d_{\infty} \leq \Delta
$$

and decide for

$$
H_{0}: d_{\infty}>\Delta,
$$

whenever

$$
\hat{d}_{\infty}>\Delta+\frac{u_{1-\alpha, \mathcal{E}}}{\sqrt{n+m}}
$$

where $u_{1-\alpha, \mathcal{E}}$ denotes the $(1-\alpha)$-quantile of the distribution of $T(\mathcal{E})$

Consistency and asymptotic level

Corollary 3

$$
\lim _{n, m \rightarrow \infty} \mathbb{P}\left(\hat{d}_{\infty}>\Delta+\frac{u_{1-\alpha, \mathcal{E}}}{\sqrt{n+m}}\right)= \begin{cases}0 & \text { if } d_{\infty}<\Delta \\ \alpha & \text { if } d_{\infty}=\Delta \\ 1 & \text { if } d_{\infty}>\Delta\end{cases}
$$

- Consequences: the test has asymptotic level α and is consistent.
- However: The quantile $u_{1-\alpha, \mathcal{E}}$ depends on
- the (unknown) sets of extremal points \mathcal{E}^{-}and \mathcal{E}^{+}.
- the (unknown) dependence structure (long-run variances)
- Solution: A non-standard multiplier Bootstrap procedure

The main problem: estimation of the extremal points

- Problem: the null hypothesis is an infinite dimensional set

$$
\left\{\left(\mu_{1}-\mu_{2}\right) \in C([0,1]) \mid\left\|\mu_{1}-\mu_{2}\right\|_{\infty} \leq \Delta\right\}
$$

(in contrast to the "classical" case, where it consists of one point)

- Idea: mimic the distribution of the test statistic for any pair $\left(\mu_{1}, \mu_{2}\right)$ such that

$$
d_{\infty}=\left\|\mu_{1}-\mu_{2}\right\|_{\infty} \leq \Delta
$$

Important ingredient: estimates the sets \mathcal{E}^{+}and \mathcal{E}^{-}of extremal points

$$
\begin{aligned}
& \hat{\mathcal{E}}_{m, n}^{+}:=\left\{t \in[0,1] \left\lvert\, \bar{X}_{m}(t)-\bar{Y}_{n}(t) \geq \hat{d}_{\infty}-c \frac{\log (m+n)}{\sqrt{m+n}}\right.\right\} \\
& \hat{\mathcal{E}}_{m, n}^{-}:=\left\{t \in[0,1] \left\lvert\, \bar{X}_{m}(t)-\bar{Y}_{n}(t) \leq-\hat{d}_{\infty}+c \frac{\log (m+n)}{\sqrt{m+n}}\right.\right\}
\end{aligned}
$$

Consistency of estimates of the extremal sets

Theorem 4

Under suitable assumptions we have

$$
d_{H}\left(\hat{\mathcal{E}}_{m, n}^{ \pm}, \mathcal{E}^{ \pm}\right) \xrightarrow{\mathbb{P}} 0
$$

where

$$
d_{H}(A, B)=\max \left\{\sup _{x \in A} \inf _{y \in B}|x-y|, \sup _{y \in B \in A} \inf _{x \in A}|x-y|\right\} .
$$

denotes the Hausdorff distance.

Bootstrap

- Problem: Mimic the dependence structure of the data
- Solution: Multiplier bootstrap
- For $r=1, \ldots, R$, define

$$
\begin{aligned}
& \hat{B}_{m, n}^{(r)}(t)=\sqrt{n+m}\{\frac{1}{m} \sum_{k=1}^{m-I_{1}+1} \sqrt{I_{1}}(\frac{1}{I_{1}} \sum_{j=k}^{k+l_{1}-1} X_{j}(t)-\underbrace{\frac{1}{m} \sum_{j=1}^{m} X_{j}(t)}_{\approx \mu_{X}(t)}) \xi_{k}^{(r)} \\
&-\frac{1}{n} \sum_{k=1}^{n-l_{2}+1} \sqrt{I_{2}}\left(\frac{1}{I_{2}} \sum_{j=k}^{k+l_{2}-1} Y_{j}(t)\right.
\end{aligned}
$$

- I_{1}, l_{2} are bandwidth parameters with $I_{1} / m, l_{2} / n \rightarrow 0$ as $I_{1}, l_{2}, m, n \rightarrow \infty$
- multipliers $\xi_{1}^{(r)}, \ldots, \xi_{m}^{(r)}, \zeta_{1}^{(r)}, \ldots, \zeta_{n}^{(r)} \sim \mathcal{N}(0,1)$ i.i.d.

Bootstrap

- Problem: Mimic the dependence structure of the data
- Solution: Multiplier bootstrap
- For $r=1, \ldots, R$, define

$$
\begin{aligned}
& \hat{B}_{m, n}^{(r)}(t)=\sqrt{n+m}\{\frac{1}{m} \sum_{k=1}^{m-I_{1}+1} \sqrt{I_{1}}(\frac{1}{I_{1}} \sum_{j=k}^{k+l_{1}-1} X_{j}(t)-\underbrace{\frac{1}{m} \sum_{j=1}^{m} X_{j}(t)}_{\approx \mu_{X}(t)}) \xi_{k}^{(r)} \\
&-\frac{1}{n} \sum_{k=1}^{n-l_{2}+1} \sqrt{I_{2}}\left(\frac{1}{I_{2}} \sum_{j=k}^{k+l_{2}-1} Y_{j}(t)\right.
\end{aligned} \underbrace{\left.\left.\frac{1}{n} \sum_{j=1}^{n} Y_{j}(t)\right) \zeta_{k}^{(r)}\right\}}_{\approx \mu_{Y}(t)}
$$

- I_{1}, l_{2} are bandwidth parameters with $I_{1} / m, l_{2} / n \rightarrow 0$ as $I_{1}, l_{2}, m, n \rightarrow \infty$
- multipliers $\xi_{1}^{(r)}, \ldots, \xi_{m}^{(r)}, \zeta_{1}^{(r)}, \ldots, \zeta_{n}^{(r)} \sim \mathcal{N}(0,1)$ i.i.d.
- Test statistic

$$
K_{m, n}^{(r)}:=\max \left\{\sup _{t \in \hat{\mathcal{E}}_{m, n}^{+}} \hat{B}_{m, n}^{(r)}(t), \sup _{t \in \hat{\mathcal{E}}_{m, n}^{-}}\left(-\hat{B}_{m, n}^{(r)}(t)\right)\right\}
$$

Bootstrap consistency

Take home message: bootstrap is consistent

Theorem 5

For $r=1, \ldots, R$, define

$$
K_{m, n}^{(r)}:=\max \left\{\sup _{t \in \hat{\mathcal{E}}_{m, n}^{+}} \hat{B}_{m, n}^{(r)}(t), \sup _{t \in \hat{\mathcal{E}}_{m, n}^{-}}\left(-\hat{B}_{m, n}^{(r)}(t)\right)\right\}
$$

Then (under suitable assumptions)

$$
\left(\sqrt{n+m}\left(\hat{d}_{\infty}-d_{\infty}\right), K_{m, n}^{(1)}, \ldots, K_{m, n}^{(R)}\right) \Rightarrow\left(T(\mathcal{E}), T^{(1)}(\mathcal{E}), \ldots, T^{(R)}(\mathcal{E})\right),
$$

in \mathbb{R}^{R+1}, where $T^{(1)}(\mathcal{E}), \ldots, T^{(R)}(\mathcal{E})$ are indendent copies of $T(\mathcal{E})$.

Application: test for a relevant difference

- The null hypothesis in

$$
H_{0}: d_{\infty} \leq \Delta \text { versus } H_{1}: d_{\infty}>\Delta
$$

is rejected, whenever

$$
\hat{d}_{\infty}>\Delta+\frac{K_{m, n}^{\{\lfloor R(1-\alpha)\rfloor\}}}{\sqrt{n+m}}
$$

where $K_{m, n}^{\{\{R(1-\alpha)\rfloor\}}$ denotes the empirical $(1-\alpha)$-quantile of the ordered bootstrap statistics $K_{m, n}^{\{1\}}, \ldots, K_{m, n}^{\{R\}}$.

- It can be shown: Test has asymptotic level α and is consistent.

Theorem 6

(a) Under the null hypothesis $H_{0}: d_{\infty} \leq \Delta$:

$$
\lim _{R \rightarrow \infty} \lim _{m, n \rightarrow \infty} \sup \left(\hat{d}_{\infty}>\Delta+\frac{K_{m, n}^{\{\lfloor R(1-\alpha)\rfloor\}}}{\sqrt{n+m}}\right)=\alpha,
$$

(b) Under the alternative $H_{1}: d_{\infty}>\Delta$ we have

$$
\liminf _{m, n \rightarrow \infty} \mathbb{P}\left(\hat{d}_{\infty}>\Delta+\frac{K_{m, n}^{\{\lfloor R(1-\alpha)\rfloor\}}}{\sqrt{n+m}}\right)=1 .
$$

for any $R \in \mathbb{N}$.

Finite sample properties

- Hypotheses:

$$
H_{0}: d_{\infty} \leq 0.1 \text { versus } H_{1}: d_{\infty}>0.1
$$

- Model (fMA(1) error processes)

$$
\mu_{X}(t)=0, \quad \mu_{Y}(t)= \begin{cases}5 a t, & t \in\left[0, \frac{1}{5}\right] \\ a, & t \in\left(\frac{1}{5}, \frac{3}{10}\right] \\ a(-5 t+2.5), & t \in\left(\frac{3}{10}, \frac{3}{10}\right] \\ -a, & t \in\left(\frac{7}{10}, \frac{4}{5}\right] \\ a(5 t-5) & t \in\left(\frac{4}{5}, 1\right]\end{cases}
$$

- Note:

$$
\begin{aligned}
d_{\infty} & =\left\|\mu_{X}-\mu_{Y}\right\|_{\infty}=a \\
\mathcal{E}^{+} & =\left[\frac{1}{5}, \frac{3}{10}\right], \quad \mathcal{E}^{-}=\left[\frac{7}{10}, \frac{4}{5}\right]
\end{aligned}
$$

- The case $a=0.1$ corresponds to the "boundary" of the hypotheses $d_{\infty}=\Delta=0.1$

Simulated rejection probabilities

Confidence bands ("classical" bootstrap)

- For $r=1 \ldots, R$, define $T_{m, n}^{(r)}=\left\|\hat{B}_{m, n}^{(r)}\right\|_{\infty}$ and boundary functions

$$
\mu_{m, n}^{R, \pm}(t)=\frac{1}{m} \sum_{j=1}^{m} X_{j}(t)-\frac{1}{n} \sum_{j=1}^{n} Y_{j}(t) \pm \frac{T_{m, n}^{\{\lfloor R(1-\alpha)\rfloor\}}}{\sqrt{n+m}}
$$

Theorem 7

Under suitable assumptions

$$
\hat{C}_{\alpha, m . n}^{R}=\left\{\mu \in C([0,1]): \mu_{m, n}^{R,-}(t) \leq \mu(t) \leq \mu_{m, n}^{R,+}(t) \forall t \in[0,1]\right\}
$$

defines a simultaneous asymptotic $(1-\alpha)$ confidence band for $\mu_{X}-\mu_{Y}$, that is,

$$
\lim _{R \rightarrow \infty} \liminf _{m, n \rightarrow \infty} \mathbb{P}\left(\mu_{X}-\mu_{Y} \in \hat{C}_{\alpha, m . n}^{R}\right) \geq 1-\alpha
$$

Simulated coverage probabilities

One more take home message

- X_{1}, \ldots, X_{n} i.i.d. $\sim F$
- Hypotheses

$$
H_{0}: F=F_{0}
$$

- Kolmogorov Smirnov statistic

$$
\mathbf{K}_{\mathbf{n}}:=\sup _{x \in[0,1]}\left|\hat{F}_{n}(x)-F_{0}(x)\right|, \quad \mathbf{K}:=\sup _{x \in[0,1]}\left|F(x)-F_{0}(x)\right| \stackrel{H_{0}}{=} 0
$$

- Raghavachari (AoS, 1973)

$$
\sqrt{n}\left(\mathbf{K}_{\mathbf{n}}-\mathbf{K}\right) \xrightarrow{\mathcal{D}} \max \left\{\max _{x \in \mathcal{E}^{+}} W(x), \max _{x \in \mathcal{E}^{-}}(-W(x))\right\}
$$

where

- $W=B \circ F$
- $\mathcal{E}^{ \pm}=\left\{x \in \mathbb{R} \mid F(x)-F_{0}(x)= \pm \mathbf{K}\right\}$

Motivation of this work

The comparison of curves is an important problem in biostatistics (no functional data)

- Comparison of dissolution profiles (cooperation with European Medicines Agency (EMA))
- Replace AUC and $C_{\text {max }}$ in bioequivalence studies (cooperation with Food and Drug Administration (FDA))

Comparison of dissolution profiles

Collaboration with EMA

- In vitro dissolution profile comparison of two formulations (test vs. reference product) in order to demonstrate bioequivalence
- Figure: twelve tablets per product, each measured at six time points

Bioequivalence (random effect models)

Collaboration with FDA

- Traditional bioequivalence studies focus on AUC and Cmax

- This can be misleading (both curves have the same AUC and Cmax)
- The new methodology compares these curves directly

Assumptions (here for the two sample problems)

- The time series $\left(X_{j}\right)_{j \in \mathbb{N}}$ and $\left(Y_{j}\right)_{j \in \mathbb{N}}$ are stationary
- There exist constants $K_{1}, K_{2}, \nu_{1}, \nu_{2}>0$ such that, for all $j \in \mathbb{N}$,

$$
\mathbb{E}\left[\sup _{t \in[0,1]}\left|X_{j}(t)\right|^{2+\nu_{1}}\right] \leq K_{1}, \quad \mathbb{E}\left[\sup _{t \in[0,1]}\left|Y_{j}(t)\right|^{2+\nu_{2}}\right] \leq K_{2}
$$

- There exist real-valued random variables M_{1}, M_{2} with
- $\mathbb{E}\left[M_{1}^{2}\right], \mathbb{E}\left[M_{2}^{2}\right]<\infty$,
- $\left|X_{j}(t)-X_{j}\left(t^{\prime}\right)\right| \leq M_{1}\left|t-t^{\prime}\right|^{\theta},\left|X_{j}(t)-X_{j}\left(t^{\prime}\right)\right| \leq M_{2}\left|t-t^{\prime}\right|^{\theta}$
- $\left(X_{n}\right)_{n \in \mathbb{N}},\left(Y_{n}\right)_{n \in \mathbb{N}}$ are φ-mixing with exponentially decreasing mixing coefficients
- bandwidth parameters satisfy $I_{1}=m^{\beta_{1}}, I_{2}=n^{\beta_{2}}$ for some $0<\beta_{i}<\nu_{i} /\left(2+\nu_{i}\right)$ for $i=1,2$.

Assumptions (here for change point tests)

(A1) For constants $K, \nu>0$ we have

$$
\mathbb{E}\left[\left\|X_{n, j}\right\|_{\infty}^{2+\nu}\right] \leq K
$$

(A2) Rowwise stationarity

- $\mathbb{E}\left[X_{n, j}\right]=\mu^{(j)}$ for any $n \in \mathbb{N}$ and $j=1, \ldots, n$
- The centered array $\left(X_{n, j}-\mu^{(j)}: n \in \mathbb{N}, j=1, \ldots, n\right)$ is stationary.
- The covariance structure is the same in each row, that is

$$
\operatorname{Cov}\left(X_{n, j}(t), X_{n, j^{\prime}}\left(t^{\prime}\right)\right)=\gamma\left(j-j^{\prime}, t, t^{\prime}\right)
$$

for all $n \in \mathbb{N}$ and $j, j^{\prime}=1, \ldots, n$.
(A3) (uniformly Hölder). There exisits a real-valued random variable M with

- $\mathbb{E}\left[M^{2}\right]<\infty$
- $\left|X_{n, j}(t)-X_{n, j}\left(t^{\prime}\right)\right| \leq M\left|t-t^{\prime}\right|^{\theta}$ for all $n \in \mathbb{N}$ and $j=1, \ldots, n$
(A4) $\left(X_{n, j}: n \in \mathbb{N}, j=1, \ldots, n\right)$ is φ-mixing with exponentially decreasing mixing coefficients

The notion of φ-mixing

- For two two σ-fields \mathcal{F} and \mathcal{G}, define

$$
\phi(\mathcal{F}, \mathcal{G})=\sup \{|\mathbb{P}(G \mid F)-\mathbb{P}(G)|: F \in \mathcal{F}, G \in \mathcal{G}, \mathbb{P}(F)>0\},
$$

- For a sequence of ($\eta_{j}: j \in \mathbb{N}$) of $C(T)$-valued random variables define
- $\mathcal{F}_{k}^{k^{\prime}}$ the σ-field generated by $\left(\eta_{j}: k \leq j \leq k^{\prime}\right)$.
- φ-mixing coefficient

$$
\varphi(k)=\sup _{k^{\prime} \in \mathbb{N}} \phi\left(\mathcal{F}_{1}^{k^{\prime}}, \mathcal{F}_{k^{\prime}+k}^{\infty}\right)
$$

- The sequence ($\eta_{j}: j \in \mathbb{N}$) is called φ-mixing whenever

$$
\lim _{k \rightarrow \infty} \varphi(k)=0
$$

Change point problems

Mathematical model

- $\left(X_{n, j}: n \in \mathbb{N}, j=1, \ldots, n\right)$ triangular array of random variables with
- $X_{n, j} \in C([0,1])$
- $\mathbb{E}\left[X_{n, j}\right]=\mu^{(j)}$
- The sequence $\left(X_{n, j}-\mu^{(j)}: j=1, \ldots, n\right)$ is stationary (for all $n \in \mathbb{N}$)
- Long run variance

$$
C(s, t)=\sum_{i=-\infty}^{\infty} \operatorname{Cov}\left(X_{n, 0}(s), X_{n, i}(t)\right)
$$

- Assume that the mean functions satisfy for some $s^{*} \in(0,1)$:

$$
\mu_{1}=\mu^{(1)}=\cdots=\mu^{\left(\left\lfloor n s^{*}\right\rfloor\right)} \quad \text { and } \quad \mu_{2}=\mu^{\left(\left\lfloor n s^{*}\right\rfloor+1\right)}=\cdots=\mu^{(n)}
$$

- Relevant change points $(\Delta>0)$:

$$
H_{0}: d_{\infty}=\sup _{t \in[0,1]}\left|\mu_{1}(t)-\mu_{2}(t)\right| \leq \Delta \quad \text { versus } \quad H_{1}: d_{\infty}>\Delta
$$

The CUSUM statistic under the alternative

- (smooth) CUSUM process:

$$
\hat{\mathbb{U}}_{n}(s, t)=\frac{1}{n}\left(\sum_{j=1}^{\lfloor s n\rfloor} X_{n, j}(t)+n\left(s-\frac{\lfloor s n\rfloor}{n}\right) X_{n,\lfloor s n\rfloor+1}(t)-s \sum_{j=1}^{n} X_{n, j}(t)\right)
$$

The CUSUM statistic under the alternative

- (smooth) CUSUM process:

$$
\hat{\mathbb{U}}_{n}(s, t)=\frac{1}{n}\left(\sum_{j=1}^{\lfloor s n\rfloor} X_{n, j}(t)+n\left(s-\frac{\lfloor s n\rfloor}{n}\right) X_{n,\lfloor s n\rfloor+1}(t)-s \sum_{j=1}^{n} X_{n, j}(t)\right)
$$

- Note: For the centered version

$$
\begin{aligned}
\widehat{W}_{n}(s, t) & =\frac{1}{n}\left(\sum_{j=1}^{\lfloor s n\rfloor}\left(X_{n, j}(t)-\mu^{(j)}\right)+n\left(s-\frac{\lfloor s n\rfloor}{n}\right)\left(X_{n,\lfloor s n\rfloor+1}(t)-\mu^{(\lfloor s n\rfloor+1)}\right)\right. \\
& \left.-s \sum_{j=1}^{n}\left(X_{n, j}(t)-\mu^{(j)}\right)\right)
\end{aligned}
$$

it can be shown that

$$
\widehat{\mathbb{W}}_{n} \rightsquigarrow \mathbb{W} \text { in } C\left([0,1]^{2}\right),
$$

- \mathbb{W} is a centered Gaussian measure on $C\left([0,1]^{2}\right)$ defined by

$$
\operatorname{Cov}\left(\mathbb{W}(s, t), \mathbb{W}\left(s^{\prime}, t^{\prime}\right)\right)=\left(s \wedge s^{\prime}-s s^{\prime}\right) C\left(t, t^{\prime}\right)
$$

The CUSUM statistic under the alternative

Test statistic (here \hat{s} denotes an appropriate estimator of s^{*}, to be specified later):

$$
\hat{d}_{\infty}:=\frac{1}{\hat{s}(1-\hat{s})} \sup _{s \in[0,1]} \sup _{t \in[0,1]}\left|\hat{U}_{n}(s, t)\right|
$$

Theorem 8

Assume $d_{\infty}>0, s^{*} \in(0,1)$. Then (under suitable assumptions)

$$
\sqrt{n}\left(\hat{d}_{\infty}-d_{\infty}\right) \xrightarrow{\mathcal{D}} D(\mathcal{E})=\frac{1}{s^{*}\left(1-s^{*}\right)} \max \left\{\sup _{t \in \mathcal{E}^{+}} \mathbb{W}\left(s^{*}, t\right), \sup _{t \in \mathcal{E}^{-}}-\mathbb{W}\left(s^{*}, t\right)\right\},
$$

where \mathbb{W} is a centered Gaussian measure on $C\left([0,1]^{2}\right)$ and

$$
\begin{aligned}
& \mathcal{E}^{-}=\left\{t \in[0,1]: \quad \mu_{1}(t)-\mu_{2}(t)=-d_{\infty}\right\} \\
& \mathcal{E}^{+}=\left\{t \in[0,1]: \quad \mu_{1}(t)-\mu_{2}(t)=d_{\infty}\right\}
\end{aligned}
$$

Bootstrap - main difficulties

For the bootstrap we need:

- to mimic the dependence structure (see the two sample case)
- to estimate the set of extremal points \mathcal{E}^{+}and \mathcal{E}^{-}(see the two sample case)
- to estimate the change point s^{*} for two purposes
- the estimate \hat{s} appears in the test statistic
- the change point s^{*} appears in the limiting distribution
- we need an estimate of the change point s^{*} to center the process \mathbb{U} such that we can mimic the distribution of the process \mathbb{W} by bootstrap

Change point estimator

Estimator of the change point (as usual)

$$
\hat{s}=\frac{1}{n} \arg \max _{1 \leq k<n}\left\|\hat{\mathbb{U}}_{n}\left(\frac{k}{n}, \cdot\right)\right\|_{\infty}
$$

Theorem 9

If $d_{\infty}>0, s^{*} \in(0,1)$ then (under suitable assumptions)

$$
\left|\hat{s}-s^{*}\right|=O_{\mathbb{P}}\left(n^{-1}\right) .
$$

Proof: One can use very nice results of Hariz, Wylie and Zhang (AoS 2007).

Change point estimator

Estimator of the change point (as usual)

$$
\hat{s}=\frac{1}{n} \arg \max _{1 \leq k<n}\left\|\hat{U}_{n}\left(\frac{k}{n}, \cdot\right)\right\|_{\infty}
$$

Theorem 9

If $d_{\infty}>0, s^{*} \in(0,1)$ then (under suitable assumptions)

$$
\left|\hat{s}-s^{*}\right|=O_{\mathbb{P}}\left(n^{-1}\right) .
$$

Proof: One can use very nice results of Hariz, Wylie and Zhang (AoS 2007).
Estimates of the mean functions before and after the change point

$$
\hat{\mu}_{1}=\sum_{j=1}^{\lfloor\hat{s} n\rfloor} X_{n, j}, \quad \hat{\mu}_{2}=\sum_{j=\lfloor\hat{s} n\rfloor+1}^{n} X_{n, j}
$$

Bootstrap

- Centering

$$
\hat{Y}_{n, j}= \begin{cases}X_{n, j} & \text { if } j=1, \ldots,\lfloor\hat{s} n\rfloor \\ X_{n, j}-\left(\hat{\mu}_{2}-\hat{\mu}_{1}\right) & \text { if } j=\lfloor\hat{s} n\rfloor+1, \ldots, n\end{cases}
$$

- Note: $\mathbb{E}\left[\hat{\gamma}_{n, j}\right] \approx \mu_{1}$ for all $j=1, \ldots, n$.

$$
\begin{aligned}
\hat{B}_{n}^{(r)}(s, t) & =\frac{1}{\sqrt{n}} \sum_{k=1}^{\lfloor s n\rfloor} \sqrt{I}\left(\frac{1}{I} \sum_{j=k}^{k+I-1} \hat{Y}_{n, j}(t)-\frac{1}{n} \sum_{j=1}^{n} \hat{Y}_{n, j}(t)\right) \xi_{k}^{(r)} \\
& +\sqrt{n}\left(s-\frac{\lfloor s n\rfloor}{n}\right) \sqrt{I}\left(\frac{1}{I} \sum_{j=\lfloor s n\rfloor+1}^{\lfloor s n\rfloor+I} \hat{Y}_{n, j}(t)-\frac{1}{n} \sum_{j=1}^{n} \hat{Y}_{n, j}(t)\right) \xi_{\lfloor s n\rfloor+1}^{(r)}
\end{aligned}
$$

- $I \in \mathbb{N}$ is a bandwidth parameter satisfying $I / n \rightarrow 0$ as $I, n \rightarrow \infty$
- multipliers $\xi_{1}^{(r)}, \ldots, \xi_{n}^{(r)} \sim \mathcal{N}(0,1)$ i.i.d.

Consistency

- Define

$$
\hat{\mathbb{W}}_{n}^{(r)}(s, t)=\hat{B}_{n}^{(r)}(s, t)-s \hat{B}_{n}^{(r)}(1, t) ; r=1, \ldots, R
$$

- Estimates of the extremal sets

$$
\begin{equation*}
\hat{\mathcal{E}}_{n}^{ \pm}=\left\{t \in[0,1]: \pm\left(\hat{\mu}_{1}(t)-\hat{\mu}_{2}(t)\right) \geq \hat{d}_{\infty}-c \frac{\log n}{\sqrt{n}}\right\} \tag{1}
\end{equation*}
$$

- Bootstrap version of test statistic:

$$
D_{n}^{(r)}=\frac{1}{\hat{s}(1-\hat{s})} \max \left\{\max _{t \in \hat{\mathcal{E}}_{n}^{+}} \hat{W}_{n}^{(r)}(\hat{s}, t), \max _{t \in \hat{\mathcal{E}}_{n}^{-}}\left(-\hat{W}_{n}^{(r)}(\hat{s}, t)\right)\right\}
$$

Consistency

- Define

$$
\hat{\mathbb{W}}_{n}^{(r)}(s, t)=\hat{B}_{n}^{(r)}(s, t)-s \hat{B}_{n}^{(r)}(1, t) ; r=1, \ldots, R
$$

- Estimates of the extremal sets

$$
\begin{equation*}
\hat{\mathcal{E}}_{n}^{ \pm}=\left\{t \in[0,1]: \pm\left(\hat{\mu}_{1}(t)-\hat{\mu}_{2}(t)\right) \geq \hat{d}_{\infty}-c \frac{\log n}{\sqrt{n}}\right\} \tag{1}
\end{equation*}
$$

- Bootstrap version of test statistic:

$$
D_{n}^{(r)}=\frac{1}{\hat{s}(1-\hat{s})} \max \left\{\max _{t \in \hat{\mathcal{E}}_{n}^{+}} \hat{W}_{n}^{(r)}(\hat{s}, t), \max _{t \in \hat{\mathcal{E}}_{n}^{-}}\left(-\hat{W}_{n}^{(r)}(\hat{s}, t)\right)\right\}
$$

- Take home message: Bootstrap is consistent

Consistency

Theorem 10

If $d_{\infty}>0$, then (under suitable assumptions)

$$
\left(\sqrt{n}\left(\hat{d}_{\infty}-d_{\infty}\right), D_{n}^{(1)}, \ldots, D_{n}^{(R)}\right) \Rightarrow\left(D(\mathcal{E}), D^{(1)}, \ldots, D^{(R)}\right)
$$

in \mathbb{R}^{R+1}, where $D^{(1)}, \ldots, D^{(R)}$ are independent copies of the random variable $D(\mathcal{E})$.

Consistency

Theorem 10

If $d_{\infty}>0$, then (under suitable assumptions)

$$
\left(\sqrt{n}\left(\hat{d}_{\infty}-d_{\infty}\right), D_{n}^{(1)}, \ldots, D_{n}^{(R)}\right) \Rightarrow\left(D(\mathcal{E}), D^{(1)}, \ldots, D^{(R)}\right)
$$

in \mathbb{R}^{R+1}, where $D^{(1)}, \ldots, D^{(R)}$ are independent copies of the random variable $D(\mathcal{E})$.

Consistent test for a relevant change point: Reject the null hypothesis $H_{0}: d_{\infty} \leq \Delta$, whenever

$$
\hat{d}_{\infty}>\Delta+\frac{D_{n}^{\{\lfloor R(1-\alpha)\rfloor\}}}{\sqrt{n}}
$$

Finite sample properties

- Mean functions before and after the change point:

$$
\mu_{1}(t)=0, \quad \mu_{2}(t)= \begin{cases}4 a t, & t \in\left[0, \frac{1}{4}\right] \\ a, & t \in\left(\frac{1}{4}, \frac{3}{4}\right] \\ a(-4 t+4), & t \in\left(\frac{3}{4}, 1\right]\end{cases}
$$

- Error process: fMA(1)-model
- Hypotheses of a relevant change point

$$
H_{0}: d_{\infty} \leq 0.4 \text { versus } d_{\infty}>0.4
$$

Extremal sets

Simulated rejection probabilities

	n	100			200			500		
	a	1%	5%	10%	1%	5%	10%	1%	5%	10%
H_{0}	0.37	0.38	2.1	4.6	8.2	0.3	0.5	1.1	0	0
	0.39	2.0	5.2	8.7	0.3	1.1	3.1	0		
	0.4	2.3	7.8	16.3	1.5	5.4	11.6	0.7	4.2	9.7
H_{1}	0.41	6.7	17.4	32.6	7.9	21.3	37.3	18.0	43.8	64.9
	0.42	14.6	35.8	54.9	27.7	62.1	81.9	76.1	96.0	99.5
	0.43	32.7	63.9	78.3	68.1	91.8	96.5	98.1	99.7	99.8

