
Motivation Relevant hypotheses Two Sample problems - theory Two more take home messages (how I got in to this) Stanislav Volgushev Technical assumptions

Testing relevant hypotheses for functional data

Holger Dette, Ruhr-Universität Bochum
Kevin Kokot, Ruhr-Universität Bochum
Alex Aue, University of California, Davis

April 11, 2019



Motivation Relevant hypotheses Two Sample problems - theory Two more take home messages (how I got in to this) Stanislav Volgushev Technical assumptions

Outline

1 Motivation

2 Relevant hypotheses

3 Two Sample problems - theory

4 Two more take home messages (how I got in to this)
Stanislav Volgushev

5 Technical assumptions



Motivation Relevant hypotheses Two Sample problems - theory Two more take home messages (how I got in to this) Stanislav Volgushev Technical assumptions

Two sample problem

Figure: Annual temperature recorded in Sydney and Cape Otway, Australia.
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“classical” hypotheses

Scientific question: “Does there exist a difference in the (mean) annual
temperature curves µX and µY at both locations”

Mathematical formulation (“classical” hypotheses):

H0 : d(µX , µY ) = 0 versus H1 : d(µX , µY ) > 0

where

d is any metric
µX , µY are mean functions of two (independent) functional time series defined
on the interval [0, 1]
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Relevant hypotheses

Are we really interested in small differences? I do not think so!

It is very unlikely that the two mean functions are exactly the same
(thus we are testing a hypothesis, which we know to be not true)

Berkson (1938):

Any consistent test will detect any arbitrary small difference in the parameters if
the sample size is sufficiently large

If we do not reject the null hypothesis

H0 : d(µX , µY ) = 0,

how can we control the type II error?

It might be more reasonable to test if the mean functions do not differ
substantially
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Relevant hypotheses I

Question: “Does there exist a (scientifically) relevant difference between
the (mean) annual temperature curves µX and µY at both locations”

Mathematical formulation (relevant hypotheses):

H0 : d(µX , µY ) ≤ ∆ versus H1 : d(µX , µY ) > ∆

where

d is a suitable metric
µX , µY are mean functions of two (independent) functional time series defined
on the interval [0, 1]
∆ > 0 is a threshold defining a relevant difference between the mean functions
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Relevant hypotheses II

Relevant hypotheses:

H0 : d(µX , µY ) ≤ ∆ versus H1 : d(µX , µY ) > ∆

Note:

“Classical” hypotheses are obtained for ∆ = 0
For relevant (∆ > 0) hypotheses the metric matters
The choice of ∆ depends on the metric and the concrete application
For simplicity one often uses ∆ = 0,
but we argue that one should carefully think about this choice

By investigating the hypotheses (of similarity)

H0 : d(µX , µY ) > ∆ versus H1 : d(µX , µY ) ≤ ∆

we are able to decide for “similar mean functions” at a controlled type I error!
(related to bioequivalence)
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Hilbert- versus Banach spaces

L2-Hilbert space methodology is predominant in this context, i.e.

d2(µX , µY ) =
(∫ 1

0

(
µX (t)− µY (t)

)2
dt
)1/2

In this talk we focus on maximum deviation

d∞ = ‖µX − µY ‖∞ = sup
t∈[0,1]

|µX (t)− µY (t)|

Functions with different shapes may have small L2-distance
Interpretation of the threshold ∆ seems to be easier for the maximum deviation
Mathematics is a little more difficult ( → Banach space)

Note: The results provided in this talk are also new, if only “classical”
hypotheses

H0 : d∞ = ‖µX − µY ‖∞ = 0 versus d∞ > 0

are considered (but not so exciting)
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The Banach space C ([0, 1])

Setup:

(Xj)
m
j=1, (Yj)

n
j=1 (independent) samples from two stationary time series in

(C([0, 1]), ‖ · ‖∞) with

Expectations

µX (t) = E[Xi (t)]

µY (t) = E[Yi (t)]

Long run variances:

CX (s, t) =
∞∑

i=−∞

Cov(X1(s),X1+i (t))
(

= Cov(X1(s),X1(t))
)

CY (s, t) =
∞∑

i=−∞

Cov(Y1(s),Y1+i (t))
(

= Cov(Y1(s),Y1(t))
)
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The Banach space C ([0, 1])

Theorem 1 (CLT )

Under suitable assumptions ((2 + ν)-moments, ϕ-mixing, . . .), we have
(m/(n + m)→ λ)

Zm,n =
√
n + m

(
X̄m − Ȳn − (µX − µY )

)
 Z in C ([0, 1]) ,

where Z ∈ C ([0, 1]) is a centered Gaussian random variable with

Cov(Z (s),Z (t)) =
1

λ
CX (s, t) +

1

1− λ
CY (s, t)

In particular: if µX = µY , we have

Zm,n =
√
n + m

(
X̄m − Ȳn

)
 Z in C ([0, 1])
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First application: “classical” hypotheses in C ([0, 1])

Reject the “classical” hypothesis,

H0 : d∞ = ‖µX − µY ‖∞ = 0 versus H1 : d∞ > 0

for large values of the statistic

d̂∞ = ‖X̄m − Ȳn‖∞ = sup
t∈[0,1]

|X̄m(t)− Ȳn(t)|

Critical values:

Under the null hypothesis we have µX ≡ µY and therefore (continuous mapping)

√
n + md̂∞ = ||Zm,n||∞  ||Z ||∞ = sup

t∈[0,1]
|Z(t)|

Note: The quantiles of the limiting distribution can be estimated, if the long run
variance can be well estimated

Later: bootstrap
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Relevant hypotheses are more difficult

Reject the relevant hypothesis,

H0 : d∞ = ‖µX − µY ‖∞ ≤ ∆ versus H1 : d∞ > ∆

for large values of the statistic

d̂∞ = ‖X̄m − Ȳn‖∞ = sup
t∈[0,1]

|X̄m(t)− Ȳn(t)|

Critical values:

We have to find the limiting distribution of d̂∞ for any d∞ ≥ 0
If d∞ > 0 the statistic d̂∞ is not a functional of the process

Zm,n =
√
n + m

(
X̄m − Ȳn − (µX − µY )

)
 Z

Continuous mapping is not applicable
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Relevant hypotheses H0 : d∞ ≤ ∆

Question: what is the limit distribution of the statistic

√
m + n

(
d̂∞ − d∞

)
=
√
m + n

(
‖X̄m − Ȳn‖∞ − ‖µX − µY ‖∞

)
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Relevant hypotheses H0 : d∞ ≤ ∆

Take home message: Asymptotic distribution is a maximum of a Gaussian process,
calculated with respect to the set of extremal points

E =
{
t ∈ [0, 1] : |µX (t)− µY (t)| = d∞

}
of the difference of the mean functions µX and µY .

Note:
E = E− ∪ E+,

where

E− =
{
t ∈ [0, 1] : µX (t)− µY (t) = −d∞

}
E+ =

{
t ∈ [0, 1] : µX (t)− µY (t) = d∞

}
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Example:

13 / 34
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More details

Theorem 2

Under suitable assumptions ((2 + ν)-moments, ϕ-mixing, . . .), we have

√
n + m (d̂∞ − d∞)

D−→ T (E) = max
{

sup
t∈E+

Z (t), sup
t∈E−

−Z (t)
}

and Z ∈ C ([0, 1]) is a centered Gaussian random variable with

Cov(Z (s),Z (t)) =
1

λ
CX (s, t) +

1

1− λ
CY (s, t)

Note: the asymptotic distribution depends on the functions µ1 and µ2 through the
set E
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Testing relevant hypotheses

Reject the null hypothesis

H0 : d∞ ≤ ∆

and decide for
H0 : d∞ > ∆,

whenever

d̂∞ > ∆ +
u1−α,E√
n + m

where u1−α,E denotes the (1− α)-quantile of the distribution of T (E)

15 / 34
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Consistency and asymptotic level

Corollary 3

lim
n,m→∞

P
(
d̂∞ > ∆ +

u1−α,E√
n + m

)
=


0 if d∞ < ∆

α if d∞ = ∆

1 if d∞ > ∆

Consequences: the test has asymptotic level α and is consistent.

However: The quantile u1−α,E depends on

the (unknown) sets of extremal points E− and E+.
the (unknown) dependence structure (long-run variances)

Solution: A non-standard multiplier Bootstrap procedure
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The main problem: estimation of the extremal points

Problem: the null hypothesis is an infinite dimensional set{
(µ1 − µ2) ∈ C ([0, 1])

∣∣ ‖µ1 − µ2‖∞ ≤ ∆
}

(in contrast to the “classical” case, where it consists of one point)

Idea: mimic the distribution of the test statistic for any pair (µ1, µ2) such that

d∞ = ||µ1 − µ2||∞ ≤ ∆

Important ingredient: estimates the sets E+ and E− of extremal points

Ê+m,n :=
{
t ∈ [0, 1]

∣∣∣ X̄m(t)− Ȳn(t) ≥ d̂∞ − c
log(m + n)√

m + n

}
Ê−m,n :=

{
t ∈ [0, 1]

∣∣∣ X̄m(t)− Ȳn(t) ≤ −d̂∞ + c
log(m + n)√

m + n

}
17 / 34
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Consistency of estimates of the extremal sets

Theorem 4

Under suitable assumptions we have

dH(Ê±m,n, E±)
P−→ 0

where

dH(A,B) = max
{

sup
x∈A

inf
y∈B
|x − y |, sup

y∈B
inf
x∈A
|x − y |

}
.

denotes the Hausdorff distance.
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Bootstrap

Problem: Mimic the dependence structure of the data

Solution: Multiplier bootstrap

For r = 1, . . . ,R, define

B̂(r)
m,n(t) =

√
n + m

{ 1

m

m−l1+1∑
k=1

√
l1
( 1

l1

k+l1−1∑
j=k

Xj(t)− 1

m

m∑
j=1

Xj(t)

︸ ︷︷ ︸
≈µX (t)

)
ξ
(r)
k

− 1

n

n−l2+1∑
k=1

√
l2
( 1

l2

k+l2−1∑
j=k

Yj(t)− 1

n

n∑
j=1

Yj(t)

︸ ︷︷ ︸
≈µY (t)

)
ζ
(r)
k

}

l1, l2 are bandwidth parameters with l1/m, l2/n→ 0 as l1, l2,m, n→∞
multipliers ξ

(r)
1 , . . . , ξ

(r)
m , ζ

(r)
1 , . . . , ζ

(r)
n ∼ N (0, 1) i.i.d.

Test statistic

K (r)
m,n := max

{
sup

t∈Ê+m,n

B̂(r)
m,n(t), sup

t∈Ê−m,n

(
− B̂(r)

m,n(t)
)}
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Bootstrap consistency

Take home message: bootstrap is consistent

Theorem 5

For r = 1, . . . ,R, define

K (r)
m,n := max

{
sup

t∈Ê+m,n

B̂(r)
m,n(t), sup

t∈Ê−m,n

(
− B̂(r)

m,n(t)
)}

Then (under suitable assumptions)(√
n + m (d̂∞ − d∞), K (1)

m,n, . . . ,K
(R)
m,n

)
⇒ (T (E), T (1)(E), . . . ,T (R)(E)) ,

in RR+1, where T (1)(E), . . . ,T (R)(E) are indendent copies of T (E).

20 / 34
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Application: test for a relevant difference

The null hypothesis in

H0 : d∞ ≤ ∆ versus H1 : d∞ > ∆

is rejected, whenever

d̂∞ > ∆ +
K
{bR(1−α)c}
m,n√
n + m

where K
{bR(1−α)c}
m,n denotes the empirical (1− α)-quantile of the ordered

bootstrap statistics K
{1}
m,n , . . . ,K

{R}
m,n .

It can be shown: Test has asymptotic level α and is consistent.
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Theorem 6

(a) Under the null hypothesis H0 : d∞ ≤ ∆ :

lim
R→∞

lim sup
m,n→∞

P
(
d̂∞ > ∆ +

K
{bR(1−α)c}
m,n√
n + m

)
= α,

(b) Under the alternative H1 : d∞ > ∆ we have

lim inf
m,n→∞

P
(
d̂∞ > ∆ +

K
{bR(1−α)c}
m,n√
n + m

)
= 1.

for any R ∈ N.

22 / 34
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Finite sample properties

Hypotheses:
H0 : d∞ ≤ 0.1 versus H1 : d∞ > 0.1

Model (fMA(1) error processes)

µX (t) = 0, µY (t) =



5at, t ∈ [0, 1
5
]

a, t ∈ ( 1
5
, 3
10

]

a(−5t + 2.5), t ∈ ( 3
10
, 3
10

]

−a, t ∈ ( 7
10
, 4
5
]

a(5t − 5) t ∈ ( 4
5
, 1]

Note:

d∞ = ‖µX − µY ‖∞ = a

E+ = [ 1
5
, 3
10

] , E− = [ 7
10
, 4
5
]

The case a = 0.1 corresponds to the “boundary” of the hypotheses
d∞ = ∆ = 0.1

23 / 34



Motivation Relevant hypotheses Two Sample problems - theory Two more take home messages (how I got in to this) Stanislav Volgushev Technical assumptions

Simulated rejection probabilities
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Confidence bands (“classical” bootstrap)

For r = 1 . . . ,R, define T
(r)
m,n = ‖B̂(r)

m,n‖∞ and boundary functions

µR,±
m,n (t) =

1

m

m∑
j=1

Xj(t)− 1

n

n∑
j=1

Yj(t)± T
{bR(1−α)c}
m,n√
n + m

Theorem 7

Under suitable assumptions

ĈR
α,m.n =

{
µ ∈ C ([0, 1]) : µR,−

m,n (t) ≤ µ(t) ≤ µR,+
m,n (t) ∀ t ∈ [0, 1]

}
defines a simultaneous asymptotic (1− α) confidence band for µX − µY , that is,

lim
R→∞

lim inf
m,n→∞

P(µX − µY ∈ ĈR
α,m.n) ≥ 1− α.

25 / 34
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Simulated coverage probabilities

(m, n) 99% 95% 90%

(50, 100) 97.5 92.9 88
(100, 100) 98.3 94.7 89.3
(100, 200) 98.2 94.5 90.4

26 / 34
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One more take home message

X1, . . . ,Xn i.i.d. ∼ F

Hypotheses
H0 : F = F0

Kolmogorov Smirnov statistic

Kn := sup
x∈[0,1]

|F̂n(x)− F0(x)| , K := sup
x∈[0,1]

|F (x)− F0(x)| H0= 0

Raghavachari (AoS, 1973)

√
n(Kn −K)

D−→ max
{

max
x∈E+

W (x), max
x∈E−

(−W (x))
}

where

W = B ◦ F
E± =

{
x ∈ R | F (x)− F0(x) = ±K

}
27 / 34
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Motivation of this work

The comparison of curves is an important problem in biostatistics (no functional
data)

Comparison of dissolution profiles (cooperation with European Medicines
Agency (EMA))

Replace AUC and Cmax in bioequivalence studies (cooperation with Food and
Drug Administration (FDA))

28 / 34
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Comparison of dissolution profiles

Collaboration with EMA

In vitro dissolution profile comparison of
two formulations (test vs. reference
product) in order to demonstrate
bioequivalence

Figure: twelve tablets per product, each
measured at six time points 10 20 30 40

40
60

80
10

0
Time (min)

%
 D

is
so

lv
ed
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Bioequivalence (random effect models)

Collaboration with FDA

Traditional bioequivalence studies focus on AUC and Cmax

� � � � �

����

����

����

����

����

This can be misleading (both curves have the same AUC and Cmax)

The new methodology compares these curves directly

30 / 34
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Assumptions (here for the two sample problems)

The time series (Xj)j∈N and (Yj)j∈N are stationary

There exist constants K1, K2, ν1, ν2 > 0 such that, for all j ∈ N,

E
[

sup
t∈[0,1]

|Xj(t)|2+ν1
]
≤ K1, E

[
sup

t∈[0,1]
|Yj(t)|2+ν2

]
≤ K2

There exist real-valued random variables M1,M2 with

E[M2
1 ],E[M2

2 ] <∞,

|Xj(t)− Xj(t
′)| ≤ M1|t − t′|θ, |Xj(t)− Xj(t

′)| ≤ M2|t − t′|θ

(Xn)n∈N, (Yn)n∈N are ϕ-mixing with exponentially decreasing mixing coefficients

bandwidth parameters satisfy l1 = mβ1 , l2 = nβ2 for some 0 < βi < νi/(2 + νi )
for i = 1, 2.
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Assumptions (here for change point tests)

(A1) For constants K , ν > 0 we have

E[‖Xn,j‖2+ν∞ ] ≤ K

(A2) Rowwise stationarity

E[Xn,j ] = µ(j) for any n ∈ N and j = 1, . . . , n
The centered array (Xn,j − µ(j) : n ∈ N, j = 1, . . . , n) is stationary.
The covariance structure is the same in each row, that is

Cov(Xn,j(t),Xn,j′(t
′)) = γ(j − j ′, t, t′)

for all n ∈ N and j , j ′ = 1, . . . , n.
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(A3) (uniformly Hölder). There exisits a real-valued random variable M with

E[M2] <∞
|Xn,j(t)− Xn,j(t

′)| ≤ M|t − t′|θ for all n ∈ N and j = 1, . . . , n

(A4) (Xn,j : n ∈ N, j = 1, . . . , n) is ϕ-mixing with exponentially decreasing mixing
coefficients
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The notion of ϕ-mixing

For two two σ-fields F and G, define

φ(F ,G) = sup
{
|P(G |F )− P(G )| : F ∈ F , G ∈ G, P(F ) > 0

}
,

For a sequence of (ηj : j ∈ N) of C (T )-valued random variables define

Fk′
k the σ-field generated by (ηj : k ≤ j ≤ k ′).

ϕ-mixing coefficient

ϕ(k) = sup
k′∈N

φ(Fk′
1 ,F∞k′+k)

The sequence (ηj : j ∈ N) is called ϕ-mixing whenever

lim
k→∞

ϕ(k) = 0
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Change point problems
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Mathematical model

(Xn,j : n ∈ N, j = 1, . . . , n) triangular array of random variables with

Xn,j ∈ C([0, 1])

E[Xn,j ] = µ(j)

The sequence (Xn,j − µ(j) : j = 1, . . . , n) is stationary (for all n ∈ N)

Long run variance

C(s, t) =
∞∑

i=−∞

Cov(Xn,0(s),Xn,i (t))

Assume that the mean functions satisfy for some s∗ ∈ (0, 1):

µ1 = µ(1) = · · · = µ(bns∗c) and µ2 = µ(bns∗c+1) = · · · = µ(n)

Relevant change points (∆ > 0):

H0 : d∞ = sup
t∈[0,1]

|µ1(t)− µ2(t)| ≤ ∆ versus H1 : d∞ > ∆
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The CUSUM statistic under the alternative

(smooth) CUSUM process:

Ûn(s, t) =
1

n

( bsnc∑
j=1

Xn,j(t) + n
(
s − bsnc

n

)
Xn,bsnc+1(t)− s

n∑
j=1

Xn,j(t)
)

Note: For the centered version

Ŵn(s, t) =
1

n

( bsnc∑
j=1

(
Xn,j(t)−µ(j))+ n

(
s − bsnc

n

)(
Xn,bsnc+1(t)−µ(bsnc+1))

− s
n∑

j=1

(
Xn,j(t)−µ(j)))

it can be shown that
Ŵn  W in C([0, 1]2),

W is a centered Gaussian measure on C([0, 1]2) defined by

Cov(W(s, t),W(s ′, t′)) = (s ∧ s ′ − ss ′)C(t, t′).
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The CUSUM statistic under the alternative

Test statistic (here ŝ denotes an appropriate estimator of s∗, to be specified later):

d̂∞ :=
1

ŝ(1− ŝ)
sup

s∈[0,1]
sup

t∈[0,1]
|Ûn(s, t)|

Theorem 8

Assume d∞ > 0, s∗ ∈ (0, 1). Then (under suitable assumptions)

√
n
(
d̂∞ − d∞

) D−→ D(E) =
1

s∗(1− s∗)
max

{
sup
t∈E+

W(s∗, t), sup
t∈E−

−W(s∗, t)
}
,

where W is a centered Gaussian measure on C ([0, 1]2) and

E− =
{
t ∈ [0, 1] : µ1(t)− µ2(t) = −d∞

}
E+ =

{
t ∈ [0, 1] : µ1(t)− µ2(t) = d∞

}
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Bootstrap - main difficulties

For the bootstrap we need:

to mimic the dependence structure (see the two sample case)

to estimate the set of extremal points E+ and E− (see the two sample case)

to estimate the change point s∗ for two purposes

the estimate ŝ appears in the test statistic
the change point s∗ appears in the limiting distribution
we need an estimate of the change point s∗ to center the process U such
that we can mimic the distribution of the process W by bootstrap
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Change point estimator

Estimator of the change point (as usual)

ŝ =
1

n
arg max

1≤k<n

∥∥Ûn(
k

n
, ·)
∥∥
∞

Theorem 9

If d∞ > 0, s∗ ∈ (0, 1) then (under suitable assumptions)

|ŝ − s∗| = OP(n−1).

Proof: One can use very nice results of Hariz, Wylie and Zhang (AoS 2007).

Estimates of the mean functions before and after the change point

µ̂1 =

bŝnc∑
j=1

Xn,j , µ̂2 =
n∑

j=bŝnc+1

Xn,j
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Bootstrap

Centering

Ŷn,j =

{
Xn,j if j = 1, . . . , bŝnc
Xn,j − (µ̂2 − µ̂1) if j = bŝnc+ 1, . . . , n

Note: E[Ŷn,j ] ≈ µ1 for all j = 1, . . . , n.

B̂(r)
n (s, t) =

1√
n

bsnc∑
k=1

√
l
(1

l

k+l−1∑
j=k

Ŷn,j(t)− 1

n

n∑
j=1

Ŷn,j(t)
)
ξ
(r)
k

+
√
n
(
s − bsnc

n

)√
l
(1

l

bsnc+l∑
j=bsnc+1

Ŷn,j(t)− 1

n

n∑
j=1

Ŷn,j(t)
)
ξ
(r)
bsnc+1

l ∈ N is a bandwidth parameter satisfying l/n→ 0 as l , n→∞
multipliers ξ

(r)
1 , . . . , ξ

(r)
n ∼ N (0, 1) i.i.d.
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Consistency

Define
Ŵ(r)

n (s, t) = B̂(r)
n (s, t)− sB̂(r)

n (1, t) ; r = 1, . . . ,R

Estimates of the extremal sets

Ê±n =
{
t ∈ [0, 1] : ± (µ̂1(t)− µ̂2(t)) ≥ d̂∞ − c

log n√
n

}
(1)

Bootstrap version of test statistic:

D(r)
n =

1

ŝ(1− ŝ)
max

{
max
t∈Ê+n

Ŵ (r)
n (ŝ, t), max

t∈Ê−n

(
− Ŵ (r)

n (ŝ, t)
)}

Take home message: Bootstrap is consistent
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Consistency

Theorem 10

If d∞ > 0, then (under suitable assumptions)

(
√
n(d̂∞ − d∞), D(1)

n , . . . ,D(R)
n )⇒ (D(E), D(1), . . . ,D(R))

in RR+1, where D(1), . . . ,D(R) are independent copies of the random variable D(E).

Consistent test for a relevant change point: Reject the null hypothesis
H0 : d∞ ≤ ∆, whenever

d̂∞ > ∆ +
D
{bR(1−α)c}
n √

n
,
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Finite sample properties

Mean functions before and after the change point:

µ1(t) = 0, µ2(t) =


4at, t ∈ [0, 1

4
]

a, t ∈ ( 1
4
, 3
4
]

a(−4t + 4), t ∈ ( 3
4
, 1]

Error process: fMA(1)-model

Hypotheses of a relevant change point

H0 : d∞ ≤ 0.4 versus d∞ > 0.4
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Simulated rejection probabilities

n 100 200 500
a 1% 5% 10% 1% 5% 10% 1% 5% 10%

0.37 1.9 4.6 8.2 0.3 0.5 1.1 0 0 0
H0 0.38 2.1 4.6 7.2 0.1 0.6 1.2 0 0 0.1

0.39 2.0 5.2 8.7 0.3 1.1 3.1 0.1 0.2 0.8
0.4 2.3 7.8 16.3 1.5 5.4 11.6 0.7 4.2 9.7
0.41 6.7 17.4 32.6 7.9 21.3 37.3 18.0 43.8 64.9

H1 0.42 14.6 35.8 54.9 27.7 62.1 81.9 76.1 96.0 99.5
0.43 32.7 63.9 78.3 68.1 91.8 96.5 98.1 99.7 99.8
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