Motivation Relevant hypotheses Two Sample problems - theory Two more take home messages (how I got in to this)

Testing relevant hypotheses for functional data

Holger Dette, Ruhr-Universität Bochum Kevin Kokot, Ruhr-Universität Bochum Alex Aue, University of California, Davis

April 11, 2019

・ロト ・四ト ・ヨト ・ヨト

э

Outline

- 2 Relevant hypotheses
- Two Sample problems theory
- Two more take home messages (how I got in to this) Stanislav Volgushev
- 5 Technical assumptions

Two sample problem

Figure: Annual temperature recorded in Sydney and Cape Otway, Australia.

"classical" hypotheses

- Scientific question: "Does there exist a difference in the (mean) annual temperature curves μ_X and μ_Y at both locations"
- Mathematical formulation ("classical" hypotheses):

$$H_0: d(\mu_X, \mu_Y) = 0$$
 versus $H_1: d(\mu_X, \mu_Y) > 0$

where

- d is any metric
- μ_X, μ_Y are mean functions of two (independent) functional time series defined on the interval [0, 1]

Relevant hypotheses

- Are we really interested in small differences? I do not think so!
 - It is very unlikely that the two mean functions are exactly the same (thus we are testing a hypothesis, which we **know to be not true**)
 - Berkson (1938):

Any consistent test will detect any arbitrary small difference in the parameters if the sample size is sufficiently large

• If we do not reject the null hypothesis

$$H_0: d(\mu_X, \mu_Y) = 0,$$

how can we control the type II error?

Relevant hypotheses

- Are we really interested in small differences? I do not think so!
 - It is very unlikely that the two mean functions are exactly the same (thus we are testing a hypothesis, which we **know to be not true**)
 - Berkson (1938):

Any consistent test will detect any arbitrary small difference in the parameters if the sample size is sufficiently large

• If we do not reject the null hypothesis

$$H_0: d(\mu_X, \mu_Y) = 0,$$

how can we control the type II error?

• It might be more reasonable to test if the mean functions do not differ substantially

Relevant hypotheses I

- Question: "Does there exist a (scientifically) relevant difference between the (mean) annual temperature curves μ_X and μ_Y at both locations"
- Mathematical formulation (relevant hypotheses):

$$H_0: d(\mu_X, \mu_Y) \leq \Delta$$
 versus $H_1: d(\mu_X, \mu_Y) > \Delta$

where

- d is a suitable metric
- µ_X, µ_Y are mean functions of two (independent) functional time series defined
 on the interval [0, 1]
- $\Delta>0$ is a threshold defining a relevant difference between the mean functions

Relevant hypotheses II

• Relevant hypotheses:

 $H_0: d(\mu_X, \mu_Y) \leq \Delta$ versus $H_1: d(\mu_X, \mu_Y) > \Delta$

Note:

- "Classical" hypotheses are obtained for $\Delta=0$
- For relevant ($\Delta > 0$) hypotheses the metric matters
- ${\scriptstyle \bullet}\,$ The choice of Δ depends on the metric and the concrete application
- For simplicity one often uses $\Delta = 0$, but we argue that one should carefully think about this choice

Relevant hypotheses II

• Relevant hypotheses:

$$H_0: d(\mu_X, \mu_Y) \leq \Delta$$
 versus $H_1: d(\mu_X, \mu_Y) > \Delta$

Note:

- "Classical" hypotheses are obtained for $\Delta=0$
- For relevant ($\Delta > 0$) hypotheses the metric matters
- ${\scriptstyle \bullet }$ The choice of Δ depends on the metric and the concrete application
- For simplicity one often uses $\Delta = 0$, but we argue that one should carefully think about this choice
- By investigating the hypotheses (of similarity)

$$H_0: d(\mu_X, \mu_Y) > \Delta$$
 versus $H_1: d(\mu_X, \mu_Y) \leq \Delta$

we are able to decide for "similar mean functions" at a controlled type I error! (related to **bioequivalence**)

Hilbert- versus Banach spaces

• L^2 -Hilbert space methodology is predominant in this context, i.e.

$$d_2(\mu_X,\mu_Y) = \left(\int_0^1 \left(\mu_X(t) - \mu_Y(t)\right)^2 dt\right)^{1/2}$$

• In this talk we focus on maximum deviation

$$d_{\infty} = \|\mu_X - \mu_Y\|_{\infty} = \sup_{t \in [0,1]} |\mu_X(t) - \mu_Y(t)|$$

- Functions with different shapes may have small L^2 -distance
- $\bullet\,$ Interpretation of the threshold Δ seems to be easier for the maximum deviation
- Mathematics is a little more difficult (\rightarrow Banach space)

Hilbert- versus Banach spaces

• L^2 -Hilbert space methodology is predominant in this context, i.e.

$$d_2(\mu_X,\mu_Y) = \left(\int_0^1 \left(\mu_X(t) - \mu_Y(t)\right)^2 dt\right)^{1/2}$$

• In this talk we focus on maximum deviation

$$d_{\infty} = \|\mu_X - \mu_Y\|_{\infty} = \sup_{t \in [0,1]} |\mu_X(t) - \mu_Y(t)|$$

- Functions with different shapes may have small L^2 -distance
- $\bullet\,$ Interpretation of the threshold Δ seems to be easier for the maximum deviation
- Mathematics is a little more difficult (\rightarrow Banach space)
- Note: The results provided in this talk are also new, if only "classical" hypotheses

$$H_0: d_\infty = \|\mu_X - \mu_Y\|_\infty = 0$$
 versus $d_\infty > 0$

are considered (but not so exciting)

The Banach space C([0, 1])

Setup:

- $(X_j)_{j=1}^m$, $(Y_j)_{j=1}^n$ (independent) samples from two stationary time series in $(C([0,1]),\|\cdot\|_{\infty})$ with
- Expectations

$$\mu_X(t) = \mathbb{E}[X_i(t)]$$

 $\mu_Y(t) = \mathbb{E}[Y_i(t)]$

• Long run variances:

$$C_X(s,t) = \sum_{i=-\infty}^{\infty} \operatorname{Cov}(X_1(s), X_{1+i}(t)) \quad (= \operatorname{Cov}(X_1(s), X_1(t)))$$
$$C_Y(s,t) = \sum_{i=-\infty}^{\infty} \operatorname{Cov}(Y_1(s), Y_{1+i}(t)) \quad (= \operatorname{Cov}(Y_1(s), Y_1(t)))$$

The Banach space C([0, 1])

Theorem 1 (CLT)

Under suitable assumptions ((2 + ν)-moments, φ -mixing, . . .), we have $(m/(n + m) \rightarrow \lambda)$

$$Z_{m,n} = \sqrt{n+m} ig(ar{X}_m - ar{Y}_n - (\mu_X - \mu_Y) ig) \rightsquigarrow Z \quad in \ C([0,1]) \ ,$$

where $Z \in C([0,1])$ is a centered Gaussian random variable with

$$\operatorname{Cov}(Z(s), Z(t)) = \frac{1}{\lambda}C_X(s, t) + \frac{1}{1-\lambda}C_Y(s, t)$$

< □ > < □ > < □ > < □ > < □ > < Ξ > < Ξ > = Ξ

The Banach space C([0, 1])

Theorem 1 (CLT)

Under suitable assumptions ((2 + ν)-moments, φ -mixing, . . .), we have $(m/(n+m) \rightarrow \lambda)$

$$Z_{m,n} = \sqrt{n+m} ig(ar{X}_m - ar{Y}_n - (\mu_X - \mu_Y) ig) \rightsquigarrow Z \quad in \ C([0,1]) \ ,$$

where $Z \in C([0,1])$ is a centered Gaussian random variable with

$$\operatorname{Cov}(Z(s),Z(t)) = rac{1}{\lambda}C_X(s,t) + rac{1}{1-\lambda}C_Y(s,t)$$

In particular: if $\mu_X = \mu_Y$, we have

$$Z_{m,n} = \sqrt{n+m} (ar{X}_m - ar{Y}_n) \rightsquigarrow Z$$
 in $C([0,1])$

<ロト<団ト<Eト<Eト E のQで 8/34

First application: "classical" hypotheses in C([0, 1])

• Reject the "classical" hypothesis,

$$H_0: d_\infty = \|\mu_X - \mu_Y\|_\infty = 0$$
 versus $H_1: d_\infty > 0$

for large values of the statistic

$$\hat{d}_\infty = \|ar{X}_m - ar{Y}_n\|_\infty = \sup_{t\in[0,1]} |ar{X}_m(t) - ar{Y}_n(t)|$$

9/34

First application: "classical" hypotheses in C([0, 1])

• Reject the "classical" hypothesis,

$$H_0: d_\infty = \|\mu_X - \mu_Y\|_\infty = 0$$
 versus $H_1: d_\infty > 0$

for large values of the statistic

$$\hat{d}_\infty = \|ar{X}_m - ar{Y}_n\|_\infty = \sup_{t\in [0,1]} |ar{X}_m(t) - ar{Y}_n(t)|$$

- Critical values:
 - Under the null hypothesis we have $\mu_X \equiv \mu_Y$ and therefore (continuous mapping)

$$\sqrt{n+m}\hat{d}_{\infty} = ||Z_{m,n}||_{\infty} \rightsquigarrow ||Z||_{\infty} = \sup_{t \in [0,1]} |Z(t)|$$

- Note: The quantiles of the limiting distribution can be estimated, if the long run variance can be well estimated
- Later: bootstrap

Relevant hypotheses are more difficult

• Reject the relevant hypothesis,

$$H_0: d_\infty = \|\mu_X - \mu_Y\|_\infty \leq \Delta$$
 versus $H_1: d_\infty > \Delta$

for large values of the statistic

$$\hat{d}_{\infty} = \|ar{X}_m - ar{Y}_n\|_{\infty} = \sup_{t\in[0,1]} |ar{X}_m(t) - ar{Y}_n(t)|$$

Critical values:

- We have to find the limiting distribution of \hat{d}_{∞} for any $d_{\infty} \geq 0$
- If $d_{\infty} > 0$ the statistic \hat{d}_{∞} is **not** a functional of the process

$$Z_{m,n} = \sqrt{n+m} (\bar{X}_m - \bar{Y}_n - (\mu_X - \mu_Y)) \rightsquigarrow Z$$

• Continuous mapping is not applicable

Motivation Relevant hypotheses Two Sample problems - theory Two more take home messages (how I got in to this)

Relevant hypotheses $H_0: d_{\infty} \leq \Delta$

Question: what is the limit distribution of the statistic

$$\sqrt{m+n}(\hat{d}_{\infty}-d_{\infty})=\sqrt{m+n}(\|\bar{X}_m-\bar{Y}_n\|_{\infty}-\|\mu_X-\mu_Y\|_{\infty})$$

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 - のへで

11/34

Relevant hypotheses $H_0: d_\infty \leq \Delta$

• Take home message: Asymptotic distribution is a maximum of a Gaussian process, calculated with respect to the set of extremal points

$$\mathcal{E} = ig\{t \in [0,1]: \ |\mu_X(t) - \mu_Y(t)| = d_\inftyig\}$$

of the difference of the mean functions μ_X and μ_Y .

Note:

$$\mathcal{E} = \mathcal{E}^- \cup \mathcal{E}^+,$$

where

$$\mathcal{E}^{-} = \left\{ t \in [0,1] : \ \mu_X(t) - \mu_Y(t) = -d_{\infty} \right\} \\ \mathcal{E}^{+} = \left\{ t \in [0,1] : \ \mu_X(t) - \mu_Y(t) = d_{\infty} \right\}$$

4 ロ ト () + 1 () + 1

Example:

Time

◆□ → < 団 → < 臣 → < 臣 → 臣 → ○ へ (?) 13/34

More details

Theorem 2

Under suitable assumptions ((2 + ν)-moments, φ -mixing, ...), we have

$$\sqrt{n+m} \left(\hat{d}_{\infty} - d_{\infty}
ight) \stackrel{\mathcal{D}}{\longrightarrow} T(\mathcal{E}) = \max \left\{ \sup_{t \in \mathcal{E}^+} Z(t), \sup_{t \in \mathcal{E}^-} - Z(t)
ight\}$$

and $Z \in C([0,1])$ is a centered Gaussian random variable with

$$\operatorname{Cov}(Z(s),Z(t)) = rac{1}{\lambda}C_X(s,t) + rac{1}{1-\lambda}C_Y(s,t)$$

Note: the asymptotic distribution depends on the functions μ_1 and μ_2 through the set ${\cal E}$

Testing relevant hypotheses

Reject the null hypothesis

$$H_0: d_\infty \leq \Delta$$

and decide for

$$H_0: d_\infty > \Delta,$$

whenever

$$\hat{d}_{\infty} > \Delta + rac{u_{1-lpha,\mathcal{E}}}{\sqrt{n+m}}$$

where $u_{1-\alpha,\mathcal{E}}$ denotes the $(1-\alpha)$ -quantile of the distribution of $\mathcal{T}(\mathcal{E})$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Consistency and asymptotic level

Corollary 3

$$\lim_{n,m\to\infty} \mathbb{P}\Big(\hat{d}_{\infty} > \Delta + \frac{u_{1-\alpha,\mathcal{E}}}{\sqrt{n+m}}\Big) = \begin{cases} 0 & \text{if } d_{\infty} < \Delta \\ \alpha & \text{if } d_{\infty} = \Delta \\ 1 & \text{if } d_{\infty} > \Delta \end{cases}$$

• Consequences: the test has asymptotic level α and is consistent.

- **However:** The quantile $u_{1-\alpha,\mathcal{E}}$ depends on
 - the (unknown) sets of extremal points \mathcal{E}^- and \mathcal{E}^+ .
 - the (unknown) dependence structure (long-run variances)
- Solution: A non-standard multiplier Bootstrap procedure

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

The main problem: estimation of the extremal points

• Problem: the null hypothesis is an infinite dimensional set

$$\{(\mu_1 - \mu_2) \in C([0,1]) \mid \|\mu_1 - \mu_2\|_{\infty} \leq \Delta\}$$

(in contrast to the "classical" case, where it consists of **one** point)

• Idea: mimic the distribution of the test statistic for any pair (μ_1, μ_2) such that

$$d_{\infty} = ||\mu_1 - \mu_2||_{\infty} \leq \Delta$$

Important ingredient: estimates the sets \mathcal{E}^+ and \mathcal{E}^- of extremal points

$$\begin{split} \hat{\mathcal{E}}_{m,n}^+ &:= \left\{ t \in [0,1] \mid \bar{X}_m(t) - \bar{Y}_n(t) \geq \hat{d}_\infty - c \frac{\log(m+n)}{\sqrt{m+n}} \right\} \\ \hat{\mathcal{E}}_{m,n}^- &:= \left\{ t \in [0,1] \mid \bar{X}_m(t) - \bar{Y}_n(t) \leq -\hat{d}_\infty + c \frac{\log(m+n)}{\sqrt{m+n}} \right\} \end{split}$$

17 / 34

Consistency of estimates of the extremal sets

Theorem 4

Under suitable assumptions we have

$$d_H(\hat{\mathcal{E}}_{m,n}^{\pm},\mathcal{E}^{\pm}) \xrightarrow{\mathbb{P}} 0$$

where

$$d_{H}(A,B) = \max\left\{\sup_{x \in A} \inf_{y \in B} |x-y|, \sup_{y \in B} \inf_{x \in A} |x-y|\right\}.$$

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

18/34

denotes the Hausdorff distance.

Bootstrap

- Problem: Mimic the dependence structure of the data
- Solution: Multiplier bootstrap
 - For $r = 1, \ldots, R$, define

$$\hat{B}_{m,n}^{(r)}(t) = \sqrt{n+m} \Big\{ \frac{1}{m} \sum_{k=1}^{m-l_1+1} \sqrt{l_1} \Big(\frac{1}{l_1} \sum_{j=k}^{k+l_1-1} X_j(t) - \underbrace{\frac{1}{m} \sum_{j=1}^m X_j(t)}_{\approx \mu_X(t)} \Big) \xi_k^{(r)} \\ - \frac{1}{n} \sum_{k=1}^{n-l_2+1} \sqrt{l_2} \Big(\frac{1}{l_2} \sum_{j=k}^{k+l_2-1} Y_j(t) - \underbrace{\frac{1}{n} \sum_{j=1}^n Y_j(t)}_{\approx \mu_Y(t)} \Big) \zeta_k^{(r)} \Big\}$$

• l_1, l_2 are bandwidth parameters with $l_1/m, l_2/n \to 0$ as $l_1, l_2, m, n \to \infty$ • multipliers $\xi_1^{(r)}, \ldots, \xi_m^{(r)}, \zeta_1^{(r)}, \ldots, \zeta_n^{(r)} \sim \mathcal{N}(0, 1)$ i.i.d.

Bootstrap

- Problem: Mimic the dependence structure of the data
- Solution: Multiplier bootstrap
 - For $r = 1, \ldots, R$, define

$$\hat{B}_{m,n}^{(r)}(t) = \sqrt{n+m} \Big\{ \frac{1}{m} \sum_{k=1}^{m-l_1+1} \sqrt{l_1} \Big(\frac{1}{l_1} \sum_{j=k}^{k+l_1-1} X_j(t) - \underbrace{\frac{1}{m} \sum_{j=1}^m X_j(t)}_{\approx \mu_X(t)} \Big) \xi_k^{(r)} \\ - \frac{1}{n} \sum_{k=1}^{n-l_2+1} \sqrt{l_2} \Big(\frac{1}{l_2} \sum_{j=k}^{k+l_2-1} Y_j(t) - \underbrace{\frac{1}{n} \sum_{j=1}^n Y_j(t)}_{\approx \mu_Y(t)} \Big) \zeta_k^{(r)} \Big\}$$

• l_1, l_2 are bandwidth parameters with $l_1/m, l_2/n \rightarrow 0$ as $l_1, l_2, m, n \rightarrow \infty$

• multipliers $\xi_1^{(r)}, \ldots, \xi_m^{(r)}, \zeta_1^{(r)}, \ldots, \zeta_n^{(r)} \sim \mathcal{N}(0, 1)$ i.i.d.

Test statistic

$$\mathcal{K}_{m,n}^{(r)} := \max\left\{\sup_{t\in\hat{\mathcal{E}}_{m,n}^+}\hat{B}_{m,n}^{(r)}(t), \sup_{t\in\hat{\mathcal{E}}_{m,n}^-}\left(-\hat{B}_{m,n}^{(r)}(t)\right)\right\}$$

19/34

Bootstrap consistency

Take home message: bootstrap is consistent

Theorem 5

For $r = 1, \ldots, R$, define

$$\mathcal{K}_{m,n}^{(r)} := \max \Big\{ \sup_{t \in \hat{\mathcal{E}}_{m,n}^+} \hat{B}_{m,n}^{(r)}(t), \; \sup_{t \in \hat{\mathcal{E}}_{m,n}^-} \big(- \hat{B}_{m,n}^{(r)}(t) \big) \Big\}$$

Then (under suitable assumptions)

 $\left(\sqrt{n+m}\left(\hat{d}_{\infty}-d_{\infty}\right),\ K_{m,n}^{(1)},\ldots,K_{m,n}^{(R)}
ight)\Rightarrow\left(T(\mathcal{E}),\ T^{(1)}(\mathcal{E}),\ldots,T^{(R)}(\mathcal{E})
ight),$

in \mathbb{R}^{R+1} , where $T^{(1)}(\mathcal{E}), \ldots, T^{(R)}(\mathcal{E})$ are indendent copies of $T(\mathcal{E})$.

Application: test for a relevant difference

• The null hypothesis in

$$H_0: d_{\infty} \leq \Delta$$
 versus $H_1: d_{\infty} > \Delta$

is rejected, whenever

$$\hat{d}_{\infty} > \Delta + rac{\mathcal{K}_{m,n}^{\{\lfloor \mathcal{R}(1-\alpha) \rfloor\}}}{\sqrt{n+m}}$$

where $\mathcal{K}_{m,n}^{\{\lfloor R(1-\alpha) \rfloor\}}$ denotes the empirical $(1-\alpha)$ -quantile of the ordered bootstrap statistics $\mathcal{K}_{m,n}^{\{1\}}, \ldots, \mathcal{K}_{m,n}^{\{R\}}$.

• It can be shown: Test has asymptotic level *α* and is consistent.

Theorem 6

(a) Under the null hypothesis $H_0: d_{\infty} \leq \Delta$:

$$\lim_{R \to \infty} \limsup_{m,n \to \infty} \mathbb{P}\Big(\hat{d}_{\infty} > \Delta + \frac{K_{m,n}^{\{\lfloor R(1-\alpha) \rfloor\}}}{\sqrt{n+m}}\Big) = \alpha,$$

(b) Under the alternative $H_1: d_{\infty} > \Delta$ we have

$$\liminf_{m,n\to\infty} \mathbb{P}\Big(\hat{d}_{\infty} > \Delta + \frac{K_{m,n}^{\{\lfloor R(1-\alpha) \rfloor\}}}{\sqrt{n+m}}\Big) = 1.$$

イロト イロト イヨト イヨト 二日

22 / 34

for any $R \in \mathbb{N}$.

Finite sample properties

• Hypotheses:

 $H_0: d_\infty \leq 0.1$ versus $H_1: d_\infty > 0.1$

Model (fMA(1) error processes)

$$\mu_X(t) = 0, \qquad \mu_Y(t) = \begin{cases} 5at, & t \in [0, \frac{1}{5}] \\ a, & t \in (\frac{1}{5}, \frac{3}{10}] \\ a(-5t+2.5), & t \in (\frac{3}{10}, \frac{3}{10}] \\ -a, & t \in (\frac{7}{10}, \frac{4}{5}] \\ a(5t-5) & t \in (\frac{4}{5}, 1] \end{cases}$$

Note:

$$d_{\infty} = \|\mu_X - \mu_Y\|_{\infty} = \mathbf{a}$$

$$\mathcal{E}^+ = [\frac{1}{5}, \frac{3}{10}], \quad \mathcal{E}^- = [\frac{7}{10}, \frac{4}{5}]$$

• The case a = 0.1 corresponds to the "boundary" of the hypotheses $d_{\infty} = \Delta = 0.1$

23/34

Simulated rejection probabilities

< □ > < 部 > < 書 > < 書 > 差 → ○ < ♡ < ♡ < ♡ < 24/34

Confidence bands ("classical" bootstrap)

• For r = 1..., R, define $T_{m,n}^{(r)} = \|\hat{B}_{m,n}^{(r)}\|_{\infty}$ and boundary functions

$$\mu_{m,n}^{R,\pm}(t) = \frac{1}{m} \sum_{j=1}^{m} X_j(t) - \frac{1}{n} \sum_{j=1}^{n} Y_j(t) \pm \frac{T_{m,n}^{\{\lfloor R(1-\alpha) \rfloor\}}}{\sqrt{n+m}}$$

Theorem 7

Under suitable assumptions

$$\hat{\mathcal{C}}^{\mathcal{R}}_{lpha,m.n} = \left\{ \mu \in \mathcal{C}([0,1]) \colon \ \mu^{\mathcal{R},-}_{m,n}(t) \leq \mu(t) \leq \mu^{\mathcal{R},+}_{m,n}(t) \ \forall \ t \in [0,1]
ight\}$$

defines a simultaneous asymptotic $(1 - \alpha)$ confidence band for $\mu_X - \mu_Y$, that is,

$$\lim_{R\to\infty}\liminf_{m,n\to\infty}\mathbb{P}(\mu_X-\mu_Y\in\hat{C}^R_{\alpha,m,n})\geq 1-\alpha.$$

(100, 200)

Simulated coverage probabilities

98.2

94.5

90.4

< ロ > < 回 > < 三 > < 三 > < 三 > < 三 > の <()</p>

26 / 34

One more take home message

- X_1, \ldots, X_n i.i.d. $\sim F$
- Hypotheses

$$H_0: F = F_0$$

Kolmogorov Smirnov statistic

$$\mathbf{K}_{n} := \sup_{x \in [0,1]} |\hat{F}_{n}(x) - F_{0}(x)| , \quad \mathbf{K} := \sup_{x \in [0,1]} |F(x) - F_{0}(x)| \stackrel{H_{0}}{=} 0$$

• Raghavachari (AoS, 1973)

$$\sqrt{n}(\mathbf{K}_{n}-\mathbf{K}) \xrightarrow{\mathcal{D}} \max\left\{\max_{x \in \mathcal{E}^{+}} W(x), \max_{x \in \mathcal{E}^{-}} (-W(x))\right\}$$

27 / 34

where

•
$$W = B \circ F$$

• $\mathcal{E}^{\pm} = \{x \in \mathbb{R} \mid F(x) - F_0(x) = \pm K\}$

Motivation of this work

The comparison of curves is an important problem in biostatistics (no functional data)

- Comparison of dissolution profiles (cooperation with **European Medicines Agency (EMA)**)
- Replace AUC and C_{max} in bioequivalence studies (cooperation with **Food and Drug Administration (FDA)**)

Comparison of dissolution profiles

Collaboration with EMA

- In vitro dissolution profile comparison of two formulations (test vs. reference product) in order to demonstrate bioequivalence
- Figure: twelve tablets per product, each measured at six time points

Bioequivalence (random effect models)

Collaboration with FDA

• Traditional bioequivalence studies focus on AUC and Cmax

- This can be misleading (both curves have the same AUC and Cmax)
- The new methodology compares these curves directly

Assumptions (here for the two sample problems)

- The time series $(X_j)_{j\in\mathbb{N}}$ and $(Y_j)_{j\in\mathbb{N}}$ are stationary
- There exist constants K_1 , K_2 , $\nu_1, \nu_2 > 0$ such that, for all $j \in \mathbb{N}$,

$$\mathbb{E}ig[\sup_{t\in[0,1]}|X_j(t)|^{2+
u_1}ig] \leq \mathcal{K}_1, \qquad \mathbb{E}ig[\sup_{t\in[0,1]}|Y_j(t)|^{2+
u_2}ig] \leq \mathcal{K}_2$$

- There exist real-valued random variables M_1, M_2 with
 - $\mathbb{E}[M_1^2], \mathbb{E}[M_2^2] < \infty$,
 - $|X_j(t) X_j(t')| \le M_1 |t t'|^{ heta}, \, |X_j(t) X_j(t')| \le M_2 |t t'|^{ heta}$
- $(X_n)_{n\in\mathbb{N}}, (Y_n)_{n\in\mathbb{N}}$ are φ -mixing with exponentially decreasing mixing coefficients
- bandwidth parameters satisfy $l_1 = m^{\beta_1}$, $l_2 = n^{\beta_2}$ for some $0 < \beta_i < \nu_i/(2 + \nu_i)$ for i = 1, 2.

Assumptions (here for change point tests)

(A1) For constants $K, \nu > 0$ we have

$$\mathbb{E}[\|X_{n,j}\|_{\infty}^{2+\nu}] \le K$$

(A2) Rowwise stationarity

- $\mathbb{E}[X_{n,j}] = \mu^{(j)}$ for any $n \in \mathbb{N}$ and $j = 1, \dots, n$
- The centered array $(X_{n,j}-\mu^{(j)}\colon n\in\mathbb{N},\ j=1,\ldots,n)$ is stationary.
- The covariance structure is the same in each row, that is

$$\operatorname{Cov}(X_{n,j}(t), X_{n,j'}(t')) = \gamma(j - j', t, t')$$

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○臣 - のへ()

for all $n \in \mathbb{N}$ and $j, j' = 1, \ldots, n$.

(A3) (uniformly Hölder). There exisits a real-valued random variable M with

- $\mathbb{E}[M^2] < \infty$
- $|X_{n,j}(t) X_{n,j}(t')| \le M |t-t'|^{ heta}$ for all $n \in \mathbb{N}$ and $j = 1, \dots, n$

(A4) $(X_{n,j}: n \in \mathbb{N}, j = 1, ..., n)$ is φ -mixing with exponentially decreasing mixing coefficients

The notion of φ -mixing

• For two two $\sigma\text{-fields}\ \mathcal{F}$ and $\mathcal{G}\text{,}$ define

$$\phi(\mathcal{F},\mathcal{G}) = \sup \big\{ |\mathbb{P}(G|F) - \mathbb{P}(G)| \colon F \in \mathcal{F}, \ G \in \mathcal{G}, \ \mathbb{P}(F) > 0 \big\},\$$

- For a sequence of $(\eta_j : j \in \mathbb{N})$ of C(T)-valued random variables define
 - $\mathcal{F}_k^{k'}$ the σ -field generated by $(\eta_j \colon k \leq j \leq k').$
 - φ -mixing coefficient

$$arphi(k) = \sup_{k' \in \mathbb{N}} \phi(\mathcal{F}_1^{k'}, \mathcal{F}_{k'+k}^\infty)$$

34 / 34

• The sequence $(\eta_j : j \in \mathbb{N})$ is called φ -mixing whenever

 $\lim_{k\to\infty}\varphi(k)=0$

Motivation Relevant hypotheses Two Sample problems - theory Two more take home messages (how I got in to this)

Change point problems

Mathematical model

- $(X_{n,j} \colon n \in \mathbb{N}, j = 1, \dots, n)$ triangular array of random variables with
 - $X_{n,j} \in C([0,1])$
 - $\mathbb{E}[X_{n,j}] = \mu^{(j)}$
 - The sequence $(X_{n,j}-\mu^{(j)}\colon j=1,\ldots,n)$ is stationary (for all $n\in\mathbb{N})$
 - Long run variance

$$C(s,t) = \sum_{i=-\infty}^{\infty} \operatorname{Cov}(X_{n,0}(s), X_{n,i}(t))$$

• Assume that the mean functions satisfy for some $s^* \in (0, 1)$:

$$\mu_1 = \mu^{(1)} = \dots = \mu^{(\lfloor ns^* \rfloor)}$$
 and $\mu_2 = \mu^{(\lfloor ns^* \rfloor + 1)} = \dots = \mu^{(n)}$

• Relevant change points ($\Delta > 0$):

$$H_0: d_{\infty} = \sup_{t \in [0,1]} |\mu_1(t) - \mu_2(t)| \le \Delta \quad \text{versus} \quad H_1: d_{\infty} > \Delta$$

The CUSUM statistic under the alternative

• (smooth) CUSUM process:

$$\hat{\mathbb{U}}_n(s,t) = \frac{1}{n} \Big(\sum_{j=1}^{\lfloor sn \rfloor} X_{n,j}(t) + n \big(s - \frac{\lfloor sn \rfloor}{n} \big) X_{n, \lfloor sn \rfloor + 1}(t) - s \sum_{j=1}^n X_{n,j}(t) \Big)$$

The CUSUM statistic under the alternative

• (smooth) CUSUM process:

$$\hat{\mathbb{U}}_n(s,t) = \frac{1}{n} \Big(\sum_{j=1}^{\lfloor sn \rfloor} X_{n,j}(t) + n \big(s - \frac{\lfloor sn \rfloor}{n} \big) X_{n, \lfloor sn \rfloor + 1}(t) - s \sum_{j=1}^n X_{n,j}(t) \Big)$$

• Note: For the centered version

$$\begin{split} \hat{\mathbb{W}}_n(s,t) &= \frac{1}{n} \Big(\sum_{j=1}^{\lfloor sn \rfloor} \left(X_{n,j}(t) - \mu^{(j)} \right) + n \left(s - \frac{\lfloor sn \rfloor}{n} \right) \left(X_{n, \lfloor sn \rfloor + 1}(t) - \mu^{(\lfloor sn \rfloor + 1)} \right) \\ &- s \sum_{j=1}^n \left(X_{n,j}(t) - \mu^{(j)} \right) \Big) \end{split}$$

it can be shown that

$$\widehat{\mathbb{W}}_n \rightsquigarrow \mathbb{W} \text{ in } C([0,1]^2),$$

• \mathbb{W} is a centered Gaussian measure on $C([0,1]^2)$ defined by

$$\operatorname{Cov}(\mathbb{W}(s,t),\mathbb{W}(s',t')) = (s \wedge s' - ss')C(t,t').$$

The CUSUM statistic under the alternative

Test statistic (here \hat{s} denotes an appropriate estimator of s^* , to be specified later):

$$\hat{d}_\infty := rac{1}{\hat{s}(1-\hat{s})} \sup_{s\in [0,1]} \sup_{t\in [0,1]} |\hat{\mathbb{U}}_n(s,t)|$$

Theorem 8

Assume $d_{\infty} > 0$, $s^* \in (0,1)$. Then (under suitable assumptions)

$$\sqrt{n}(\hat{d}_{\infty}-d_{\infty}) \stackrel{\mathcal{D}}{\longrightarrow} \mathcal{D}(\mathcal{E}) = rac{1}{s^*(1-s^*)} \max\Big\{\sup_{t\in\mathcal{E}^+}\mathbb{W}(s^*,t),\sup_{t\in\mathcal{E}^-}-\mathbb{W}(s^*,t)\Big\},$$

where \mathbb{W} is a centered Gaussian measure on $C([0,1]^2)$ and

$$egin{aligned} \mathcal{E}^- &= ig\{t \in [0,1] \colon \ \mu_1(t) - \mu_2(t) = -d_\inftyig\} \ \mathcal{E}^+ &= ig\{t \in [0,1] \colon \ \mu_1(t) - \mu_2(t) = d_\inftyig\} \end{aligned}$$

Bootstrap - main difficulties

For the bootstrap we need:

- to mimic the dependence structure (see the two sample case)
- to estimate the set of extremal points \mathcal{E}^+ and \mathcal{E}^- (see the two sample case)
- to estimate the change point s* for two purposes
 - the estimate \hat{s} appears in the test statistic
 - ${\ensuremath{\, \bullet }}$ the change point s^* appears in the limiting distribution
 - we need an estimate of the change point s^* to center the process $\mathbb U$ such that we can mimic the distribution of the process $\mathbb W$ by bootstrap

Change point estimator

Estimator of the change point (as usual)

$$\hat{s} = rac{1}{n} rg\max_{1 \leq k < n} \left\| \hat{\mathbb{U}}_n(rac{k}{n}, \cdot)
ight\|_{\infty}$$

Theorem 9

If $d_{\infty} > 0$, $s^* \in (0,1)$ then (under suitable assumptions)

$$|\hat{s} - s^*| = O_{\mathbb{P}}(n^{-1}).$$

Proof: One can use very nice results of Hariz, Wylie and Zhang (AoS 2007).

Change point estimator

Estimator of the change point (as usual)

$$\hat{s} = rac{1}{n} rg\max_{1 \leq k < n} \left\| \hat{\mathbb{U}}_n(rac{k}{n}, \cdot)
ight\|_{\infty}$$

Theorem 9

If $d_{\infty} > 0$, $s^* \in (0,1)$ then (under suitable assumptions)

$$|\hat{s} - s^*| = O_{\mathbb{P}}(n^{-1}).$$

Proof: One can use very nice results of Hariz, Wylie and Zhang (AoS 2007).

Estimates of the mean functions before and after the change point

$$\hat{\mu}_1 = \sum_{j=1}^{\lfloor \hat{s}n \rfloor} X_{n,j} , \quad \hat{\mu}_2 = \sum_{j=\lfloor \hat{s}n \rfloor + 1}^n X_{n,j}$$

40 / 34

Bootstrap

Centering

$$\hat{Y}_{n,j} = \begin{cases} X_{n,j} & \text{if } j = 1, \dots, \lfloor \hat{s}n \rfloor \\ X_{n,j} - (\hat{\mu}_2 - \hat{\mu}_1) & \text{if } j = \lfloor \hat{s}n \rfloor + 1, \dots, n \end{cases}$$

• Note: $\mathbb{E}[\hat{Y}_{n,j}] \approx \mu_1$ for all $j = 1, \dots, n$.

$$\hat{B}_{n}^{(r)}(s,t) = \frac{1}{\sqrt{n}} \sum_{k=1}^{\lfloor sn \rfloor} \sqrt{l} \Big(\frac{1}{l} \sum_{j=k}^{k+l-1} \hat{Y}_{n,j}(t) - \frac{1}{n} \sum_{j=1}^{n} \hat{Y}_{n,j}(t) \Big) \xi_{k}^{(r)} \\ + \sqrt{n} \Big(s - \frac{\lfloor sn \rfloor}{n} \Big) \sqrt{l} \Big(\frac{1}{l} \sum_{j=\lfloor sn \rfloor + 1}^{\lfloor sn \rfloor + l} \hat{Y}_{n,j}(t) - \frac{1}{n} \sum_{j=1}^{n} \hat{Y}_{n,j}(t) \Big) \xi_{\lfloor sn \rfloor + 1}^{(r)}$$

• $l \in \mathbb{N}$ is a bandwidth parameter satisfying $l/n \to 0$ as $l, n \to \infty$ • multipliers $\xi_1^{(r)}, \ldots, \xi_n^{(r)} \sim \mathcal{N}(0, 1)$ i.i.d.

• Define

$$\hat{\mathbb{W}}_{n}^{(r)}(s,t) = \hat{B}_{n}^{(r)}(s,t) - s\hat{B}_{n}^{(r)}(1,t)$$
; $r = 1, \dots, R$

• Estimates of the extremal sets

$$\hat{\mathcal{E}}_{n}^{\pm} = \left\{ t \in [0,1] \colon \pm (\hat{\mu}_{1}(t) - \hat{\mu}_{2}(t)) \ge \hat{d}_{\infty} - c \frac{\log n}{\sqrt{n}} \right\}$$
 (1)

• Bootstrap version of test statistic:

$$D_n^{(r)} = \frac{1}{\hat{s}(1-\hat{s})} \max \big\{ \max_{t \in \hat{\mathcal{E}}_n^+} \hat{W}_n^{(r)}(\hat{s}, t), \max_{t \in \hat{\mathcal{E}}_n^-} \big(- \hat{W}_n^{(r)}(\hat{s}, t) \big) \big\}$$

4 ロ ト (部 ト (重 ト (重 ト) 重 の Q (42 / 34

• Define

$$\hat{\mathbb{W}}_{n}^{(r)}(s,t) = \hat{B}_{n}^{(r)}(s,t) - s\hat{B}_{n}^{(r)}(1,t)$$
; $r = 1, \dots, R$

• Estimates of the extremal sets

$$\hat{\mathcal{E}}_{n}^{\pm} = \left\{ t \in [0,1] \colon \pm (\hat{\mu}_{1}(t) - \hat{\mu}_{2}(t)) \ge \hat{d}_{\infty} - c \frac{\log n}{\sqrt{n}} \right\}$$
 (1)

42 / 34

• Bootstrap version of test statistic:

$$D_n^{(r)} = \frac{1}{\hat{s}(1-\hat{s})} \max \big\{ \max_{t \in \hat{\mathcal{E}}_n^+} \hat{W}_n^{(r)}(\hat{s}, t), \max_{t \in \hat{\mathcal{E}}_n^-} \big(- \hat{W}_n^{(r)}(\hat{s}, t) \big) \big\}$$

• Take home message: Bootstrap is consistent

Theorem 10

If $d_{\infty} > 0$, then (under suitable assumptions)

$$(\sqrt{n}(\hat{d}_{\infty}-d_{\infty}), D_n^{(1)}, \ldots, D_n^{(R)}) \Rightarrow (D(\mathcal{E}), D^{(1)}, \ldots, D^{(R)})$$

in \mathbb{R}^{R+1} , where $D^{(1)}, \ldots, D^{(R)}$ are independent copies of the random variable $D(\mathcal{E})$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

43 / 34

Theorem 10

If $d_{\infty} > 0$, then (under suitable assumptions)

$$(\sqrt{n}(\hat{d}_{\infty}-d_{\infty}), D_n^{(1)}, \ldots, D_n^{(R)}) \Rightarrow (D(\mathcal{E}), D^{(1)}, \ldots, D^{(R)})$$

in \mathbb{R}^{R+1} , where $D^{(1)}, \ldots, D^{(R)}$ are independent copies of the random variable $D(\mathcal{E})$.

Consistent test for a relevant change point: Reject the null hypothesis $H_0: d_{\infty} \leq \Delta$, whenever

$$\hat{d}_{\infty} > \Delta + \frac{D_n^{\{\lfloor R(1-\alpha) \rfloor\}}}{\sqrt{n}},$$

Finite sample properties

• Mean functions before and after the change point:

$$\mu_1(t) = 0, \qquad \mu_2(t) = egin{cases} 4at, & t \in [0,rac{1}{4}]\ a, & t \in (rac{1}{a},rac{3}{4}]\ a(-4t+4), & t \in (rac{3}{4},1] \end{cases}$$

- Error process: fMA(1)-model
- Hypotheses of a relevant change point

$$H_0: d_\infty \leq 0.4$$
 versus $d_\infty > 0.4$

44 / 34

Simulated rejection probabilities

	n		100			200			500	
	а	1%	5%	10%	1%	5%	10%	1%	5%	10%
	0.37	1.9	4.6	8.2	0.3	0.5	1.1	0	0	0
H_0	0.38	2.1	4.6	7.2	0.1	0.6	1.2	0	0	0.1
	0.39	2.0	5.2	8.7	0.3	1.1	3.1	0.1	0.2	0.8
	0.4	2.3	7.8	16.3	1.5	5.4	11.6	0.7	4.2	9.7
	0.41	6.7	17.4	32.6	7.9	21.3	37.3	18.0	43.8	64.9
H_1	0.42	14.6	35.8	54.9	27.7	62.1	81.9	76.1	96.0	99.5
	0.43	32.7	63.9	78.3	68.1	91.8	96.5	98.1	99.7	99.8