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Motivation

Two sample problem

Sydney Cape Otway

Daily minimum temperature in °C
Daily minimum temperature in °C

Time Time

Figure: Annual temperature recorded in Sydney and Cape Otway, Australia.



Motivation

“classical” hypotheses

o Scientific question: “Does there exist a difference in the (mean) annual
temperature curves ux and py at both locations”

e Mathematical formulation (“classical” hypotheses):
Ho: d(ux,py) =0 wversus Hy: d(ux,py) >0

where
e d is any metric
e ux,py are mean functions of two (independent) functional time series defined
on the interval [0,1]



Motivation

Relevant hypotheses

o Are we really interested in small differences? | do not think so!

o It is very unlikely that the two mean functions are exactly the same
(thus we are testing a hypothesis, which we know to be not true)

o Berkson (1938):

Any consistent test will detect any arbitrary small difference in the parameters if
the sample size is sufficiently large

o If we do not reject the null hypothesis

Ho : d(px, py) =0,

how can we control the type Il error?
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Relevant hypotheses

o Are we really interested in small differences? | do not think so!

It is very unlikely that the two mean functions are exactly the same
(thus we are testing a hypothesis, which we know to be not true)

Berkson (1938):

Any consistent test will detect any arbitrary small difference in the parameters if
the sample size is sufficiently large

o If we do not reject the null hypothesis

Ho : d(px, py) =0,

how can we control the type Il error?

It might be more reasonable to test if the mean functions do not differ
substantially



Relevant hypotheses

Relevant hypotheses |

@ Question: “Does there exist a (scientifically) relevant difference between
the (mean) annual temperature curves ux and puy at both locations”

e Mathematical formulation (relevant hypotheses):
Ho: d(ux,py) <A versus Hy: d(ux,py) > A

where
e d is a suitable metric
e ux,py are mean functions of two (independent) functional time series defined
on the interval [0, 1]
e A > 0 is a threshold defining a relevant difference between the mean functions



Relevant hypotheses

Relevant hypotheses Il

@ Relevant hypotheses:
Ho: d(ux,py) <A versus Hi: d(ux,py) > A

o Note:

“Classical” hypotheses are obtained for A =0

For relevant (A > 0) hypotheses the metric matters

The choice of A depends on the metric and the concrete application
For simplicity one often uses A =0,

but we argue that one should carefully think about this choice



Relevant hypotheses

Relevant hypotheses Il

@ Relevant hypotheses:
Ho: d(ux,py) <A versus Hi: d(ux,py) > A

o Note:

“Classical” hypotheses are obtained for A =0

For relevant (A > 0) hypotheses the metric matters

The choice of A depends on the metric and the concrete application
For simplicity one often uses A =0,

but we argue that one should carefully think about this choice

By investigating the hypotheses (of similarity)

Ho: d(px,py) > A versus  Hyi: d(px,py) <A

we are able to decide for “similar mean functions” at a controlled type | error!
(related to bioequivalence)



Relevant hypotheses

Hilbert- versus Banach spaces

@ [2-Hilbert space methodology is predominant in this context, i.e.

artioxssn) = ([ xt0) — (@) )

@ In this talk we focus on maximum deviation

doo = [lpx — pylloo = sup [ux(t) — py ()]
te[0,1]

o Functions with different shapes may have small [2-distance
o Interpretation of the threshold A seems to be easier for the maximum deviation
e Mathematics is a little more difficult ( — Banach space)
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Relevant hypotheses

Hilbert- versus Banach spaces

@ [2-Hilbert space methodology is predominant in this context, i.e.

i) = ([ (ux(0) — v (1))

1/2

@ In this talk we focus on maximum deviation

doo = [lpx — pylloo = sup [ux(t) — py ()]
te[0,1]

o Functions with different shapes may have small [2-distance
o Interpretation of the threshold A seems to be easier for the maximum deviation
e Mathematics is a little more difficult ( — Banach space)

@ Note: The results provided in this talk are also new, if only “classical”
hypotheses
Ho: doo = |lpx — tylloo =0 versus dso >0

are considered (but not so exciting)
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Two Sample problems - theory

The Banach space C([0, 1])

Setup:

o (Xi)Z1, (Yj)j=1 (independent) samples from two stationary time series in
(C([0,1]), [[ - [loc) with

o Expectations

e Long run variances:
Cx(s,t) = > Cov(Xu(s), Xeui()) (= Cov(Xu(s). (1) )

Cr(s,t) = Y Cov(Yi(s), Yi+i(t)) (= Cov(Yi(s), Ya(t)))

i=—o0



Two Sample problems - theory

The Banach space C([0, 1])

Theorem 1 (CLT )

Under suitable assumptions ((2 + v )-moments, p-mixing, ...), we have
(m/(n+m) = A)

Zpn=Vn+m(Xp — Yo — (ux — py)) ~ Z in C([0,1]),
where Z € C([0,1]) is a centered Gaussian random variable with

Cov(Z(s), Z()) = 3 Cx(s, )+

Cy(S, f)

1
1-A




Two Sample problems - theory

The Banach space C([0, 1])

Theorem 1 (CLT )

Under suitable assumptions ((2 + v )-moments, p-mixing, ...), we have
(m/(n+m) = A)

Zpn=Vn+m(Xp — Yo — (ux — py)) ~ Z in C([0,1]),
where Z € C([0,1]) is a centered Gaussian random variable with

Cov(Z(s), Z()) = 3 Cx(s, )+

1
1\ CY(Sv t)

In particular: if ux = py, we have

Znn=vVn+m(Xn—Y,) ~ Z in C([0,1])




Two Sample problems - theory

First application: “classical” hypotheses in C(]0,1])

@ Reject the “classical” hypothesis,
Ho : doo = ||tx — pty]|looc =0 versus Hi:dw >0
for large values of the statistic

do = || X = Valloo = sup |Xun(2) = Ya(2)]

te[0,1]

9/34



Two Sample problems - theory

First application: “classical” hypotheses in C(]0,1])

@ Reject the “classical” hypothesis,
Ho : doo = ||tx — pty]|looc =0 versus Hi:dw >0
for large values of the statistic

do = || X = Valloo = sup |Xun(2) = Ya(2)]

te[0,1]

@ Critical values:

o Under the null hypothesis we have pux = py and therefore (continuous mapping)

Vit mdee = || Znnlloo ~ [|Z]le = sup 1Z(2)]
tel0,

o Note: The quantiles of the limiting distribution can be estimated, if the long run
variance can be well estimated

o Later: bootstrap

9/34



Two Sample problems - theory

Relevant hypotheses are more difficult

@ Reject the relevant hypothesis,
Ho : doo = ||px — piv]loo < A versus Hi:de > A
for large values of the statistic

doe = || X = Valloo = sup [ Xm(t) = Ya(2)|
te[0,1]

@ Critical values:

o We have to find the limiting distribution of c?oo for any doo > 0
o If dos > 0 the statistic dws is not a functional of the process

Zm,n: \/n"‘m()_(m_»_/n_(MX_MY)) ~Z

o Continuous mapping is not applicable



Two Sample problems - theory

Relevant hypotheses Hp:d, < A

Question: what is the limit distribution of the statistic

Vm+n(dse = doo) = Vm+ ([ X = Valloo — lx — 1y llo)

11/34



Two Sample problems - theory

Relevant hypotheses Hp:d, < A

@ Take home message: Asymptotic distribution is a maximum of a Gaussian process,
calculated with respect to the set of extremal points

€= {te0.1]: lux(t) — pv(t) = du}
of the difference of the mean functions ux and py.

@ Note:
E=E UET,

where
E-={te[0,1]: px(t) —py(t) = —dwx}
£ = {te 0] ux(t) — py(t) = doc}



Two Sample problems - theory

Example:

Extremal sets

Value
0.

-0.05
|

-0.10

0.0 0.2 0.4 0.6 0.8 1.0

Time



Two Sample problems - theory

More details

Theorem 2

Under suitable assumptions ((2 + v )-moments, p-mixing, ...), we have

V4 m (dso — dso) 2, T(E)= max{ sup Z(t), sup —Z(t)}

tegt teE—
and Z € C([0,1]) is a centered Gaussian random variable with

1
1-A

Cy(S7 t)

Cov(Z(s), Z(t)) = %Cx(s, £+

Note: the asymptotic distribution depends on the functions p3 and pp through the
set £
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Two Sample problems - theory

Testing relevant hypotheses

Reject the null hypothesis

Ho: doo <A
and decide for
Hy: doo > A,
whenever
Ui—a,&
deo > A :
+ vn+m

where u;_, ¢ denotes the (1 — a)-quantile of the distribution of T(&)

15 /34



Two Sample problems - theory

Consistency and asymptotic level

0 ifdy <A
. G U1—a,& g
lim ]P’(doo>A+7’): a ifdy =A
,M—00 =+
o R 1 ifdy>A

o Consequences: the test has asymptotic level o and is consistent.

@ However: The quantile u;_, ¢ depends on

o the (unknown) sets of extremal points £~ and £%.
o the (unknown) dependence structure (long-run variances)

@ Solution: A non-standard multiplier Bootstrap procedure

16 /34



Two Sample problems - theory

The main problem: estimation of the extremal points

@ Problem: the null hypothesis is an infinite dimensional set
{1 = p2) € C([0,1]) | [lp12 — p2llo < A}

(in contrast to the “classical” case, where it consists of one point)

o Idea: mimic the distribution of the test statistic for any pair (1, pp) such that
doo = [|11 — pi2lloc < A
Important ingredient: estimates the sets £ and £~ of extremal points
Ehn={t € 10,11 | Xn() = Va() = duc cloglm 1) }

’ vm+n

- L Iog(m+n)}

Enni={t € 1] Rn(t) = Va(t) < oo+ =0T

17 /34



Two Sample problems - theory

Consistency of estimates of the extremal sets

Theorem 4

Under suitable assumptions we have
du(EE, £5) 5

m,n>

where

du(A,B) = max{sup inf |x —y|, sup mf |x —y|}
xEAYE

denotes the Hausdorff distance.




Two Sample problems - theory

Bootstrap

@ Problem: Mimic the dependence structure of the data
@ Solution: Multiplier bootstrap
e For r=1,...,R, define

m—h+1 K+l —1 m
B =varm{= S VE(5 D X0 -~ S x(0))”
k=1 j=k Jj=1
~pux(t)
n—h+1 k4l —1 1
IR D IRCEED SO
k=1 Jj=k j=1

Ry (t)
o h, kb are bandwidth parameters with h/m,h/n— 0 as h,h,m,n — oo
o multipliers €7 €0 ¢\ ¢ ~ N(0,1) i.id.

19/34



Two Sample problems - theory

Bootstrap

@ Problem: Mimic the dependence structure of the data
@ Solution: Multiplier bootstrap
e For r=1,...,R, define

m—h+1 K+l —1 m
B =varm{= S VE(5 D X0 -~ S x(0))”
k=1 j=k Jj=1
~pux(t)
n—h+1 k4l —1 1
IR D IRCEED SO
k=1 Jj=k j=1

Ry (t)
o h, kb are bandwidth parameters with h/m,h/n— 0 as h,h,m,n — oo
o multipliers €7 €0 ¢\ ¢ ~ N(0,1) i.id.
@ Test statistic
K, = max [ sup BY,(1). sup (— Bh(1))

teéh o teém

19/34



Two Sample problems - theory

Bootstrap consistency

Take home message: bootstrap is consistent

Forr=1,...,R, define

K,(n")n = max{ sup é,(n”)n(t), sup (—é,(nr’)n(t))}

te€h teémn

Then (under suitable assumptions)

(Vn+m (de — do), KB oo K = (T(E), TO(E),..., TR(E)),

m,n

in RRTL where TM)(E), ..., T(R)(E) are indendent copies of T(E).




Two Sample problems - theory

Application: test for a relevant difference

@ The null hypothesis in

Ho: doo <A wversus Hi:dy > A

is rejected, whenever

K LR}

doo > A+ 200

+ vn+m
where K,i,},’,?(lfa”} denotes the empirical (1 — a)-quantile of the ordered
bootstrap statistics K,#,];7 R K,i,ﬁ,}.

@ It can be shown: Test has asymptotic level o and is consistent.



Two Sample problems - theory

(a) Under the null hypothesis Hy : doo < A :
. KALRG=a)]}
Jim miuogp(doo > A+ ﬁ) — a,
(b) Under the alternative H; : dos > A we have
KALRG-))

lim inf IP(&OO > A+ ﬁ) ~ 1.

m,n— o0

for any R € N.




Two Sample problems - theory

Finite sample properties

@ Hypotheses:
Ho:dsw <0.1 wversus Hi:ds >0.1

@ Model (fMA(1) error processes)

5at, teo,1]
a, t€ (3, 1)
ux(t) =0, py(t) = S a(—5t+25), te (3, 130
—a, te(g e
a(5t —5) te(3,1]

o Note:
doo = [l px —MYHoo =a
5+:[%7%] ) [1075]

o The case a = 0.1 corresponds to the “boundary” of the hypotheses
doo =A=0.1

23 /34



Two Sample problems - theory

Simulated rejection probabilities

Extremal sets Ho:d, =01

0.05
L

Value
0.00
Empirical rejection probability

-0.05

-0.10

Time d.



Two Sample problems - theory

Confidence bands ( “classical” bootstrap)

o Forr=1...,R, define T\), = | B%).| .. and boundary functions
R4 1 m 1 n T;%L,’f(lfﬂn}
==X -=Y Y(t)+ 2 ——

Mmm( ) m J:Zl J( ) n Jz:; J( ) \/m

Theorem 7

Under suitable assumptions
Cmn = {n e CU0,1]): pin (1) < p(t) < i () V t € [0, 1]}
defines a simultaneous asymptotic (1 — «) confidence band for px — py, that is,

lim liminf P(ux — py € fim.n) >1—a.

R— 00 m,n—o0




Two Sample problems - theory

Simulated coverage probabilities

Extremal sets

0.10

0.05

Value
0.00

-0.05

-0.10

T T T T T T
0.0 02 04 06 08 10

(m,n) [99% 95% 90%
(50,100) | 97.5 920 88
(100,100) | 98.3 94.7 89.3
(100,200) | 98.2 945 90.4
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Two more take home messages (how | got in to this)

One more take home message

X1,y Xpidd, ~ F
Hypotheses

Fh :F'ZZFb

@ Kolmogorov Smirnov statistic

Ko = sup |Fa(x) = Fo(x)|, K:= sup |F(x)— Fo(x)| “o

x€[0,1] x€[0,1]

Raghavachari (AoS, 1973)

Vn(Ka — K) N max { max W(X),ere12>§(—W(X))}

xeEF

where

o W=BoF
o £ ={xeR|F(x) - Fo(x) = £K}

27 /34



Two more take home messages (how | got in to this)

Motivation of this work

The comparison of curves is an important problem in biostatistics (no functional
data)

@ Comparison of dissolution profiles (cooperation with European Medicines
Agency (EMA))

@ Replace AUC and G,y in bioequivalence studies (cooperation with Food and
Drug Administration (FDA))



Two more take home messages (how | got in to this)

Comparison of dissolution profiles

Collaboration with EMA

@ In vitro dissolution profile comparison of
two formulations (test vs. reference
product) in order to demonstrate
bioequivalence

% Dissolved

@ Figure: twelve tablets per product, each

T T T T
measured at six time points 10 20 30 40

Time (min)
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Two more take home messages (how | got in to this)

Bioequivalence (random effect models)

Collaboration with FDA

@ Traditional bioequivalence studies focus on AUC and Cmax

@ This can be misleading (both curves have the same AUC and Cmax)

@ The new methodology compares these curves directly



Assumptions (here for the two sample problems)

The time series (Xj)jen and (Y})jen are stationary

@ There exist constants Ky, Ky, v1,v» > 0 such that, for all j € N,

E[ sup [X(6)""] <Ky, E[ sup V()] < K,
tef0,1] t€(0,1]

@ There exist real-valued random variables My, M, with
o E[M?],E[M2] < oo,
o Xi(t) = X;(¢")| < Mift — |, |X;(2) = Xi(t')] < M|t — ¢'|°

(Xn)nens (Ya)nen are ¢-mixing with exponentially decreasing mixing coefficients

bandwidth parameters satisfy 1 = m®, l, = n for some 0 < 3; < v;/(2 + ;)
fori=1,2.

31/34



Assumptions (here for change point tests)

(A1) For constants K, v > 0 we have

B[ X131 < K

(A2) Rowwise stationarity

o E[X,j]=uY foranyneNandj=1,...,n

o The centered array (X, — p:neN, j=1,..., n) is stationary.

o The covariance structure is the same in each row, that is

Cov(Xnj(t), Xajr (t)) =90 —J' £, t')

forallneNandj,j/=1,...,n.



(A3) (uniformly Holder). There exisits a real-valued random variable M with
° E[M2] < oo
o |Xnj(t) = Xpj(t) <Mt —t|° foralln€Nandj=1,...,n

(Ad) (Xnj:neN, j=1,...,n)is g-mixing with exponentially decreasing mixing
coefficients



The notion of ¢-mixing

@ For two two o-fields F and G, define
#(F,G) =sup {|P(G|F) —P(G)|: F € F, G€g, P(F) >0},
@ For a sequence of (n;: j € N) of C(T)-valued random variables define

o F} the o-field generated by (nj: k <j<Kk).
o @-mixing coefficient

p(k) = sup ¢(FF, Firek)
k’eN

@ The sequence (n;: j € N) is called ¢-mixing whenever

lim o(k) =0

k—o0
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Change point problems



Mathematical model

e (X,j: neN,j=1,...,n) triangular array of random variables with

e X,; € C([0,1])
o E[Xy] = uY ‘
o The sequence (X, — puY: j =1,..., n) is stationary (for all n € N)

e Long run variance

C(s,t) = Y Cov(Xno(s), Xni(t))
@ Assume that the mean functions satisfy for some s* € (0, 1):

lns™]+1) — ... = ,(n)

pr=pM == p5°D and p, = ul ®

e Relevant change points (A > 0):

Ho: doo = sup |pa(t) — p2(t)] < A versus Hi: doo > A
tef0,1]
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The CUSUM statistic under the alternative

@ (smooth) CUSUM process:
Lsn)

(s,t) = E(ZX,U t)—|—n(5— ) )Xn,[anﬂ(t)—SZXnJ(t))

37/34



The CUSUM statistic under the alternative

@ (smooth) CUSUM process:
Lsn)

(s,t) = E(ZX,U t)—|—n(5— ) )Xn,[anﬂ(t)—SZXnJ(t))

@ Note: For the centered version
Lsn]
A 1 j sn sn
W(s, t) = E(Z (Xn’j(t)fﬂw)) +n(s— LnJ ) (Xn,LanH(t)*u(L J+1))

=53 (Xas(0)-)

it can be shown that

W, ~ W in C([0,1]%),
@ W is a centered Gaussian measure on C([0, 1]?) defined by
Cov(W(s, t),W(s',t')) = (s As’ —ss')C(t, ).

37/34



The CUSUM statistic under the alternative

Test statistic (here § denotes an appropriate estimator of s*, to be specified later):

doo = sup sup |®n(57 t)|

§(1 - §) s€[0,1] te[0,1]

Theorem 8

Assume d, > 0, s* € (0,1). Then (under suitable assumptions)

1
Vi (dso — dso) RN D(E)=——— max{ sup W(s*, t), sup —W(s*, t)}7
s*) teE+ teE—

where W is a centered Gaussian measure on C([0,1]?) and

E-={te[0,1]: p(t) — pa(t) = —do }
EF={te0,1]: m(t) - pa(t) = doo}




Bootstrap - main difficulties

For the bootstrap we need:

@ to mimic the dependence structure (see the two sample case)
@ to estimate the set of extremal points £ and £~ (see the two sample case)

@ to estimate the change point s* for two purposes

o the estimate $ appears in the test statistic

e the change point s™ appears in the limiting distribution

e we need an estimate of the change point s™ to center the process U such
that we can mimic the distribution of the process W by bootstrap

39/34



Change point estimator

Estimator of the change point (as usual)

.1 ~  k
$= 5o max UGl

Theorem 9

If dss >0, s* € (0,1) then (under suitable assumptions)

1§ = 5% = Op(n ™).

Proof: One can use very nice results of Hariz, Wylie and Zhang (AoS 2007).



Change point estimator

Estimator of the change point (as usual)

.1 ~  k
$= 5o max UGl

Theorem 9

If dss >0, s* € (0,1) then (under suitable assumptions)

1§ = 5% = Op(n ™).

Proof: One can use very nice results of Hariz, Wylie and Zhang (AoS 2007).

Estimates of the mean functions before and after the change point

|8n] n
= Xoj, flo= > Xuj
j=1

j=|3n]+1



Bootstrap

o Centering
’ Xn.j ifj=1,...,[8n]
Yoi=9y iy i ia
Xnj— (o — 1) ifj=1[8n]+1,...,n
o Note: E[V, ]~ forall j=1,...,n
Lsn] k+/ 1 1 o
B, 1) fz\/< Z il —H;Yn,j(t)) k
1 Lsn|+/ 1 n
* f( ) <7 Z Vo T n Z Y”~J(t))§(L;21J+1
Jj=lsn|+1 j=1

o | € N is a bandwidth parameter satisfying //n — 0 as [, n — oo
multipliers ¢ ... &\ ~ A7(0,1) i.id.
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Consistency

@ Define ) . R
W(s,t) = B (s, t) —sBY(1,t) ; r=1,...,R

@ Estimates of the extremal sets

A R R N logn
&F = {t €10,1]: = (pu(t) — fa(t)) > doe — c—2 } (1)
@ Bootstrap version of test statistic:

1 A N
D) = ———  max{ max W) (s, ¢t , max (— W8, t
0= g e { ma W& ), max (- W(E.0)

n
n



Consistency

Define ) . R
W(s,t) = B (s, t) —sBY(1,t) ; r=1,...,R

@ Estimates of the extremal sets

& = {t €10,1]: £ (fua(t) — fa(t)) > do — C|0g” } )

Bootstrap version of test statistic:

D{") = max { max Wi (3, 1), max ( — Vi (s, t)}
teéy

5(1-3) teéf

n

o Take home message: Bootstrap is consistent



Consistency

Theorem 10

If dss > 0, then (under suitable assumptions)
(Vn(ds — dso), DWY,...,D\F) = (D(E), DY, ... DR)

in RR+1 where D), ... D(R) are independent copies of the random variable D(E).

43 /34



Consistency

Theorem 10

If dss > 0, then (under suitable assumptions)
(Vn(ds — dso), DWY,...,D\F) = (D(E), DY, ... DR)

in RR*1, where DO ... D(R) are independent copies of the random variable D(€).

Consistent test for a relevant change point: Reject the null hypothesis
Hy : doo < A, whenever

. pilRA=a)}

oo >A+ L)
L

43 /34



Finite sample properties

@ Mean functions before and after the change point:

4at, t €0, 3]
pa(t) =0, pa(t) = 4 a, te (73

a(—4t+4), te(3,1]

@ Error process: fMA(1)-model
@ Hypotheses of a relevant change point

Ho : doo < 0.4 versus do > 0.4

Extremal sets

< [
—

Val
—

Time 44 /34



Simulated rejection probabilities

n 100 200 500
a 1% 5% 10% || 1% 5% 10% 1% 5% 10%

0.37 19 46 82 03 05 11 0 0 0

Ho | 0.38 || 21 46 7.2 01 06 1.2 0 0 0.1
0391 20 52 87 03 11 31 01 02 038
0.4 2.3 7.8 163 15 54 116 0.7 42 97
041 67 174 326 | 79 213 373 || 18.0 438 649
Hy | 042 || 146 358 549 | 277 621 819 || 76.1 96.0 995
043 || 32.7 639 783 | 681 91.8 965 || 981 99.7 99.8
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