Energy-conserving numerics and consistency

1. What is the role for the 2nd law in the formulation of energy-consistent subgrid physics
and physics-dynamics coupling?

2. Do we separate physics from dynamics for good reasons? Is it an obstacle to some
"better approaches"? Conversely are there good arguments in favor of not separating?

3. Should all physics be written as PDEs? Would that exclude certain approaches to
parameterizing certain processes (e.g. deep convection)?

4. What needs to be specified in order to clarify which energetics we are talking about?
—> Total energy, thermodynamic potentials, dissipation rates ...

on)

Suppose we find a way to do everything right, and it is not affordable. )
How do we minimize the errors induced by inevitable compromises? Monitor errors?

What to expect / demand in terms of accuracy / convergence?

What approaches could we learn from other fields?
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5. Correctness vs. Cost

Correctness Current state-of-the-art:
» Have we split the problem correctly? - Non-hydrostatic with good asymptotics?

« Correctly solving the mathematical problem? - Conservation, energy, entropy?

Accuracy:

 |s higher-order worth it? - Higher-order HEVI schemes?

 |s implicit worth it? - Numerical convergence in space/time?
Feasibility:

 Efficient calculation (time, resources)? - AMR + block-structured efficiency?

» “Grey zone” confidence? —-> More rigorous tests?
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Block-structured stencils, “brick” code-generation
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Bricks can be faster for higher-order, coupled stencils

Name Brick GStencil/s & Speedup
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Speed-up depends on a lot of factors: 10 ‘N =
 Aggressive 6D tiling w/ auto-tuning baseline £ D
« Very low HBM (& L1) data movement 20 - 5 L

compared to tiling larger array sizes
» Greatly reduces # of streams, cache misses 0
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Nonlinear column solves use batched

. “ MKL kji-Layout
Column solvers are an issue 500 [ SSTA ijk-Layout

. . ~— SSTA ikj-Layout
= Non-linear for numerical accuracy,  STRRAM Tuad

asymptotics
= Typically 1-3 iterations 400 F |
= k-major or i-major?

1

Banded solvers are bw-bound 300 [ N ]
= Despite lots of flops, also requires

same order of data

= Fast divides/reciprocal on KNL
mean memory bw-bound

= Even batched MKL library calls
have overhead, generalities 100 F  Ll/core L2/core .
~32KB ~ 512 KB

200 [ ' .

Effective Bandwidth [GB/s]

- o > - 3 - - - -

Porting to GPU and MPI
optimizations in progress
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Joint work with
Ferguson, Jablonowski
(U. Michigan)
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Example: Vorticity dynamics, AMR vs. uniform

Joint work with
Ferguson, Jablonowski
(U. Michigan)
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Op-split
Implicit

Explicit

AMR time stepping: RK ImEXx, but also SDC, R-W, QSS, ...
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Standard “subcycling” dynamic
AMR algorithm, conservative

Hans Johansen, LBNL
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v calculate H build solve
exchange Jacobian system
ghost

exchange alculate calculate
operator operator
. 2nd or 4th-order implicit
4th-order explicit operator P
time step limited by CFL
(horizontal compressible)

(no CFL constraint)
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3D AMR: Idealized Tropical Cyclone
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AMR Time accuracy across refinement boundaries?

« AMRin “grey zone:” hydrostatic (> 20km, large aspect ratios) vs. non-hydrostatic (< 10 km)?
» Aspect ratios depend on horizontal resolution, orography, kinked/stretched vertical mappings

» Implicit solver should asymptote to Richardson’s eqgn / hydrostatic vertical velocity
opt
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Nonhydrostatic Gravity vs. Acoustic Waves

Potential temperature Pressure perturbation
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Vertical AMR Challenges
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» Coupling implicit wave equation,
“volume discrepancy,” and physics
—> as in complex combustion codes

» At coarse resolutions, system only
good for 1-2 modes at 10x CFL

« Fast modes damp rapidly, but oscillate

- Very under-resolved, phase error flips
signs every solve

» Kinked vertical mappings exacerbate
with eigenmode shapes

 AMR complications — space-time
convergence vs. vertical refinement?
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Space-time accuracy, spectral resolution matters
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Global simulations at coarse resolutions?

Caldfornia Mountain Reglon

[Rhoades
et al, 2017]

Degrwind Topody sy 1w
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Complex orography €-> non-smooth mappings?

Distorted mesh into PBL? 2
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Complex orography with cut cells, smooth mappings?
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[Shaw, Weller 2016]
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Example: Grounding line as a Multifluid Interface
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Energy-conserving numerics and consistency

1. What is the role for the 2nd law in the formulation of energy-consistent subgrid physics
and physics-dynamics coupling?

2. Do we separate physics from dynamics for good reasons? Is it an obstacle to some
"better approaches"? Conversely are there good arguments in favor of not separating?

3. Should all physics be written as PDEs? Would that exclude certain approaches to
parameterizing certain processes (e.g. deep convection)?

4. What needs to be specified in order to clarify which energetics we are talking about?
—> Total energy, thermodynamic potentials, dissipation rates ...

on)

Suppose we find a way to do everything right, and it is not affordable. )
How do we minimize the errors induced by inevitable compromises? Monitor errors?

What to expect / demand in terms of accuracy / convergence?

What approaches could we learn from other fields?
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