Energy-conserving numerics and consistency

- 1. What is the role for the 2nd law in the formulation of energy-consistent subgrid physics and physics-dynamics coupling?
- 2. Do we separate physics from dynamics for good reasons? Is it an obstacle to some "better approaches"? Conversely are there good arguments in favor of not separating?
- 3. Should all physics be written as PDEs? Would that exclude certain approaches to parameterizing certain processes (e.g. deep convection)?
- What needs to be specified in order to clarify which energetics we are talking about?
 → Total energy, thermodynamic potentials, dissipation rates ...
- 5. Suppose we find a way to do everything right, and it is not affordable.

 How do we minimize the errors induced by inevitable compromises? Monitor errors?
- 6. What to expect / demand in terms of accuracy / convergence?
- 7. What approaches could we learn from other fields?

5. Correctness vs. Cost

Correctness

- Have we split the problem correctly?
- Correctly solving the mathematical problem?

Accuracy:

- Is higher-order worth it?
- Is implicit worth it?

Feasibility:

- Efficient calculation (time, resources)?
- "Grey zone" confidence?

Current state-of-the-art:

- → Non-hydrostatic with good asymptotics?
- → Conservation, energy, entropy?
- → Higher-order HEVI schemes?
- → Numerical convergence in space/time?
- → AMR + block-structured efficiency?
- → More rigorous tests?

Block-structured stencils, "brick" code-generation

Intel KNL 7250

NVIDIA P100

Higher is

Bricks can be faster for higher-order, coupled stencils

Name	Brick GStencil/s & Speedup		
	KNL SP	KNL DP	P100 SP
7pt	26.46 (0.9×)	10.96 (0.7×)	41.04 (1.4×)
13pt	24.93 (1.0×)	10.59 (0.8×)	35.79 (1.8×)
19pt	24.35 (1.2×)	9.98 (0.9×)	32.18 (2.1×)
25pt	21.83 (1.3×)	9.20 (1.2×)	29.08 (2.3×)
27pt	20.84 (1.0×)	8.59 (0.9×)	26.5 100
125pt	8.67 (4.1×)	4.08 (4.4×)	16.7
iso	14.24 (1.1×)	6.52 (1.0×)	19.9 80
CNS	1.98 (2.3×)	1.03 (2.9×)	3.1

Speed-up depends on a lot of factors:

- Aggressive 6D tiling w/ auto-tuning baseline
- Very low HBM (& L1) data movement compared to tiling larger array sizes
- Greatly reduces # of streams, cache misses

P100 DP

 $24.25 (1.1 \times)$

 $21.06 (1.4 \times)$

 $18.84 (1.7 \times)$

16.94 (1.8×

Nonlinear column solves use batched

Column solvers are an issue

- Non-linear for numerical accuracy, asymptotics
- Typically 1-3 iterations
- k-major or i-major?

Banded solvers are bw-bound

- Despite lots of flops, also requires same order of data
- Fast divides/reciprocal on KNL mean memory bw-bound
- Even batched MKL library calls have overhead, generalities

Porting to GPU and MPI optimizations in progress

. . .

MKL *kji*-Layout

COMPUTATIONAL

COMPUTATIONAL RESEARCH DIVISION

Example: Vorticity dynamics, AMR vs. uniform

Uniform C1024

Joint work with Ferguson, Jablonowski (U. Michigan)

AMR time stepping: RK ImEx, but also SDC, R-W, QSS, ...

3D AMR: Idealized Tropical Cyclone

c64/c256 (~160/40 km)

Joint work with Ferguson, Jablonowski (U. Michigan)

AMR Time accuracy across refinement boundaries?

- AMR in "grey zone:" hydrostatic (> 20km, large aspect ratios) vs. non-hydrostatic (< 10 km)?
- Aspect ratios depend on horizontal resolution, orography, kinked/stretched vertical mappings
- Implicit solver should asymptote to Richardson's eqn / hydrostatic vertical velocity

$$\frac{\partial p^{H}}{\partial t} = w\rho g - g \int_{r}^{\infty} \nabla^{\perp} \cdot (\rho \mathbf{u}^{\perp}) dr'$$

$$\left(\frac{\partial w}{\partial t} + \frac{1}{\rho} \frac{\partial \pi}{\partial r}\right) = -\mathbf{u}^{\perp} \cdot \nabla^{\perp} w - w \frac{\partial w}{\partial r},$$

$$\left(\frac{\partial \pi}{\partial t} + \rho c^{2} \frac{\partial w}{\partial r}\right) = g \int_{r}^{\infty} \nabla^{\perp} \cdot (\rho \mathbf{u}^{\perp}) dr' - \rho c^{2} \nabla^{\perp} \cdot \mathbf{u}^{\perp} - \mathbf{u}^{\perp} \cdot \nabla^{\perp} p^{H} - \mathbf{u} \cdot \nabla \pi$$

$$\rho c^{2} \frac{\partial w}{\partial r} = g \int_{r}^{\infty} \nabla^{\perp} \cdot (\rho \mathbf{u}^{\perp}) dr' - \rho c^{2} \nabla^{\perp} \cdot \mathbf{u}^{\perp} - \mathbf{u}^{\perp} \cdot \nabla^{\perp} p^{H}$$

Nonhydrostatic Gravity vs. Acoustic Waves

Potential temperature

Pressure perturbation

Vertical AMR Challenges

- Coupling implicit wave equation,
 "volume discrepancy," and physics
 → as in complex combustion codes
- At coarse resolutions, system only good for 1-2 modes at 10x CFL
- Fast modes damp rapidly, but oscillate
- → Very under-resolved, phase error flips signs every solve
- Kinked vertical mappings exacerbate with eigenmode shapes
- AMR complications space-time convergence vs. vertical refinement?

Space-time accuracy, spectral resolution matters

Global simulations at coarse resolutions?

Complex orography ←→ non-smooth mappings?

Complex orography with cut cells, smooth mappings?

AMR + cut cells have the potential to correctly represent topography at all resolutions, without smoothing terrain or distorting mapping.

Example: Grounding line as a Multifluid Interface

Energy-conserving numerics and consistency

- 1. What is the role for the 2nd law in the formulation of energy-consistent subgrid physics and physics-dynamics coupling?
- 2. Do we separate physics from dynamics for good reasons? Is it an obstacle to some "better approaches"? Conversely are there good arguments in favor of not separating?
- 3. Should all physics be written as PDEs? Would that exclude certain approaches to parameterizing certain processes (e.g. deep convection)?
- What needs to be specified in order to clarify which energetics we are talking about?
 → Total energy, thermodynamic potentials, dissipation rates ...
- 5. Suppose we find a way to do everything right, and it is not affordable.

 How do we minimize the errors induced by inevitable compromises? Monitor errors?
- 6. What to expect / demand in terms of accuracy / convergence?
- 7. What approaches could we learn from other fields?

