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Conventional PDC paradigm
Evaluate physics on dynamics grid: the GLL grid

Galerkin method defines nodal point values

Degree three Lagrange basis set
(puts the ‘spectral’ in ‘spectral-element’)
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Conventional PDC paradigm
Evaluate physics on dynamics grid: the GLL grid

Galerkin method defines nodal point values

Degree three Lagrange basis set
(puts the ‘spectral’ in ‘spectral-element’)
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Issue(‘ish) 1: Is this a ‘large-scale state,” as physics assumes?



Conventional PDC paradigm
Evaluate physics on dynamics grid: the GLL grid
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Degree three Lagrange basis set
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Issue(‘ish) 1: Is this a ‘large-scale state,” as physics assumes?

FV based remapping to coupler req’s control volumes

Issue 2: No formal definition of a control volume.



Control Volumes in CAM-SE

“...their spherical areas exactly match the Gaussian weight multiplied by the metric term
(these weights are used for integrating the basis functions over the elements and can
therefore, in this context, be interpreted as areas).” (Herrington et al. 2018, MWR)
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Issue 3: Physics can exacerbate grid imprinting.
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CAM-SE-CSLAM

Conservative Semi-Lagrangian Multi-tracer

CSLAM grid GLL grid

-=)

Coarser physics grid Finer physics grid

. pg4

Lauritzen et al. 2017; Herrington et al. 2018; 2019




CAM-SE CAM-SE-CSLAM
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The maps are not reversible
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The maps are not reversible
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Mapping tracer tend from pg2 to CSLAM
The ‘Negativity Problem’

(a.) ml(pg3) (b) mk(pg?) (C) fk(pﬂ)

(d.) £, (e.) m, (9% +f (79%)




Mapping tracer tend from pg2 to CSLAM
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Am(S) = g, —m(™™, excess mixing ratio such that no local minima is produced

Amount of mass that can be removed on overlap grid per A(pg ). ZA X Apy e A



Mapping tracer tend from pg2 to CSLAM

(a') Ak(pﬂ) (b> Az(pgé’) (C) AM
A7 AS AQ AB.T 43.8 A-i A-19
A3 A4
/146
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A1 Az Aa Al 1 A1.2| A?z Az.:s
Am(S) = g, —m(™™, excess mixing ratio such that no local minima is produced

Amount of mass that can be removed on overlap grid per A(pg ). ZA X Apy e A

To ensure the mass removed by physics does not exceed this amount, solve for y:

N~ (Pg2)— (pg ) _ —
AAPEI A ZAm;j,W”)ApM(SAkg,

The physics mass increment on overlap grid: vy A_pkfcsAkg,



Mapping tracer tend from pg2 to CSLAM

In an aqua-planet simulation, mass leaks of water vapor improve
from 107 to 10°1® Pa per time-step (i.e., within machine-precision)

errors computed after Lauritzen and Williamson (2019)

Am(S) = g, —m(™™, excess mixing ratio such that no local minima is produced

Amount of mass that can be removed on overlap grid per A(pg ). ZA X Apy e A

To ensure the mass removed by physics does not exceed this amount, solve for y:

2
AA(ng)A (rg )f(Pg ) — ZA (excess)A €5Ak€,
The physics mass increment on overlap grid: yAm\< " Ap, 6 Ay,

Herrington et al, 2019, JAMES



fr (gll) spectral density (K*/s%), 369 hPa level
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Mapping phys tend from pgX to GLL grid

wavelength (km)
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Dotted Lines
— Phys tend on pgX grid

Solid Lines
— Phys tend on GLL grid
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Conclusions

* Problems with PDC method of evaluating physics on GLL grid

« Physics requires ‘large-scale state’ and nodal point values are not
representative of the state in it's vicinity.

« Evaluating physics at element boundaries exacerbates grids imprinting.

 FV based remapping to coupler requires control volumes but there is
no formal definition of a control volume

« CAM-SE control volumes are not volume mean state.

« A separate finite-volume physics grid is a solution to these problems

« Mapping between grids still preserves important design aspects (mass
conservation, consistency, preserves shape and linear correlations)

« Through careful consideration, a lower resolution physics grid can preserve
tracer mass, and will not alias onto the resolved scales of motion.
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fr (gll) spectral density (K*/s?), 369 hPa level
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