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INTROD.: THE CLASSICAL FIBONACCI SEQUENCE

Consider the classical Fibonacci sequence
1,1,2,3,5,8,11,19, - - -

and the need to represent it concisely. If we let {a,},>0 denote this

sequence, we know that
ant2 = ant1 +an, witha=1 and a; =1.

We can organize this matricially as follows:
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11
1 2
Hy=1 2 3
35 11




If we label the columns 1,5,52, 53 .-, we can represent the 2-step

recursion as
S2=5+1.

One can then consider the polynomial g € C[s] given by
g(s) =5 — (s +1),

whose zeros are sy = 1%@ ~ —0.618 and 51 = 1+2‘/§ 2 1.618 and satisfy

the equations sy + s1 = —1, sgs1 = —1. We now define a linear functional

on the space of polynomials, given as

La(p) := pods, + p1ds, (p € C[s]),

where pg, p1 € R and 4, denotes the evaluation at z. We wish L, to

represent a. This requires L,(s") = a, (n > 0), that is,






In particular,

po + p1 = aog
and
poso + p151 = ai.
Then
po+pr=1
and

poso + p1s1 = 1.



It follows that

5—-5
= >~ (0.276
o 10
and B
5++v5
= = 0.724
p1 10 0
Thus,

La(p) = pop(s0) + p1p(s1) (P € C[s]).

This can also be interpreted as integration of p with respect to the

positive 2-atomic Borel measure

poo= podo + p1d1

5_12)/g 550 + 5‘5(\)/5 651 '




As a result, the Hankel matrix H,, thought as an operator on the Hilbert
space ¢?(Z, ), has p as spectral measure; this is also the spectral measure
of the operator Ms of multiplication by the independent variable in the
space L?(;). When the initial sequence corresponds to the moments of
the weight sequence of a subnormal unilateral weighted shift W acting on
(2(Z), the measure 1 is also the Berger measure of W. This is not the
case of the Fibonacci sequence (a,), because the resulting unilateral

weighted shift is not even hyponormal, much less subnormal.



The expressions [ s" dy (n > 0) are the moments of ji. For every n > 0,

the matrix
a0 a1 a as s ap
a a as as -+ dngl
a2 a3 a4 as st dpg2

Ha(n) :==

as a4 as a6 - dn+3
dn dap+1 dan42 dp43 azn

is called the moment matrix for the finite collection ag,--- ,a»,. It is not

hard to see that Hy(n) > 0 (n > 0) (in the Hilbert space sense) if and only
if L, >0, that is, Ly(p) > 0 for all p > 0.



INTRODUCTION: TRUNCATED HANKEL MATRICES

The matrices Hy(n) (n > 0) are the truncated matrices of H,. In view of

the 2-step recursive relation

$2=5+1,
we have
rank H,(0) = 1
rank Hy(1) = 2
rank H(2) = 2
and

rank Hy(n) =2 (‘all n > 3).

We will say that H,(2) is a flat extension of H,(1). Also, H, is a flat

extension of H,(1).



More generally, if A and M are positive semidefinite matrices such that
A B
M= ,
B* C
and rank M = rank A, we will say that M is a flat extension of A.

Also, if @ is an infinite square matrix, and @, are its finite truncations of

size n, it is true that

Q>0=detQ,>0 (all n>0).

However, the converse is false.



In joint work with Lawrence A. Fialkow (SUNY at New Paltz), several
years ago we initiated the study of truncated moment problems in one or
several real or complex variables. A central result in the theory is the
so-called Flat Extension Theorem. In this talk we plan to discuss this
result, and some applications to numerical analysis (quadratures) will be
presented. Motivated by the Fibonacci example, We use the support of a
representing measure for this, and this is the common zero set of one or
more polynomials. As in the case of quadratures, one needs to allow for
non-positive densities, while keeping everything within the real numbers.
Solution of TMP involves finding properties of structured matrices that are
necessary and sufficient conditions for the existence of representing

measures.



INTRODUCTION: NUMERICAL INTEGRATION

A) Low-order polynomial approx. on subintervals of decreasing size

Commonly used Newton-Cotes formulas

T n=1 [Jf()dx = hf(a) + F(b)] 25 F(€)
S n=2 [Jf(x)dx = Blf(a) + 4F (252) + F(b)] —hp FD ()
3 b 3hif(a) + 3f(a+ h) + 3f(b— h) + f(b)]

20[7f(a) + 32f (a + h) + 12f(252)

= Pf(x)dx =
=4 i) d { +32f (b — h) + 7F(b)] — Sh FO)(¢)



B) Polynomial approximation of increasing degree, using fewer,

strategically-placed nodes

A quadrature (or cubature) rule of size p and precision m is a numerical

integration formula which uses p nodes, is exact for all polynomials of
degree at most m, and fails to recover the integral of some polynomial of

degree m + 1.

Gaussian Quadrature (size n, precision 2n — 1)
f f(t) dt =31 pjf( (" )) for every polynomial f € Ry,_1[t]

(Gaussmn means minimum number of nodes possible)



Interpolating Equations:

ceey

“eey

2n—1

2n—2



Example: n =2
po+p1 =
poto + p1t1
potd + p1t?
poty + p1t; =

—?, t = ?

O wnh O N

po=p1=1, tg =

1 3 1 3
[ S Sonous
—1ly=0 j=0 k=0

NA textbooks prove this by using orthogonal Legendre polynomials

(to < ... < tp—1 are the zeros of the nth Legendre polynomial)



(RC-L. Fialkow, 1990) Can do this as follows:
Yo:=2, 11:=0, 7 := %, v3:=0, 714 1= %, etc.

Assume n even, and form the Hankel matrix

2 03 o =
2 2

2 2 2

3 0 5 0 a3

H(”) = 5

2 2

0 n+1 0 2n—1 0

2 0 2. ... 0 * NEW MOMENT

n+1 n+3

label the columns 1, T, T2, ..., T", require that T" = @ol + ...+ @p_1 T" 1,
build the polynomial g(t) := t" — (o + ... + @n_1t"1),

(this produces a non-iterative construction of Legendre polynomials)



find its zeros (tg < ... < tp—1),
and

compute the densities using the Vandermonde system

1 1 s 1 Po Yo
to t1 - tha P1 71
n—1 n—1

g th 1 Pn-1 Yn—1



To solve the Gaussian quadrature problem, RC and Fialkow's basic idea
was to augment the original Hankel matrix by one row and one column at

a time, preserving the rank (which a fortiori preserves positivity):
H(n) < H(n+1) < ...H(o0)
Then define

(P, q)H(oo) = (H(o0)P, q)e,,

and show that
{p, q>H(OO) = /PC_I du

for some finitely atomic rep. meas., with supp u = Z(g).



TRUNCATED MOMENT PROBLEMS

The Truncated Real Moment Problem

Given a family of real numbers 3: Bo, 1, ..., B2n with 8o > 0, the TMP
entails finding a positive Borel measure u supported in the real line R such
that

6,-—/t’du (0 < i< 2n);
1 is called a representing measure for 5.

THEOREM
FULL MP (Hamburger, 1920)

Bo B1 B2 Bs
Br B2 B3

Ju e Aln) == (Bi+j)lj=0=| B2 Bz - - -+ | 20V n>0.
B3



THEOREM
FULL MP (Stieltjes, 1894)

Iu with supp p C [0, +00)

< (Bit))ij=0 = 0 and (Biyjt1)ij=0 = 0V n = 0.

Bo B1 B2 B3
Br B2 B3
B Bz . . ... | >0and

B3

B B2 B3 Pa
Bo B3 PBa
B3 Pa

Ba

(localizing matrix)

The positivity of the second matrix guarantees that supp u C [0, +00).



THE TRUNCATED COMPLEX MOMENT PROBLEM

@ Given v : 00,7015 V105 - - - s 70,25 - - - s Y2n,0, With 00 > 0 and ;i = ¥,
the TCMP entails finding a positive Borel measure p supported in

the complex plane C such that

N = /Zizjdu (0 < i+j<2n);

i is called a rep. meas. for 7.

In earlier joint work with L. Fialkow,
@ We have introduced an approach based on matrix positivity and
extension, combined with a new “functional calculus” for the columns

of the associated moment matrix.



@ We have shown that when the TCMP is of flat data type, a solution

always exists; this is compatible with our previous results for

supp © C R Hamburger TMP)
Stieltjes TMP)
Hausdorff TMP)

Toeplitz TMP)

supp 4 C [0,00)

supp 1 C [a, b]
supp p C T

—~ ~~ ~~

@ Along the way we have developed new machinery for analyzing
TMP’s in one or several real or complex variables. For simplicity,
in this talk we focus on one complex variable or two real

variables, although several results have multivariable versions.



@ Our techniques also give concrete algorithms to provide finitely-atomic

rep. meas. whose atoms and densities can be explicitly computed.
@ We obtain applications to quadrature problems in numerical analysis.

@ We have obtained a duality proof of a generalized form of the
Tchakaloff-Putinar Theorem on the existence of quadrature rules for

positive Borel measures on RY.



SOME APPLICATIONS

@ Subnormal Operator Theory (unilateral weighted shifts) (subnormal

means the restriction of a normal operator to an invariant subspace.)

For apg < a1 < ap < -+, the weighted shift W,, is subnormal if and

only if the moment problem a2a?---a2 | = [skdu(s) is soluble.
@ Physics (determination of contours, QM, QFT)
@ Computer Science (image recognition and reconstruction)
o Geography (location of proposed distribution centers)

@ Probability (reconstruction of p.d.f.’s)



(2

Environmental Science (oil spills, via quadrature domains)

®

Engineering (tomography)

(4

Optimization (finding the global minimum of a real polynomial in

several real variables - J. Lasserre)

(4

Function Theory (a dilation-type structure theorem in Fejér-Riesz

factorization theory - S. McCullough)

(4

Geophysics (inverse problems, cross sections)

Typical Problem: Given a 3-D body, let X-rays act on the body at
different angles, collecting the information on a screen. One then seeks to
obtain a constructive, optimal way to approximate the body, or in some

cases to reconstruct the body.



Basic PosiTiviTy CONDITION

P, : polynomials pin z and Z, degp < n

Given p € Py, p(2,2) = X o<itj<n a;z'7,

0< [ 16(z2) P du(z.2)
= Zayékgffi“'zzj“'kdﬂ(z,z)
ijke

= Z AjjAkeY i+l j+k-
iike

@ To understand this “matricial” positivity, we introduce the following

lexicographic order on the rows and columns of M(n):

1,7,2,7%,27,7%, . ..



Define M[i,j] as in

Y32 Y41 750
23 732 Y41
Y14 Y23 Y32
Y05 Y14 723

)

MI3,2] :=

Then

(“matricial” positivity) Z ajjakeYivejrk = 0
ijke

M[0,0] M[0,1] ... MIO,n]
M[1,0] M[1,1] .. MI[1,n]

M[n,0] Mi[n,1] ... Mi]n,n]



For example,

)

M(1) =

700
710
7Yo1
720
Y11
Y02

Y00 o1
Y10 Y11
o1

7o1
711
Y02
Y21
Y12
7Yo3

710
720
711
712
Y21
Y12

702

702
Y12
Y03
22
713
04

Y10
Y20
Y11

Y11
Y21
Y12
731
Y22
713

Y20
730
Y21
Y40
V31
Y22




In general,

M(n+1) = < MB(f) i)

Similarly, one can build M(c0).

Positivity Condition is not sufficient:

By modifying an example of K. Schmiidgen, we have built a family
7005 Y01,7105 -5 Y065 ---» Y60 With positive invertible moment matrix M(3)

but no rep. meas. But this can also be done for n = 2.



For the Real TMP, given 3 : Soo, So1, B10, - - 5 Bo2ns *+ , B2n,0, With
Boo > 0, we seek a positive Borel measure 1 supported in R?. In this

case, we let

M(n)u = Yitj> i,j € Zﬁ_.

The TCMP and TRMP are structurally equivalent, meaning that there is a
bijection linking TCMP in d variables with TRMP in 2d variables, via the
map z = x + iy. Moreover, it is possible to modify a TRMP and obtain

an equivalent TRMP using degree-one transformations of the form
p(x,y) == (ax + by + e,;cx + dy + f),

where ad — bc # 0.



For moment problems in C,

M(3) =

700
710
701
720
Y11
702

730
Y21
Y12

703

Z

o1
Y11
702
721
712
703

731
V22
713
7Yo4

Z

710
720
Y11
730
Y21
Y12

Y40
731
22
713

72
702
V12
703
722
713
o4

732
723
Y14
Y05

zZ
711
721
V12
731
Y22
713

a1
V32
V23
Y14

720
730
721
Y40
731
Y22

750
Va1
V32
723

73
703
713
Yoa
Y23
Y14
Y05

733
Y24
Y15
7Yoo

Z7?
712
722
713
732
723
Y14

Y42
Y33
Y24
Y15

2’7
721
731
22
Ya1
V32
Y23

Y51
Ya2
733
Y24

73
730
Y40
731
Y50
Ya1
732

760
Y51
Ya2
V33




For moment problems in R?, the moment matrix M(3) is given by

1 X Y X% XYy Y2 : X3 X°Y XY? y3

1 Boo Por Pro Po2 B P : Boz P2 Bar Pao
X Bor Bo2 Pu Bos Bz Bar i P Pz P2 Pa
Y B Bu B B2 Ba P i Pz B P o
X2 Bo2 Bos P2 Poa P13 Boo : Pos P P B
XY Bu P Pa P13 Bn P Pu Bn Pn Bau

Y2 Bao Bor B PBor B Bao i Baz B2 Bar Bso

X3 Bos Poa P13 Pos P Pz ¢ PBos Pis Poa Pas
X2Y B P13 P2 P Pas B2 ¢ P15 P Pz Pa
XY? o1 fPoo Pa1 Poz B2 Par 1 Pu Bm P Pa

Y3 B0 Pa1 fao B2 PBar Bso 0 Bz Paz PBsr oo




MOMENT PROBLEMS AND NONNEGATIVE

PovryNoMiALS (FULL MP CASE)

o M :={y =+~ admits a rep. meas. u}
@ Py : nonnegative poly’s

Duality

. 2
For C a cone in RZ: we let

cr={¢e RZ: supp(€) is finite and (p,&) > 0 for all p € C}.

o (Riesz-Haviland) P = M
For, consider the Riesz functional Ay(p) := p(y) = (p,~), which
induces a map M — P} (v +— A,); Haviland’'s Theorem says that
this maps is onto, that is, there exists p r.m. for v if and only if
Ay >0on Py.



There exists a version of Riesz-Haviland for TMP, as we will see shortly.

The link between TMP and FMP is provided by another result of Stochel
(2001):

() has a rep. meas. supported in a closed set K C R? if and only if, for

each n, ") has a rep. meas. supported in K.




PosiTiviTy OF BLOCK MATRICES

THEOREM

(Smul’jan, 1959)

A>0
A B

B C )
C > W*AW

A

B
Moreover, rank ( —_— ) =rank A & C = W*AW.




COROLLARY

'|

A

Assume rank = rank A. Then
B* C

A B
A>0& > 0.
A B
B* C

is a flat extension of A. Observe that

A B\ ( A AW
B ¢ ] \ waA waw /)’

We say that




COROLLARY
Assume that

A B
>0
Then

A B B A AW n 0 0
B* C B W*A W*AW 0 C—wWw-AW
Schur complement

= (VA vaw )" (VA vAw )
+( 0 m)*(o VC— WAW )

(sum-of-squares representation).




FuncTioNAL CALCULUS

For p € Pn, p(2,2) = Y o<1 j<n@ijZ'Z, let p denote the vector of
coefficients and define

p(Z,2) =) a;2'Z = M(n)p.
If there exists a rep. meas. u, then
p(Z,2) =0« supp 1 C Z(p).
The following is our analogue of recursiveness for the TCMP
(Recursiveness) If p,q, pg € P,,and p(Z,Z) =0,

then (pq)(Z,2) = 0.



SINGULAR TMP; REAL CASE

@ Given a finite family of moments, build the relevant moment matrix.
o Label the columns, 1, X, Y, X2, XY, Y?, ... .

@ Identify column relations, as p(X, Y) = 0.

@ Observe that p(X, Y) = 0 is equivalent to M(n)p = 0.

o Build algebraic variety

Vi= mpePn, pEker M(n) ZP'

@ Always true: in the presence of a measure,

supp u C V.




Therefore,
r:=rank M(n) < card supp p < v :=card ).
It follows that if r > v then M(n) has no representing measure.

If the variety is finite there's a natural candidate for supp u, i.e.,

supp p =V

(However, it is possible for the inclusion supp 1 C V to be proper.)
A new notion, of core variety Veore, has recently been introduced by G.

Blekherman and L. Fialkow. When the TMP is soluble, supp it = Veore-



GENERAL STRATEGY FOR SOLVING THE BIVARIATE

TRUNCATED MOMENT PROBLEM

Invertible M(n) Singular M(n)

n=1 | r = 3; there exists a flat ex- | r < 2; there exists a flat ex-

tension M(2). tension M(2).

n=2 | r = 6; there exists a flat ex- | r < 5; for r < 4, there exists a
tension M(3). flat extension M(3); for r =5,

there exists a measure p with

cardsupp i < 6.




Invertible M(n)

Singular M(n)

n=3 |, - 10; there exists M(3) with no |’ < 9; need to distinguish
representing measure. between finite and infinite
algebraic varieties.
n=4 |y =15 open problem partial results are known
n=25 open problem

r = 21; open problem. there ex-
ists M(5) with 22-atomic represent-
ing measure, but no 21-atomic rep-
resenting measure. This was proved
by J.E. McCarthy via a topological
dimension argument that uses the

Open Mapping Theorem.




FIRST EXISTENCE CRITERION FOR TCMP

THEOREM

(RC-L. Fialkow, 1998) Let ~ be a truncated moment sequence. TFAE:
(i) v has a rep. meas.;

(ii) v has a finitely atomic rep. meas. (with at most (n+ 2)(2n+ 3)
atoms);

(iii)) M(n) > 0 and for some k > 0 M(n) admits a positive extension
M(n + k), which in turn admits a flat extension M(n+ k +1). (The
number of steps k satisfies k < 2n? 4 6n + 6) ).




CASE OF FLAT DATA

Recall: If 11 is a rep. meas. for M(n), then rank M(n) < card supp pu.

s flat if M(my = ML) M= DW
! W*M(n—1) W*M(n—1)W )

THEOREM
(RC-L. Fialkow, 1996) If ~y is flat and M(n) > 0, then M(n) admits a

unique flat extension of the form M(n+ 1).

| 5\

THEOREM
(RC-L. Fialkow, 1996) The truncated moment sequence ~y has a

rank M(n)-atomic rep. meas. if and only if M(n) > 0 and M(n) admits a

flat extension M(n + 1).

To find 1 concretely, let r :=rank M(n) and look for the analytic column

relation



Z'=cl+aZ+..+c¢1Zh
We then define
p(z) =z —(co+ ...+ 1z

and solve the Vandermonde equation

r -1 po Y00
2 Zr-1 P1 o 701
-1 -1
26 erfl Pr—1 Yor—1

Then



AN APPLICATION TO OPTIMIZATION

Consider the problem

p* = inf p(x) (x € R") subject to hy >0, -+, hy >0;

that is, we try to minimize the values of the polynomial p over the
semialgebraic set F determined by the polynomials hy, -, hy,.
Let dy := [(degp)/2] and d; := [(degh;)/2]. For

t > max{do,di,--- ,dn}, consider the associated optimization problem



AN APPLICATION TO OPTIMIZATION, CONT.

pi == inf p B (t € Zy)

subject to
Bo=1, M(t)[3] >0 and M, (t—d)[B]>0( =1,---,m).
This is a semidefinite program. One proves that
Pi < Pry1 <P

That is, the sequence (p}): approximates the absolute minimum p* from

below.



AN APPLICATION TO OPTIMIZATION, CONT.

J. Lasserre was able to use the Flat Extension Theorem to prove that the
sequence converges to p* when the semialgebraic set F is compact.
Hence, the above mentioned semidefinite program can be used to
approximate the minimum value of p over F.

Moreover, in a few cases Lasserre was able to prove finite convergence.
The significant outcome of this is that for certain optimization problems,
the Flat Extension Theorem allows one to establish finite stopping times

for suitable algorithms.



LOCALIZING MATRICES

Consider the full, complex MP
/Z’ZJ du =5 (i,j >0),

where supp u C K, for K a closed subset of C.

@ The Riesz functional is given by

M(EZ) =y (i) >0).

@ Riesz-Haviland:
There exists p with supp ¢ C K < Ay(p) > 0 for all p such that
plk > 0.



If g is a polynomial in z and Z, and
K=Kq:={ze€C:q(z,2) > 0},
then Lg(p) := L(gp) must satisfy Lq(pp) > 0 for i to exist. For,

Lq(pﬁ)—/ qpp dp >0 (all p).

Kq

o K. Schmiidgen (1991): If K, is compact, A,(pp) > 0 and
Lq(pp) > 0 for all p, then there exists p with supp 1 C K.

We will now present a version of this result for TMP.



For g € P, define the localizing matrix My by

Mq(n)p := Ny(qp) (p € Pn).

Clearly, My = M, and M, and M5 are the natural analogues of the shifted

matrix in Stieltjes Theorem.

THEOREM
(Localization of the support) (RC-L. Fialkow, 2000) Let M(n) > 0 and

suppose deg(q) = 2k or 2k — 1 for some k < n. Then 3 p with rank M(n)

atoms and supp p C Kq if and only if 3 a flat extension M(n + 1) for
which Mg(n+ k) > 0. In this case, 3 j1 with exactly
rank M(n) — rank My(n+ k) atoms in Z(q).

REMARK
M. Laurent (2005) has found an alternative proof, using ideas from real

algebraic geometry.

Acrctriiallyy, M L anirent wac ahle +A 11ce technialiiee fram aloehraice oceametry



UNILATERAL WEIGHTED SHIFTS

o o= {ay}, € 0°(Zy), ax >0 (all k>0)

o W, :(2(Z,) — ((Z.), {ex}x=0 ONB of (2(Z,)

Waek = Ok €K1 (k > 0)

@ When ay =1 (all k >0), W, = U4, the (unweighted) unilateral shift

@ In general, W, = U;D, (polar decomposition)



WEIGHTED SHIFTS AND BERGER’S THEOREM

The moments of « are given as

(@) 1 if k=0
Tk = TVk\@) = .
ag-...-ai_l if k>0



BERGER MEASURES

o (Berger; Gellar-Wallen) W, is subnormal if and only if there exists a

positive Borel measure & on [0, | W,||?] such that

Vi = /tk dé(t) (all k > 0).

£ is the Berger measure of W,,.

@ For0 < a<1weletS,:=shift(a,1,1,...).

The Berger measure of Uy is d;.

The Berger measure of S, is (1 — a%)dg + a°01.

@ The Berger measure of B (the Bergman shift) is Lebesgue measure

on the interval [0, 1]; the weights of B, are a, := Zi; (n>0).




MULTIVARIABLE WEIGHTED SHIFTS

ak, Bk €L(Z2), k= (ki, ko) €72 =74 X Ly
C(Z3) = P(Z4) Q) P(Z4).
We define the 2-variable weighted shift T = ( Ty, T,) by
Tiek := akexte, T26k = Brbkie,,
where €1 :=(1,0) and 2 :=(0,1). Clearly,

TiTo = ToT1 <= Brie, 0k = kte, B (all k).

Ak ko +1

(kl,ngrl) (k1+1,k2+1)

k:] +1,ko

(K1, k2) (k1 + 1, k2)



We now recall the notion of moment of order k for a commuting pair
(o, B). Given k € Z2 , the moment of (a, 3) of order k is vk = k(a, B)
1 if k=0
2 2 : _
_ X0,0) "+ Uky—1,0) if ik >1and ko =0
ifk1:0and kzzl

5(20,0) T /6(20,k2—1)
o0y Uha10) B0y Blaske) if ki=1and ko >1.

By commutativity, v can be computed using any nondecreasing path from

(07 0) to (kla k2)
(1, k2)




o (Jewell-Lubin)

ki —1 ko—1
: . 2 2
W, is subnormal & 4y = H o) H ﬂ(krlxj)
i=0 j=0

= /t{‘lté‘2 du(ty, t2) (all k > 0).

Thus, the study of subnormality for multivariable weighted shifts is

intimately connected to multivariable real moment problems.



The Subnormal Completion Problem

for 2-variable weighted shifts

Consider the following completion problem: Given

Vd

Ve be = af (commutativity)

Vb VT
va | e

Ficure 1. The initial family of weights €24

we wish to add infinitely many weights and generate a subnormal 2-
variable weighted shift, that is, a weighted shift with a Berger measure

interpolating the initial family of weights.



The Subnormal Completion Problem

for 2-variable weighted shifts

Consider the following completion problem: Given

Vd

Ve be = af (commutativity)

Vb VT
va | e

Ficure 1. The initial family of weights €24

we wish to add infinitely many weights and generate a subnormal 2-
variable weighted shift, that is, a weighted shift with a Berger measure

interpolating the initial family of weights.



The initial family needs to satisfy an obvious necessary condition, that is,

Boo Bor Bio 1 a b
M )= Bor Bo2 fu |=| a ac be |. (11.1)
B0 Por B2o b be bd

We use tools and techniques from the theory of TMP to solve SCP in the
foundational case of six prescribed initial weights; these weights give rise
to the quadratic moments. For this case, the natural necessary conditions

for the existence of a subnormal completion are also sufficient.



lo calculate explicitly the associated Berger measure, we compute the
algebraic variety of the associated truncated moment problem; it turns out
that this algebraic variety is precisely the support of the Berger measure of
the subnormal completion.

In this case, solving the SCP consists of finding a probability measure p
supported on R2 such that fRi yix du(x,y) =; (i,j >0, i+ <2).
To ensure that the support of i remains in R%r we use the localizing
matrices M(2) and M ,(2); each of these matrices will need to be

positive semidefinite.

THEOREM

(RC, S.H. Lee and J. Yoon; 2010) Let Qi be a quadratic, commutative,
initial set of positive weights, and assume M(1) > 0. Then there always
exists a quartic commutative extension QQ of Q4 such that M(Qg) is a
flat extension of M(S1), and M, () > 0 and My(ﬁg) >0. Asa

consequence, 01 admits a subnormal completion LI




1 a b ac be bd

ac  be acp beq bdr
b be bd beq bdr bds (11.2)
ac acp beq
be beq bdr
bd bdr bds

(with the lower right-hand 3 x 3 corner yet undetermined) and

a ac be b be bd
M.(2)=| ac acp beq | and M,(2)=| be beq bdr
bd bdr bds

be beq bdr



It is actually possible to provide a concrete description of the Berger

measure for the subnormal completion in terms of the initial data.

REMARK
Flat extensions may not exist for bigger families of initial weights. That

is, one can build an example of a quartic family of initial weights Q5 for
which the associated moment matrix M(2) admits a representing

measure, but such that M(2) has no flat extension M(3).
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A VERSION OF RIESZ-HAVILAND FOR TMP

Given a moment sequence (3, the Riesz functional is

Lg(p) == p(B) (p € Clz,2]).

Recall the Riesz-Haviland Theorem:

3 prep. meas. for f < L=1Lg >0on P.. I

For TMP, the natural analogue won't work.

We say that the Riesz functional L is K-positive if

p € P and p|K > 0= L(p) > 0. I




Consider the case
d=1, K=R, and

M(2) =

= =
= = =

In this case,

L(ag + a1x + apx® + azx® + agx*) := ag + a1 + a» + a3 + 2a4

One proves that L is K-positive, but 5 has no representing measure.



In TMP, K-positivity is a necessary (but not sufficient) condition for a

K-representing measure p.

THEOREM (TMP VERSION OF RIESZ-HAVILAND)

(RC-L. Fialkow, 2007) 8 = B2 admits a K-representing measure if and

only if Lg admits a K-positive linear extension L : Ppio — R.

This Theorem implies the classical Riesz-Haviland, via Stochel's Theorem.



P

/]\
Pant2
K-pos.
T N\

In general it is quite difficult to directly verify that an extension

[:Ponyo — Ris K-positive.



THE QUARTIC MOMENT PROBLEM

Recall the lexicographic order on the rows and columns of M(2):

1,72,7,7%,27,7°

o (r=1) Z= A1 (Dirac measure)
o (r=2) Z=A1+BZ (supp s C line)
o (r=3) Z?=A1+ B Z+ C Z (flat extensions always exist)

o (r=4) ZZ=A1+BZ+CZ+DZ?

D = 0=7ZZ=A1+BZ+BZandC=8B

(Z-B)(Z—-B)=A+|B
- Z-B

WW =1 (circle), for W = ——.
VA+|B)?

L



Case r =5
With x := Re[z] and y := Im[z], and using the flat data result, one can

reduce the study to cases corresponding to the following five real conics:

(a) W? = -2iW +2iW — W? - 2WW parabola; y = x?

(b) W2 = —4i1+ W? hyperbola; yx =1

(c) W?2=w? pair of intersect. lines; yx =0
(d) Ww =1 unit circle; x? + y2 =1

(e) W24 2WW + W2 =2W +2W two parallel lines; x(x — 1) = 0.



(RC-L. Fialkow, 2005) Assume that M(2) > 0, M(2) singular, and that
rank M(2) < card V(v*)). Then M(2) admits a representing measure.




THE CASE OF INVERTIBLE M(2)

(L. Fialkow and J. Nie, 2010) Consider a quartic moment problem with
invertible M(2). Then there exists a representing measure.

The proof is abstract, using convex analysis.

(RC-S. Yoo, 2013) Concrete construction of a representing measure, when
M(2) is invertible. Moreover, there exists a 6-atomic representing
measure, that is, M(2) admits a flat extension M(3).

The proof uses a new idea: rank reduction



EXTREMAL REAL MP; r=v

Recall: The algebraic variety of (§ is

V=V = N 2,
pEPn,pEker M(n)

where Z, = {x € R? : p(x) = 0}. If 3 admits a rep. measure p, then
p € P, satisfies p € ker M(n) < supp p C 2,
Thus supp ¢ C V, so r :=rank M(n) and v := card V satisfy
r < card supp pu <v.

Extension Principle: M(n + 1) rec. gen. extension of M(n) and
p(X,Y)=0in M(n), then p(X,Y)=0in M(n+1).
Then V(n+ 1) C V(n) and therefore r, < rpp1 < Va1 < v



BASIC NECESSARY CONDITIONS FOR THE EXISTENCE

OF A REPRESENTING MEASURE

(Positivity) M(n) > 0
(Consistency) p € Pap, ply =0= A(p) =0

(where A is the Riesz functional associated to M(n))
(Variety Condition) r < v, i.e., rank M(n) < card V.
Consistency implies
(Recursiveness) p, q, pq € Pp, p € ker M(n) = pg € ker M(n).

Consistency is intimately related to J. Stochel's Type B: A polynomial
P € Pay is type B if ® > 0, linear and ®|z(z(p)) =0 = ®(f) = [ f dp.



(Consistency) p € Pop, ply =0=A(p) =0

(Weak Consistency) p € Pp, ply =0=A(p) =0

Consistency = Weak Consistency = Recursively generated

N

THEOREM
(RC, L. Fialkow and M. Méller, 2005) Suppose M(3) > 0, recursively

generated, Y = X3 and r < v < 7. Then M(3) has a rep. measure.

THEOREM
(RC, L. Fialkow and M. Méller, 2005) There exists a real moment matrix

M(3) > 0, recursively generated, withr =v =8, Y = X3, and no rep.

| A\

measure.

.




(L. Fialkow; TAMS, 2011) There exists a real moment matrix M(3) which

is positive, consistent, with column relation Y = X3 and no rep. measure.

THEOREM EXT

(RC, L. Fialkow and M. Méller, 2005) For (3 = 5(2”) extremal, ie., r = v,
the following are equivalent:

(i) B has a representing measure;

(ii) B has a unique representing measure, which is rank M(n)-atomic
(minimal);

(i) There exists M(n + 1) flat extension of M(n);

(iv) There exists a unique flat extension of M(n);

(v) M(n) > 0 and 3 is consistent.




CuBic COLUMN RELATIONS

Since we know how to solve the singular Quartic MP, WLOG we will
assume M(2) > 0, and that Z3 = py(Z, Z), with deg p» < 2.

First, we would like to focus on the case of harmonic poly's:

q(z,2) := f(z) — g(z), with deg q = 3.

Recall that rank M(n) < card Z(q). Of special interest is the case when
card Z(q) > 7, since otherwise the TMP either admits a flat extension or

has no representing measure. In the case when g(z) = z, we have

(Wilmshurst '98, Sarason-Crofoot, '99, Khavinson-Swiatek, '03)

card Z(f(z) —2) <7

Bézout's Theorem predicts card Z(f(z) —z) <9



WLOG, one considers harmonic polynomials of the form
3

q1(z,2) :=z°> — itz — uz.
PROPOSITION

(RC-S. Yoo, 2009) For (0 < u < —t < 2u), we have card Z(q7) =7. In
fact,

2(q7) =1{0,p+iq,q+ ip,—p — iq,—q — ip,r + ir,—r — ir},

where p,q,r > 0, p2+q2:uandr2:@.




HARMONIC POLYNOMIALS

Consider the harmonic polynomial q7(z, 2) := z3 — itz — uZ, with

0O<u<—t<2u):




Since rank M(3) = 7, there must be another column relation besides

q7(Z,Z) = 0. Clearly the columns

1,72,2,7?,27,7°,27°

must be linearly independent (otherwise M(3) would be a flat extension of
M(2)), so the new column relation must involve ZZ2 and Z2Z. An
analysis using the properties of the functional calculus shows that, in the

presence of a representing measure, the new column relation must be

727 +iZ7% —iuZ —uZ = 0.



Define

qic(z,2) = Z°z+izz2% — iuz — uz
= i(z—iz2)(zz — u).

Observe that the zero set of g, ¢ is the union of a line and a circle, and

that Z(q7) C Z(ql_c).



FIGURE 2. The sets Z(q7) and Z(q1c)



THEOREM
(RC-S. Yoo, 2014) Let M(3) > 0, with M(2) > 0 and q7(Z,Z) =0.

There exists a representing measure for M(3) if and only if

NzqLc) = 0.

where N\ = Mg is the Riesz functional. Equivalently,

{A(ClLC) =0

Re ~12 — Im v12 = u(Re yo1 — Im 7yo01)
Y22 = (t + u)y11 — 2u Im o2 = 0.

Equivalently,

qLc(Z,Z) =0

Proof uses Consistency Property.



PROPOSITION (REPRESENTATION OF POLYNOMIALS)

Let Pg := {p € Cs[z,2] : p|z(q,) =0} and let

Z:={peCslz,z] : p= fqr + gG7 + hqic for some f,g, h € C3|z,Z]}.
Then Pg = 1.




THE DIVISION ALGORITHM

Division Algorithm in R[x, -, x,]
Fix a monomial order > on Z%, and let F = (f1,---,fs) be an ordered
s-tuple of polynomials in R[x1,- -, x,]. Then every f € R[x,- -, x,] can

be written as

f:alfl+"'+asf-s+r7

where aj, € R[x1,- -+, xp], and either r = 0 or r is a linear combination,
with coefficients in R, of monomials, none of which is divisible by any of
the leading terms in f1,--- , fs.

Furthermore, if a;f; # 0, then we have
multideg(f) > multideg(ajf;).

Key idea: Use the Division Algorithm to establish representation theorems

for polynomials vanishing on the algebraic variety of 3.



CLASSIFICATION OF SEXTIC MP

r3 | v3 | v3 —r3 | MaxExt Solution Presented in
707 0 M(4) extremal RC-S. Yoo;JFA(2014),IEOT(2
718 M(5) | non-extremal RC-S. Yoo; JFA(2015)
7109 2 M(6) | non-extremal RC-S. Yoo; JFA(2015)
7 | oo | N/A N/A | non-extremal RC-S. Yoo; JFA(2015)
8 |8 0 M(4) extremal RC-S. Yoo;IEOT(2017)
819 1 M(5) | non-extremal RC-S. Yoo; JFA(2015)
8 | co| N/A N/A | non-extremal RC-S. Yoo; JFA(2015)
9 | o | N/A N/A | non-extremal L. Fialkow; TAMS(2011)(cas:
10 [ oo | N/A N/A | non-extremal open problem




A NEw TooL: RANK REDUCTION

Given a point (a, b) € R? we let v = v, 5, denote the row vector
(1,a, b, a% ab, b*,a°, a°b, ab®, b%)

We also let d(, ) denote the point mass at (a, b). It is easy to see that
the moment matrix associated with 6(3,1,) is vw!  that is, the matrix whose

entries are M(3);; = a’b/. For this moment matrix, r = 1 and

V ={(a, b)}.

(RC-S. Yoo, 2015) Assume M(3) >0, M(2) > 0, rank M(3) =7 and
card V > 8. Assume also that M(3) satisfies the Consistency Property.
Then M(3) admits a flat extension M(4); that is, there exists a

representing measure . with card supp p =7.




Sketch of Proof. WLOG, assume

V={(x,y1): -, (xs y8)}-

Also assume that in M(3) the first seven columns are linearly

independent.

2 3
Xy o1 Xg

2 3
xX2y2 Yy X

2
I x1 y1 X

2
1 x y2 x5

2 2
1 xs yg X5 Xgy8 Y5 X3

This is an 8 x 10 matrix, with rank 7.

3

Now form the Vandermonde matrix

2 2
X{y1r X1y;p yi

2 2
X5Y2 XYy Y3

2 2 3
X3ys XgYsg Vs

It follows that exactly seven rows

are linearly independent, so one of them must be a linear combination of

the other seven, say

Ri=> AR

i#j



The row R; must be associated with a point (x;j, ;) € V. To single out

this point, we will denote it by (a, b). Now let
V=V \ {(a, b)}.

Claim. No conic goes through V. Proof uses invertibility of M(2)
and Consistency.
We now define

e~

M(3) := M(3) — pw T,

where v is the row vector associated with the point (a, b).



—_——

We wish to prove that rank M(3) = 6 for some positive value of p. If we

P —_~—

do this, then M(3) will be a flat extension of M(2), and we will have a

6-atomic measure for M(3), and therefore a 7-atomic measure for M(3),

—~—

since M(3) = M(3) + pwv'. Moreover, one can show that rank

X/?(Z/) = 0, using above Claim. Also, observe that m > 0.

Let A denote the nonzero eigenvalue of ww”, and let B be the basis of the
column space of M(3). Then

P

detM(3)z = detM(3)s — pAdet(M(3)s5l12,3,4,5,6,7})-

Thus, with

a detM(3)3
P Adet(M(3)5l(2,3,4567))

we successfully reduce the rank. Ol



M(3) WITH r =8 AND v =9

We again use a Rank Reduction strategy: In the specific case of r = 8 and
v =9, one must have the algebraic variety V of M(3) as the intersection
of two cubics C; and G, in general position. We then use the

Cayley-Bacharach Theorem:

Assume that two cubics C; and ( in the projective plane meet in nine
(different) points (that is C; () C2 = V). Then every cubic C that passes
through any eight of the points in V' also passes through the ninth point.

We can then generate an Algorithm to determine solubility of the TMP.



Thank you!
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