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Raúl Curto (BIRS, 2019.04.03) Truncated Moment Problems 2 / 98



Introd.: The Classical Fibonacci Sequence

Consider the classical Fibonacci sequence

1, 1, 2, 3, 5, 8, 11, 19, · · ·

and the need to represent it concisely. If we let {an}n≥0 denote this

sequence, we know that

an+2 = an+1 + an, with a0 = 1 and a1 = 1.

We can organize this matricially as follows:

Ha :=




1 1 2 3 · · ·
1 2 3 5 · · ·
2 3 5 8 · · ·
3 5 8 11 · · ·
...

...
...

...
. . .




.



If we label the columns 1, S , S2, S3, · · · , we can represent the 2-step

recursion as

S2 = S + 1.

One can then consider the polynomial g ∈ C[s] given by

g(s) := s2 − (s + 1),

whose zeros are s0 =
1−

√
5

2
∼= −0.618 and s1 =

1+
√
5

2
∼= 1.618 and satisfy

the equations s0 + s1 = −1, s0s1 = −1. We now define a linear functional

on the space of polynomials, given as

La(p) := ρ0δs0 + ρ1δs1 (p ∈ C[s]),

where ρ0, ρ1 ∈ R and δz denotes the evaluation at z . We wish La to

represent a. This requires La(s
n) = an (n ≥ 0), that is,



La(1) = a0

La(s) = a1

La(s
2) = a2

· · · · · · · · ·
La(s

n) = an

· · · · · · · · · .



In particular,

ρ0 + ρ1 = a0

and

ρ0s0 + ρ1s1 = a1.

Then

ρ0 + ρ1 = 1

and

ρ0s0 + ρ1s1 = 1.



It follows that

ρ0 =
5−

√
5

10
∼= 0.276

and

ρ1 =
5 +

√
5

10
∼= 0.724.

Thus,

La(p) = ρ0p(s0) + ρ1p(s1) (p ∈ C[s]).

This can also be interpreted as integration of p with respect to the

positive 2-atomic Borel measure

µ := ρ0δ0 + ρ1δ1

= 5−
√
5

10 δs0 +
5+

√
5

10 δs1 .



As a result, the Hankel matrix Ha, thought as an operator on the Hilbert

space ℓ2(Z+), has µ as spectral measure; this is also the spectral measure

of the operator Ms of multiplication by the independent variable in the

space L2(µ). When the initial sequence corresponds to the moments of

the weight sequence of a subnormal unilateral weighted shift W acting on

ℓ2(Z+), the measure µ is also the Berger measure of W . This is not the

case of the Fibonacci sequence (an), because the resulting unilateral

weighted shift is not even hyponormal, much less subnormal.



The expressions
∫
sn dµ (n ≥ 0) are the moments of µ. For every n ≥ 0,

the matrix

Ha(n) :=




a0 a1 a2 a3 · · · an

a1 a2 a3 a4 · · · an+1

a2 a3 a4 a5 · · · an+2

a3 a4 a5 a6 · · · an+3

...
...

...
...

...
. . .

an an+1 an+2 an+3 · · · a2n




.

is called the moment matrix for the finite collection a0, · · · , a2n. It is not

hard to see that Ha(n) ≥ 0 (n ≥ 0) (in the Hilbert space sense) if and only

if La ≥ 0, that is, La(p) ≥ 0 for all p ≥ 0.



Introduction: Truncated Hankel Matrices

The matrices Ha(n) (n ≥ 0) are the truncated matrices of Ha. In view of

the 2-step recursive relation

S2 = S + 1,

we have
rankHa(0) = 1

rankHa(1) = 2

rankHa(2) = 2

and

rankHa(n) = 2 ( all n ≥ 3).

We will say that Ha(2) is a flat extension of Ha(1). Also, Ha is a flat

extension of Ha(1).



More generally, if A and M are positive semidefinite matrices such that

M ≡
(

A B

B∗ C

)
,

and rankM = rankA, we will say that M is a flat extension of A.

Also, if Q is an infinite square matrix, and Qn are its finite truncations of

size n, it is true that

Q ≥ 0 =⇒ detQn ≥ 0 (all n ≥ 0).

However, the converse is false.



In joint work with Lawrence A. Fialkow (SUNY at New Paltz), several

years ago we initiated the study of truncated moment problems in one or

several real or complex variables. A central result in the theory is the

so-called Flat Extension Theorem. In this talk we plan to discuss this

result, and some applications to numerical analysis (quadratures) will be

presented. Motivated by the Fibonacci example, We use the support of a

representing measure for this, and this is the common zero set of one or

more polynomials. As in the case of quadratures, one needs to allow for

non-positive densities, while keeping everything within the real numbers.

Solution of TMP involves finding properties of structured matrices that are

necessary and sufficient conditions for the existence of representing

measures.



Introduction: Numerical Integration

A) Low-order polynomial approx. on subintervals of decreasing size

Commonly used Newton-Cotes formulas

T n = 1
∫ b

a
f (x) dx = h

2 [f (a) + f (b)]−h3

12 f
′′(ξ)

S n = 2
∫ b

a
f (x) dx = h

3 [f (a) + 4f (a+b
2 ) + f (b)]−h5

90 f
(4)(ξ)

3

8
n = 3

∫ b

a
f (x) dx =

{
3h
8 [f (a) + 3f (a+ h) + 3f (b − h) + f (b)]

−3h5
80 f (4)(ξ)

n = 4
∫ b

a
f (x) dx =

{
2h
45[7f (a) + 32f (a + h) + 12f (a+b

2 )

+32f (b − h) + 7f (b)]− 8h7

945 f
(6)(ξ)



B) Polynomial approximation of increasing degree, using fewer,

strategically-placed nodes

Definition

A quadrature (or cubature) rule of size p and precision m is a numerical

integration formula which uses p nodes, is exact for all polynomials of

degree at most m, and fails to recover the integral of some polynomial of

degree m + 1.

Gaussian Quadrature (size n, precision 2n − 1)
∫ 1
−1 f (t) dt =

∑n−1
j=0 ρj f (t

(n)
j ) for every polynomial f ∈ R2n−1[t]

(Gaussian means minimum number of nodes possible)



Interpolating Equations:

n−1∑

j=0

ρj t
k
j =

∫ 1

−1
tk dt =





0 k = 1, 3, ..., 2n − 1

2
k+1 k = 0, 2, ..., 2n − 2



Example: n = 2 



ρ0 + ρ1 = 2

ρ0t0 + ρ1t1 = 0

ρ0t
2
0 + ρ1t

2
1 = 2

3

ρ0t
3
0 + ρ1t

3
1 = 0

ρ0 = ρ1 = 1; t0 = −
√
3
3 , t1 =

√
3
3 .

∫ 1

−1

3∑

k=0

akt
k =

1∑

j=0

ρj

3∑

k=0

akt
k
j

NA textbooks prove this by using orthogonal Legendre polynomials

(t0 < ... < tn−1 are the zeros of the nth Legendre polynomial)



(RC-L. Fialkow, 1990) Can do this as follows:

γ0 := 2, γ1 := 0, γ2 :=
2
3 , γ3 := 0, γ4 :=

2
5 , etc.

Assume n even, and form the Hankel matrix

H(n) :=




2 0 2
3 · · · 0

... 2
n+1

0 2
3 0 · · · 2

n+1

... 0

2
3 0 2

5 · · · 0
... 2

n+3

· · · · · · · · · · · · · · · ... · · ·
0 2

n+1 0 · · · 2
2n−1

... 0

· · · · · · · · · · · · · · · ... · · ·
2

n+1 0 2
n+3 · · · 0

... NEW MOMENT




,

label the columns 1,T,T2, ...,Tn, require that Tn = ϕ01+ ...+ ϕn−1T
n−1,

build the polynomial g(t) := tn − (ϕ0 + ...+ ϕn−1t
n−1),

(this produces a non-iterative construction of Legendre polynomials)



find its zeros (t0 < ... < tn−1),

and

compute the densities using the Vandermonde system




1 1 · · · 1

t0 t1 · · · tn−1

· · · · · · · · · · · ·
tn−1
0 tn−1

1 · · · tn−1
n−1







ρ0

ρ1

· · ·
ρn−1




=




γ0

γ1

· · ·
γn−1




.



To solve the Gaussian quadrature problem, RC and Fialkow’s basic idea

was to augment the original Hankel matrix by one row and one column at

a time, preserving the rank (which a fortiori preserves positivity):

H(n) ≺ H(n + 1) ≺ ...H(∞)

Then define

〈p, q〉H(∞) := (H(∞)p̂, q̂)ℓ2 ,

and show that

〈p, q〉H(∞) =

∫
pq̄ dµ

for some finitely atomic rep. meas., with supp µ = Z(g).



Truncated Moment Problems

The Truncated Real Moment Problem

Given a family of real numbers β: β0, β1, . . . , β2n with β0 > 0, the TMP

entails finding a positive Borel measure µ supported in the real line R such

that

βi =

∫
t i dµ (0 ≤ i ≤ 2n);

µ is called a representing measure for β.

Theorem

FULL MP (Hamburger, 1920)

∃µ ⇔ A(n) := (βi+j)
n
i ,j=0 ≡




β0 β1 β2 β3 · · ·
β1 β2 β3

. . . · · ·
β2 β3

. . .
. . . · · ·

β3
. . .

. . .
. . . · · ·

. . . . .




≥ 0 ∀ n ≥ 0.



Theorem

FULL MP (Stieltjes, 1894)

∃µ with supp µ ⊆ [0,+∞)

⇔ (βi+j)
n
i ,j=0 ≥ 0 and (βi+j+1)

n
i ,j=0 ≥ 0 ∀ n ≥ 0.




β0 β1 β2 β3 · · ·
β1 β2 β3

. . . · · ·
β2 β3

. . .
. . . · · ·

β3
. . .

. . .
. . . · · ·

...
...

...
...

. . .




≥ 0 and




β1 β2 β3 β4 · · ·
β2 β3 β4

. . . · · ·
β3 β4

. . .
. . . · · ·

β4
. . .

. . .
. . . · · ·

...
...

...
...

. . .

(localizing matrix)




≥ 0

The positivity of the second matrix guarantees that supp µ ⊆ [0,+∞).



The Truncated Complex Moment Problem

Given γ : γ00, γ01, γ10, . . . , γ0,2n, . . . , γ2n,0, with γ00 > 0 and γji = γ̄ij ,

the TCMP entails finding a positive Borel measure µ supported in

the complex plane C such that

γij =

∫
z̄ iz jdµ (0 ≤ i + j ≤ 2n);

µ is called a rep. meas. for γ.

In earlier joint work with L. Fialkow,

We have introduced an approach based on matrix positivity and

extension, combined with a new “functional calculus” for the columns

of the associated moment matrix.



We have shown that when the TCMP is of flat data type, a solution

always exists; this is compatible with our previous results for

supp µ ⊆ R (Hamburger TMP)

supp µ ⊆ [0,∞) (Stieltjes TMP)

supp µ ⊆ [a, b] (Hausdorff TMP)

supp µ ⊆ T (Toeplitz TMP)

Along the way we have developed new machinery for analyzing

TMP’s in one or several real or complex variables. For simplicity,

in this talk we focus on one complex variable or two real

variables, although several results have multivariable versions.



Our techniques also give concrete algorithms to provide finitely-atomic

rep. meas. whose atoms and densities can be explicitly computed.

We obtain applications to quadrature problems in numerical analysis.

We have obtained a duality proof of a generalized form of the

Tchakaloff-Putinar Theorem on the existence of quadrature rules for

positive Borel measures on Rd .



Some Applications

Subnormal Operator Theory (unilateral weighted shifts) (subnormal

means the restriction of a normal operator to an invariant subspace.)

For α0 ≤ α1 ≤ α2 ≤ · · · , the weighted shift Wα is subnormal if and

only if the moment problem α2
0α

2
1 · · ·α2

k−1 =
∫
skdµ(s) is soluble.

Physics (determination of contours, QM, QFT)

Computer Science (image recognition and reconstruction)

Geography (location of proposed distribution centers)

Probability (reconstruction of p.d.f.’s)



Environmental Science (oil spills, via quadrature domains)

Engineering (tomography)

Optimization (finding the global minimum of a real polynomial in

several real variables - J. Lasserre)

Function Theory (a dilation-type structure theorem in Fejér-Riesz

factorization theory - S. McCullough)

Geophysics (inverse problems, cross sections)

Typical Problem: Given a 3-D body, let X-rays act on the body at

different angles, collecting the information on a screen. One then seeks to

obtain a constructive, optimal way to approximate the body, or in some

cases to reconstruct the body.



Basic Positivity Condition

Pn : polynomials p in z and z , deg p ≤ n

Given p ∈ Pn, p(z , z) ≡∑0≤i+j≤n aij z̄
iz j ,

0 ≤
∫

| p(z , z) |2 dµ(z , z)

=
∑

ijkℓ

aij ākℓ

∫
z̄ i+ℓz j+kdµ(z , z)

=
∑

ijkℓ

aij ākℓγi+ℓ,j+k .

To understand this “matricial” positivity, we introduce the following

lexicographic order on the rows and columns of M(n):

1,Z , Z̄ ,Z 2, Z̄Z , Z̄ 2, . . .



Define M[i , j ] as in

M[3, 2] :=




γ32 γ41 γ50

γ23 γ32 γ41

γ14 γ23 γ32

γ05 γ14 γ23




Then

(“matricial” positivity)
∑

ijkℓ

aij ākℓγi+ℓ,j+k ≥ 0

⇔ M(n) ≡ M(n)(γ) :=




M[0, 0] M[0, 1] ... M[0, n]

M[1, 0] M[1, 1] ... M[1, n]

... ... ... . . .

M[n, 0] M[n, 1] . . . M[n, n]




≥ 0.



For example,

M(1) =




γ00 γ01 γ10

γ10 γ11 γ20

γ01 γ02 γ11


 ,

M(2) =




γ00 γ01 γ10 γ02 γ11 γ20

γ10 γ11 γ20 γ12 γ21 γ30

γ01 γ02 γ11 γ03 γ12 γ21

γ20 γ21 γ12 γ22 γ31 γ40

γ11 γ12 γ21 γ13 γ22 γ31

γ02 γ03 γ12 γ04 γ13 γ22




.



In general,

M(n + 1) =

(
M(n) B

B∗ C

)

Similarly, one can build M(∞).

Positivity Condition is not sufficient:

By modifying an example of K. Schmüdgen, we have built a family

γ00, γ01,γ10, ..., γ06, ..., γ60 with positive invertible moment matrix M(3)

but no rep. meas. But this can also be done for n = 2.



For the Real TMP, given β : β00, β01, β10, · · · , β0,2n, · · · , β2n,0, with
β00 > 0, we seek a positive Borel measure µ supported in R2. In this

case, we let

M(n)ij := γi+j , i , j ∈ Z2
+.

The TCMP and TRMP are structurally equivalent, meaning that there is a

bijection linking TCMP in d variables with TRMP in 2d variables, via the

map z ≡ x + iy . Moreover, it is possible to modify a TRMP and obtain

an equivalent TRMP using degree-one transformations of the form

ϕ(x , y) := (ax + by + e, cx + dy + f ),

where ad − bc 6= 0.



For moment problems in C,

M(3) =




1 Z Z̄ Z 2 Z̄Z Z̄ 2
... Z 3 Z̄Z 2 Z̄ 2Z Z̄ 3

γ00 γ01 γ10 γ02 γ11 γ20
... γ03 γ12 γ21 γ30

γ10 γ11 γ20 γ12 γ21 γ30
... γ13 γ22 γ31 γ40

γ01 γ02 γ11 γ03 γ12 γ21
... γ04 γ13 γ22 γ31

γ20 γ21 γ30 γ22 γ31 γ40
... γ23 γ32 γ41 γ50

γ11 γ12 γ21 γ13 γ22 γ31
... γ14 γ23 γ32 γ41

γ02 γ03 γ12 γ04 γ13 γ22
... γ05 γ14 γ23 γ32

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
γ30 γ31 γ40 γ32 γ41 γ50

... γ33 γ42 γ51 γ60

γ21 γ22 γ31 γ23 γ32 γ41
... γ24 γ33 γ42 γ51

γ12 γ13 γ22 γ14 γ23 γ32
... γ15 γ24 γ33 γ42

γ03 γ04 γ13 γ05 γ14 γ23
... γ06 γ15 γ24 γ33




.



For moment problems in R2, the moment matrix M(3) is given by




1 X Y X 2 XY Y 2
... X 3 X 2Y XY 2 Y 3

1 β00 β01 β10 β02 β11 β20
... β03 β12 β21 β30

X β01 β02 β11 β03 β12 β21
... β04 β13 β22 β31

Y β10 β11 β20 β12 β21 β30
... β13 β22 β31 β40

X 2 β02 β03 β12 β04 β13 β22
... β05 β14 β23 β32

XY β11 β12 β21 β13 β22 β31
... β14 β23 β32 β41

Y 2 β20 β21 β30 β22 β31 β40
... β23 β32 β41 β50

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
X 3 β03 β04 β13 β05 β14 β23

... β06 β15 β24 β33

X 2Y β12 β13 β22 β14 β23 β32
... β15 β24 β33 β42

XY 2 β21 β22 β31 β23 β32 β41
... β24 β33 β42 β51

Y 3 β30 β31 β40 β32 β41 β50
... β33 β42 β51 β60




.



Moment Problems and Nonnegative

Polynomials (FULL MP Case)

M := {γ ≡ γ(∞) : γ admits a rep. meas. µ}
P+ : nonnegative poly’s

Duality

For C a cone in RZ2
+ , we let

C ∗ := {ξ ∈ RZ2
+ : supp(ξ) is finite and 〈p, ξ〉 ≥ 0 for all p ∈ C}.

(Riesz-Haviland) P∗
+ = M

For, consider the Riesz functional Λγ(p) := p(γ) ≡ 〈p, γ〉, which
induces a map M → P∗

+ (γ 7→ Λγ); Haviland’s Theorem says that

this maps is onto, that is, there exists µ r.m. for γ if and only if

Λγ ≥ 0 on P+.



There exists a version of Riesz-Haviland for TMP, as we will see shortly.

The link between TMP and FMP is provided by another result of Stochel

(2001):

Theorem

β(∞) has a rep. meas. supported in a closed set K ⊆ R2 if and only if, for

each n, β(2n) has a rep. meas. supported in K.



Positivity of Block Matrices

Theorem

(Smul’jan, 1959)

(
A B

B∗ C

)
≥ 0 ⇔





A ≥ 0

B = AW

C ≥ W ∗AW

.

Moreover, rank

(
A B

B∗ C

)
=rank A ⇔ C = W ∗AW .



Corollary

Assume rank

(
A B

B∗ C

)
= rank A. Then

A ≥ 0 ⇔
(

A B

B∗ C

)
≥ 0.

We say that (
A B

B∗ C

)

is a flat extension of A. Observe that

(
A B

B∗ C

)
=

(
A AW

W ∗A W ∗AW

)
.



Corollary

Assume that (
A B

B∗ C

)
≥ 0.

Then

(
A B

B∗ C

)
=

(
A AW

W ∗A W ∗AW

)
+

(
0 0

0 C −W ∗AW

)

Schur complement ր

=
( √

A
√
AW

)∗ ( √
A

√
AW

)

+
(

0
√
C −W ∗AW

)∗ (
0

√
C −W ∗AW

)

(sum-of-squares representation).



Functional Calculus

For p ∈ Pn, p(z , z̄) ≡
∑

0≤i+j≤n aij z̄
iz j , let p̂ denote the vector of

coefficients and define

p(Z , Z̄ ) :=
∑

aij Z̄
iZ j ≡ M(n)p̂.

If there exists a rep. meas. µ, then

p(Z , Z̄ ) = 0 ⇔ supp µ ⊆ Z(p).

The following is our analogue of recursiveness for the TCMP

(Recursiveness) If p, q, pq ∈ Pn, and p(Z , Z̄ ) = 0,

then (pq)(Z , Z̄ ) = 0.



Singular TMP; Real Case

Given a finite family of moments, build the relevant moment matrix.

Label the columns, 1,X ,Y ,X 2,XY ,Y 2, · · · .

Identify column relations, as p(X ,Y ) = 0.

Observe that p(X ,Y ) = 0 is equivalent to M(n)p̂ = 0.

Build algebraic variety

V :=
⋂

p∈Pn, p̂∈kerM(n) Zp.

Always true: in the presence of a measure,

supp µ ⊆ V .



Therefore,

r := rankM(n) ≤ card supp µ ≤ v := cardV .

It follows that if r > v then M(n) has no representing measure.

If the variety is finite there’s a natural candidate for supp µ, i.e.,

supp µ = V
(However, it is possible for the inclusion supp µ ⊆ V to be proper.)

A new notion, of core variety Vcore , has recently been introduced by G.

Blekherman and L. Fialkow. When the TMP is soluble, suppµ = Vcore .



General Strategy for Solving the Bivariate

Truncated Moment Problem

Invertible M(n) Singular M(n)

n = 1 r = 3; there exists a flat ex-

tension M(2).

r ≤ 2; there exists a flat ex-

tension M(2).

n = 2 r = 6; there exists a flat ex-

tension M(3).

r ≤ 5; for r ≤ 4, there exists a

flat extension M(3); for r = 5,

there exists a measure µ with

card suppµ ≤ 6.



Invertible M(n) Singular M(n)

n = 3 r = 10; there exists M(3) with no

representing measure.

r ≤ 9; need to distinguish

between finite and infinite

algebraic varieties.

n = 4 r = 15; open problem partial results are known

n = 5 r = 21; open problem. there ex-

ists M(5) with 22-atomic represent-

ing measure, but no 21-atomic rep-

resenting measure. This was proved

by J.E. McCarthy via a topological

dimension argument that uses the

Open Mapping Theorem.

open problem



First Existence Criterion for TCMP

Theorem

(RC-L. Fialkow, 1998) Let γ be a truncated moment sequence. TFAE:

(i) γ has a rep. meas.;

(ii) γ has a finitely atomic rep. meas. (with at most (n + 2)(2n + 3)

atoms);

(iii) M(n) ≥ 0 and for some k ≥ 0 M(n) admits a positive extension

M(n + k), which in turn admits a flat extension M(n + k + 1). (The

number of steps k satisfies k ≤ 2n2 + 6n + 6) ).



Case of Flat Data

Recall: If µ is a rep. meas. for M(n), then rank M(n) ≤ card supp µ.

γ is flat if M(n) =

(
M(n − 1) M(n − 1)W

W ∗M(n − 1) W ∗M(n − 1)W

)
.

Theorem

(RC-L. Fialkow, 1996) If γ is flat and M(n) ≥ 0, then M(n) admits a

unique flat extension of the form M(n + 1).

Theorem

(RC-L. Fialkow, 1996) The truncated moment sequence γ has a

rank M(n)-atomic rep. meas. if and only if M(n) ≥ 0 and M(n) admits a

flat extension M(n + 1).

To find µ concretely, let r :=rank M(n) and look for the analytic column

relation



Z r = c01 + c1Z + ...+ cr−1Z
r−1.

We then define

p(z) := z r − (c0 + ...+ cr−1z
r−1)

and solve the Vandermonde equation




1 · · · 1

z0 · · · zr−1

· · · · · · · · ·
z r−1
0 · · · z r−1

r−1







ρ0

ρ1

· · ·
ρr−1




=




γ00

γ01

· · ·
γ0r−1




.

Then

µ =
r−1∑

j=0

ρjδzj .



An Application to Optimization

Consider the problem

p∗ := inf p(x) (x ∈ Rn) subject to h1 ≥ 0, · · · , hm ≥ 0;

that is, we try to minimize the values of the polynomial p over the

semialgebraic set F determined by the polynomials h1, · · · , hm.
Let d0 := [(degp)/2] and di := [(deghi )/2]. For

t ≥ max{d0, d1, · · · , dm}, consider the associated optimization problem



An Application to Optimization, cont.

p∗t := inf pTβ (t ∈ Z+)

subject to

β0 = 1, M(t)[β] ≥ 0 and Mhj (t − dj)[β] ≥ 0 (j = 1, · · · ,m).

This is a semidefinite program. One proves that

p∗t ≤ p∗t+1 ≤ p∗.

That is, the sequence (p∗t )t approximates the absolute minimum p∗ from

below.



An Application to Optimization, cont.

J. Lasserre was able to use the Flat Extension Theorem to prove that the

sequence converges to p∗ when the semialgebraic set F is compact.

Hence, the above mentioned semidefinite program can be used to

approximate the minimum value of p over F .

Moreover, in a few cases Lasserre was able to prove finite convergence.

The significant outcome of this is that for certain optimization problems,

the Flat Extension Theorem allows one to establish finite stopping times

for suitable algorithms.



Localizing Matrices

Consider the full, complex MP

∫
z̄ iz j dµ = γij (i , j ≥ 0),

where supp µ ⊆ K , for K a closed subset of C.

The Riesz functional is given by

Λγ(z̄
iz j) := γij (i , j ≥ 0).

Riesz-Haviland:

There exists µ with supp µ ⊆ K ⇔ Λγ(p) ≥ 0 for all p such that

p|K ≥ 0.



If q is a polynomial in z and z̄ , and

K ≡ Kq := {z ∈ C : q(z , z̄) ≥ 0},

then Lq(p) := L(qp) must satisfy Lq(pp̄) ≥ 0 for µ to exist. For,

Lq(pp̄) =

∫

Kq

qpp̄ dµ ≥ 0 (all p).

K. Schmüdgen (1991): If Kq is compact, Λγ(pp̄) ≥ 0 and

Lq(pp̄) ≥ 0 for all p, then there exists µ with supp µ ⊆ Kq.

We will now present a version of this result for TMP.



For q ∈ Pn, define the localizing matrix Mq by

Mq(n)p̂ := Λγ(qp) (p ∈ Pn).

Clearly, M1 = M, and Mz and Mz̄ are the natural analogues of the shifted

matrix in Stieltjes Theorem.

Theorem

(Localization of the support) (RC-L. Fialkow, 2000) Let M(n) ≥ 0 and

suppose deg(q) = 2k or 2k − 1 for some k ≤ n. Then ∃ µ with rank M(n)

atoms and supp µ ⊆ Kq if and only if ∃ a flat extension M(n + 1) for

which Mq(n + k) ≥ 0. In this case, ∃ µ with exactly

rank M(n)− rank Mq(n + k) atoms in Z(q).

Remark

M. Laurent (2005) has found an alternative proof, using ideas from real

algebraic geometry.

Actually M. Laurent was able to use techniques from algebraic geometry



Unilateral Weighted Shifts

α ≡ {αk}∞k=0 ∈ ℓ∞(Z+), αk > 0 (all k ≥ 0)

Wα : ℓ2(Z+) → ℓ2(Z+), {ek}k≥0 ONB of ℓ2(Z+)

Wαek := αkek+1 (k ≥ 0)

When αk = 1 (all k ≥ 0), Wα = U+, the (unweighted) unilateral shift

In general, Wα = U+Dα (polar decomposition)



Weighted Shifts and Berger’s Theorem

The moments of α are given as

γk ≡ γk(α) :=

{
1 if k = 0

α2
0 · ... · α2

k−1 if k > 0

}
.



Berger Measures

(Berger; Gellar-Wallen) Wα is subnormal if and only if there exists a

positive Borel measure ξ on [0, ‖Wα‖2] such that

γk =

∫
tk dξ(t) (all k ≥ 0).

ξ is the Berger measure of Wα.

For 0 < a < 1 we let Sa := shift (a, 1, 1, ...).

The Berger measure of U+ is δ1.

The Berger measure of Sa is (1− a2)δ0 + a2δ1.

The Berger measure of B+ (the Bergman shift) is Lebesgue measure

on the interval [0, 1]; the weights of B+ are αn :=
√

n+1
n+2 (n ≥ 0).



Multivariable Weighted Shifts

αk, βk ∈ ℓ∞(Z2
+), k ≡ (k1, k2) ∈ Z2

+ := Z+ × Z+

ℓ2(Z2
+)

∼= ℓ2(Z+)
⊗

ℓ2(Z+).

We define the 2-variable weighted shift T ≡ (T1,T2) by

T1ek := αkek+ε1 T2ek := βkek+ε2 ,

where ε1 := (1, 0) and ε2 := (0, 1). Clearly,

T1T2 = T2T1 ⇐⇒ βk+ε1αk = αk+ε2βk (all k).

(k1, k2) (k1 + 1, k2)

αk1,k2

αk1,k2+1

(k1, k2 + 1) (k1 + 1, k2 + 1)

βk1,k2
βk1+1,k2



We now recall the notion of moment of order k for a commuting pair

(α, β). Given k ∈ Z2
+, the moment of (α, β) of order k is γk ≡ γk(α, β)

:=





1 if k = 0

α2
(0,0) · ... · α2

(k1−1,0) if k1 ≥ 1 and k2 = 0

β2
(0,0) · ... · β2

(0,k2−1) if k1 = 0 and k2 ≥ 1

α2
(0,0) · ... · α2

(k1−1,0) · β2
(k1,0)

· ... · β2
(k1,k2−1) if k1 ≥ 1 and k2 ≥ 1.

By commutativity, γk can be computed using any nondecreasing path from

(0, 0) to (k1, k2).

(k1, k2)



(Jewell-Lubin)

Wα is subnormal ⇔ γk :=

k1−1∏

i=0

α2
(i ,0) ·

k2−1∏

j=0

β2
(k1−1,j)

=

∫
tk11 tk22 dµ(t1, t2) (all k ≥ 0).

Thus, the study of subnormality for multivariable weighted shifts is

intimately connected to multivariable real moment problems.



The Subnormal Completion Problem

for 2-variable weighted shifts

Consider the following completion problem: Given

√
a

√
c

√
e

√
b

√
d

√
f

be = af (commutativity)

Figure 1. The initial family of weights Ω1

we wish to add infinitely many weights and generate a subnormal 2-

variable weighted shift, that is, a weighted shift with a Berger measure

interpolating the initial family of weights.

1



The Subnormal Completion Problem

for 2-variable weighted shifts

Consider the following completion problem: Given

√
a

√
c

√
e

√
b

√
d

√
f
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Figure 1. The initial family of weights Ω1

we wish to add infinitely many weights and generate a subnormal 2-
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interpolating the initial family of weights.
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The initial family needs to satisfy an obvious necessary condition, that is,

M(Ω1) :=




β00 β01 β10

β01 β02 β11

β10 β01 β20


 ≡




1 a b

a ac be

b be bd


 . (11.1)

We use tools and techniques from the theory of TMP to solve SCP in the

foundational case of six prescribed initial weights; these weights give rise

to the quadratic moments. For this case, the natural necessary conditions

for the existence of a subnormal completion are also sufficient.



To calculate explicitly the associated Berger measure, we compute the

algebraic variety of the associated truncated moment problem; it turns out

that this algebraic variety is precisely the support of the Berger measure of

the subnormal completion.

In this case, solving the SCP consists of finding a probability measure µ

supported on R2
+ such that

∫
R2
+
y ix j dµ(x , y) = γij (i , j ≥ 0, i + j ≤ 2).

To ensure that the support of µ remains in R2
+ we use the localizing

matrices Mx(2) and My (2); each of these matrices will need to be

positive semidefinite.

Theorem

(RC, S.H. Lee and J. Yoon; 2010) Let Ω1 be a quadratic, commutative,

initial set of positive weights, and assume M(Ω1) ≥ 0. Then there always

exists a quartic commutative extension Ω̂2 of Ω1 such that M(Ω̂2) is a

flat extension of M(Ω1), and Mx(Ω̂2) ≥ 0 and My (Ω̂2) ≥ 0. As a

consequence, Ω1 admits a subnormal completion TΩ̂∞

.



M(2) =




1 a b ac be bd

a ac be acp beq bdr

b be bd beq bdr bds

ac acp beq

be beq bdr

bd bdr bds




(11.2)

(with the lower right-hand 3× 3 corner yet undetermined) and

Mx(2) =




a ac be

ac acp beq

be beq bdr


 and My (2) =




b be bd

be beq bdr

bd bdr bds


 .



It is actually possible to provide a concrete description of the Berger

measure for the subnormal completion in terms of the initial data.

Remark

Flat extensions may not exist for bigger families of initial weights. That

is, one can build an example of a quartic family of initial weights Ω2 for

which the associated moment matrix M(2) admits a representing

measure, but such that M(2) has no flat extension M(3).
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A Version of Riesz-Haviland for TMP

Given a moment sequence β, the Riesz functional is

Lβ(p) := p(β) (p ∈ C[z , z̄ ]).

Recall the Riesz-Haviland Theorem:

∃ µ rep. meas. for β ⇔ L ≡ Lβ ≥ 0 on P+.

For TMP, the natural analogue won’t work.

We say that the Riesz functional L is K-positive if

p ∈ P and p|K ≥ 0 ⇒ L(p) ≥ 0.



Consider the case

d = 1, K = R, and

M(2) :=




1 1 1

1 1 1

1 1 2


 ≥ 0.

In this case,

L(a0 + a1x + a2x
2 + a3x

3 + a4x
4) := a0 + a1 + a2 + a3 + 2a4

One proves that L is K -positive, but β has no representing measure.



In TMP, K -positivity is a necessary (but not sufficient) condition for a

K -representing measure µ.

Theorem (TMP Version of Riesz-Haviland)

(RC-L. Fialkow, 2007) β ≡ β(2n) admits a K-representing measure if and

only if Lβ admits a K-positive linear extension L : P2n+2 7−→ R.

This Theorem implies the classical Riesz-Haviland, via Stochel’s Theorem.



P
...

↑
P2n+2

↑
K -pos.

ց
P2n

K -pos.−→ R

In general it is quite difficult to directly verify that an extension

L̃ : P2n+2 −→ R is K -positive.



The Quartic Moment Problem

Recall the lexicographic order on the rows and columns of M(2):

1,Z , Z̄ ,Z 2, Z̄Z , Z̄ 2

(r = 1) Z = A 1 (Dirac measure)

(r = 2) Z̄ = A 1 + B Z (supp µ ⊆ line)

(r = 3) Z 2 = A 1 + B Z + C Z̄ (flat extensions always exist)

(r = 4) Z̄Z = A 1 + B Z + C Z̄ + D Z 2

D = 0 ⇒ Z̄Z = A 1 + B Z + B̄ Z̄ and C = B̄

⇒ (Z̄ − B)(Z − B̄) = A+ |B |2

⇒ W̄W = 1 (circle), for W :=
Z − B̄√
A+ |B |2

.



Case r = 5

With x := Re[z ] and y := Im[z ], and using the flat data result, one can

reduce the study to cases corresponding to the following five real conics:

(a) W̄ 2 = −2iW + 2iW̄ −W 2 − 2W̄W parabola; y = x2

(b) W̄ 2 = −4i1 +W 2 hyperbola; yx = 1

(c) W̄ 2 = W 2 pair of intersect. lines; yx = 0

(d) W̄W = 1 unit circle; x2 + y2 = 1

(e) W 2 + 2W̄W + W̄ 2 = 2W + 2W̄ two parallel lines; x(x − 1) = 0.



Theorem

(RC-L. Fialkow, 2005) Assume that M(2) ≥ 0, M(2) singular, and that

rank M(2) ≤ card V(γ(4)). Then M(2) admits a representing measure.



The Case of Invertible M(2)

(L. Fialkow and J. Nie, 2010) Consider a quartic moment problem with

invertible M(2). Then there exists a representing measure.

The proof is abstract, using convex analysis.

(RC-S. Yoo, 2013) Concrete construction of a representing measure, when

M(2) is invertible. Moreover, there exists a 6-atomic representing

measure, that is, M(2) admits a flat extension M(3).

The proof uses a new idea: rank reduction



Extremal Real MP; r = v

Recall: The algebraic variety of β is

V ≡ Vβ :=
⋂

p∈Pn,p̂∈kerM(n)

Zp,

where Zp = {x ∈ Rd : p(x) = 0}. If β admits a rep. measure µ, then

p ∈ Pn satisfies p̂ ∈ kerM(n) ⇔ supp µ ⊆ Zp

Thus supp µ ⊆ V , so r := rank M(n) and v := card V satisfy

r ≤ card supp µ ≤ v .

Extension Principle: M(n + 1) rec. gen. extension of M(n) and

p(X ,Y ) = 0 in M(n), then p(X ,Y ) = 0 in M(n + 1).

Then V(n + 1) ⊆ V(n) and therefore rn ≤ rn+1 ≤ vn+1 ≤ vn.



Basic necessary conditions for the existence

of a representing measure

(Positivity) M(n) ≥ 0

(Consistency) p ∈ P2n, p|V ≡ 0 =⇒ Λ(p) = 0

(where Λ is the Riesz functional associated to M(n))

(Variety Condition) r ≤ v , i.e., rank M(n) ≤ card V .

Consistency implies

(Recursiveness) p, q, pq ∈ Pn, p̂ ∈ kerM(n) =⇒ p̂q ∈ kerM(n).

Consistency is intimately related to J. Stochel’s Type B: A polynomial

P ∈ P2n is type B if Φ ≥ 0, linear and Φ|I(Z(P)) ≡ 0 ⇒ Φ(f ) =
∫
f dµ.



(Consistency) p ∈ P2n, p|V ≡ 0 =⇒ Λ(p) = 0

(Weak Consistency) p ∈ Pn, p|V ≡ 0 =⇒ Λ(p) = 0

Consistency =⇒ Weak Consistency =⇒ Recursively generated

Theorem

(RC, L. Fialkow and M. Möller, 2005) Suppose M(3) ≥ 0, recursively

generated, Y = X 3 and r ≤ v ≤ 7. Then M(3) has a rep. measure.

Theorem

(RC, L. Fialkow and M. Möller, 2005) There exists a real moment matrix

M(3) ≥ 0, recursively generated, with r = v = 8, Y = X 3, and no rep.

measure.



Theorem

(L. Fialkow; TAMS, 2011) There exists a real moment matrix M(3) which

is positive, consistent, with column relation Y = X 3 and no rep. measure.

Theorem EXT

(RC, L. Fialkow and M. Möller, 2005) For β ≡ β(2n) extremal, i.e., r = v,

the following are equivalent:

(i) β has a representing measure;

(ii) β has a unique representing measure, which is rank M(n)-atomic

(minimal);

(iii) There exists M(n + 1) flat extension of M(n);

(iv) There exists a unique flat extension of M(n);

(v) M(n) ≥ 0 and β is consistent.



Cubic Column Relations

Since we know how to solve the singular Quartic MP, WLOG we will

assume M(2) > 0, and that Z 3 = p2(Z , Z̄ ), with deg p2 ≤ 2.

First, we would like to focus on the case of harmonic poly’s:

q(z , z̄) := f (z)− g(z), with deg q = 3.

Recall that rank M(n) ≤ card Z(q). Of special interest is the case when

card Z(q) ≥ 7, since otherwise the TMP either admits a flat extension or

has no representing measure. In the case when g(z) ≡ z , we have

Lemma

(Wilmshurst ’98, Sarason-Crofoot, ’99, Khavinson-Swiatek, ’03)

card Z(f (z)− z) ≤ 7.

Bézout’s Theorem predicts card Z(f (z)− z) ≤ 9



WLOG, one considers harmonic polynomials of the form

q7(z , z̄) := z3 − itz − uz̄ .

Proposition

(RC-S. Yoo, 2009) For (0 < u < −t < 2u), we have card Z(q7) = 7. In

fact,

Z(q7) = {0, p + iq, q + ip,−p − iq,−q − ip, r + ir ,−r − ir},

where p, q, r > 0, p2 + q2 = u and r2 = |t+u|
2 .



Harmonic Polynomials

Consider the harmonic polynomial q7(z , z̄) := z3 − itz − uz̄ , with

(0 < u < −t < 2u):

(0, 0)

(r, r)

(−r,−r)

(p, q)

(q, p)

(−p,−q)

(−q,−p)

Figure 1. The 7-point set Z( ), where



Since rankM(3) = 7, there must be another column relation besides

q7(Z , Z̄ ) = 0. Clearly the columns

1,Z , Z̄ ,Z 2, Z̄Z , Z̄ 2, Z̄Z 2

must be linearly independent (otherwise M(3) would be a flat extension of

M(2)), so the new column relation must involve Z̄Z 2 and Z̄ 2Z . An

analysis using the properties of the functional calculus shows that, in the

presence of a representing measure, the new column relation must be

Z̄ 2Z + i Z̄Z 2 − iuZ − uZ̄ = 0.



Notation

Define

qLC (z , z̄) := z̄2z + i z̄z2 − iuz − uz̄

= i(z − i z̄)(z̄z − u).

Observe that the zero set of qLC is the union of a line and a circle, and

that Z(q7) ⊂ Z(qLC ).



(0, 0)

(r, r)

(−r,−r)

(p, q)

(q, p)

(−p,−q)

(−q,−p)

Figure 2. The sets Z(q7) and Z(qLC)



Theorem

(RC-S. Yoo, 2014) Let M(3) ≥ 0, with M(2) > 0 and q7(Z , Z̄ ) = 0.

There exists a representing measure for M(3) if and only if

{
Λ(qLC ) = 0

Λ(zqLC ) = 0.

where Λ ≡ Λβ is the Riesz functional. Equivalently,

{
Re γ12 − Im γ12 = u(Re γ01 − Im γ01) = 0

γ22 = (t + u)γ11 − 2u Im γ02 = 0.

Equivalently,

qLC (Z , Z̄ ) = 0

Proof uses Consistency Property.



Proposition (Representation of Polynomials)

Let P6 := {p ∈ C6[z , z̄ ] : p|Z(q7) ≡ 0} and let

I := {p ∈ C6[z , z̄ ] : p = fq7 + gq̄7 + hqLC for some f , g , h ∈ C3[z , z̄ ]}.
Then P6 = I.



The Division Algorithm

Division Algorithm in R[x1, · · · , xn]
Fix a monomial order > on Zn

≥0 and let F = (f1, · · · , fs) be an ordered

s-tuple of polynomials in R[x1, · · · , xn]. Then every f ∈ R[x1, · · · , xn] can
be written as

f = a1f1 + · · ·+ as fs + r ,

where ai ,∈ R[x1, · · · , xn], and either r = 0 or r is a linear combination,

with coefficients in R, of monomials, none of which is divisible by any of

the leading terms in f1, · · · , fs .
Furthermore, if ai fi 6= 0, then we have

multideg(f ) ≥ multideg(ai fi ).

Key idea: Use the Division Algorithm to establish representation theorems

for polynomials vanishing on the algebraic variety of β.



Classification of sextic MP

r3 v3 v3 − r3 MaxExt Solution Presented in

7 7 0 M(4) extremal RC-S. Yoo;JFA(2014),IEOT(2017)

7 8 1 M(5) non-extremal RC-S. Yoo; JFA(2015)

7 9 2 M(6) non-extremal RC-S. Yoo; JFA(2015)

7 ∞ N/A N/A non-extremal RC-S. Yoo; JFA(2015)

8 8 0 M(4) extremal RC-S. Yoo;IEOT(2017)

8 9 1 M(5) non-extremal RC-S. Yoo; JFA(2015)

8 ∞ N/A N/A non-extremal RC-S. Yoo; JFA(2015)

9 ∞ N/A N/A non-extremal L. Fialkow;TAMS(2011)(cases)

10 ∞ N/A N/A non-extremal open problem



A New Tool: Rank Reduction

Given a point (a, b) ∈ R2 we let v ≡ v(a,b) denote the row vector

(1, a, b, a2, ab, b2, a3, a2b, ab2, b3)

We also let δ(a,b) denote the point mass at (a, b). It is easy to see that

the moment matrix associated with δ(a,b) is vv
T , that is, the matrix whose

entries are M(3)ij = aibj . For this moment matrix, r = 1 and

V = {(a, b)}.

Theorem

(RC-S. Yoo, 2015) Assume M(3) ≥ 0, M(2) > 0, rank M(3) = 7 and

card V ≥ 8. Assume also that M(3) satisfies the Consistency Property.

Then M(3) admits a flat extension M(4); that is, there exists a

representing measure µ with card supp µ = 7.



Sketch of Proof. WLOG, assume

V = {(x1, y1), . . . , (x8, y8)}.

Also assume that in M(3) the first seven columns are linearly

independent. Now form the Vandermonde matrix




1 x1 y1 x21 x1y1 y21 x31 x21y1 x1y
2
1 y31

1 x2 y2 x22 x2y2 y22 x32 x22y2 x2y
2
2 y32

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 x8 y8 x28 x8y8 y28 x38 x28y8 x8y
2
8 y38



.

This is an 8× 10 matrix, with rank 7. It follows that exactly seven rows

are linearly independent, so one of them must be a linear combination of

the other seven, say

Rj =
∑

i 6=j

λiRi .



The row Rj must be associated with a point (xj , yj) ∈ V . To single out

this point, we will denote it by (a, b). Now let

V ′ := V \ {(a, b)}.

Claim. No conic goes through V ′. Proof uses invertibility of M(2)

and Consistency.

We now define

M̃(3) := M(3)− ρvvT ,

where v is the row vector associated with the point (a, b).



We wish to prove that rank M̃(3) = 6 for some positive value of ρ. If we

do this, then M̃(3) will be a flat extension of M̃(2), and we will have a

6-atomic measure for M̃(3), and therefore a 7-atomic measure for M(3),

since M(3) = M̃(3) + ρvvT . Moreover, one can show that rank

M̃(2) = 6, using above Claim. Also, observe that M̃(3) ≥ 0.

Let λ denote the nonzero eigenvalue of vvT , and let B be the basis of the

column space of M(3). Then

detM̃(3)B = detM(3)B − ρλdet(M(3)B|{2,3,4,5,6,7}).

Thus, with

ρ :=
detM(3)B

λdet(M(3)B|{2,3,4,5,6,7})
,

we successfully reduce the rank.



M(3) with r = 8 and v = 9

We again use a Rank Reduction strategy: In the specific case of r = 8 and

v = 9, one must have the algebraic variety V of M(3) as the intersection

of two cubics C1 and C2 in general position. We then use the

Cayley-Bacharach Theorem:

Assume that two cubics C1 and C2 in the projective plane meet in nine

(different) points (that is C1
⋂
C2 = V). Then every cubic C that passes

through any eight of the points in V also passes through the ninth point.

We can then generate an Algorithm to determine solubility of the TMP.



Thank you!
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