Nonexistence results for elliptic problems in contractible domains

Riccardo Molle
Università di Roma "Tor Vergata"
(joint works with Donato Passaseo)

Nonlinear Geometric PDE's
Banff International Research Station
MAY 9, 2019

Main problem - outline of the talk

$$
(P) \quad-\Delta u=f(u) \text { in } \Omega \quad u=0 \text { on } \partial \Omega \quad u \not \equiv 0
$$

$\Omega \subset \subset \mathbb{R}^{n}, n \geq 3, \quad f$ supercritical and regular
\diamond model case $f(u)=|u|^{p-2} u, \quad p>2^{*}:=\frac{2 n}{n-2}$

Main problem - outline of the talk

$$
(P) \quad-\Delta u=f(u) \text { in } \Omega \quad u=0 \text { on } \partial \Omega \quad u \not \equiv 0
$$

$\Omega \subset \subset \mathbb{R}^{n}, n \geq 3, \quad f$ supercritical and regular
\diamond model case $f(u)=|u|^{p-2} u, \quad p>2^{*}:=\frac{2 n}{n-2}$

- known facts
- existence results in nearly star-shaped domains
- new nonexistence results
- extensions to the q-Laplace operator
- work in progress

Well-known facts

- f has subcritical growth $\Longrightarrow \mathrm{a}$ (positive) solution exists
- $f(u)=|u|^{p-2} u, p>2^{*}, \Omega$ star-shaped \Longrightarrow no solution: Pohozaev identity

$$
\frac{1}{2} \int_{\partial \Omega}|D u|^{2} x \cdot \nu d \sigma=-\left(\frac{n-2}{2}\right) \int_{\Omega}|D u|^{2} d x+\frac{n}{p} \int_{\Omega}|u|^{p} d x
$$

Well-known facts

- f has subcritical growth $\Longrightarrow \mathrm{a}$ (positive) solution exists
- $f(u)=|u|^{p-2} u, p>2^{*}, \Omega$ star-shaped \Longrightarrow no solution: Pohozaev identity

$$
\frac{1}{2} \int_{\partial \Omega}|D u|^{2} x \cdot \nu d \sigma=-\left(\frac{n-2}{2}\right) \int_{\Omega}|D u|^{2} d x+\frac{n}{p} \int_{\Omega}|u|^{p} d x
$$

- If $f(u)=|u|^{p-2} u, \quad p>2, \Omega$ an annulus \Longrightarrow infinitely many [Kazdan - Warner (1975)]

Well-known facts

- f has subcritical growth $\Longrightarrow \mathrm{a}$ (positive) solution exists
- $f(u)=|u|^{p-2} u, p>2^{*}, \Omega$ star-shaped \Longrightarrow no solution: Pohozaev identity

$$
\frac{1}{2} \int_{\partial \Omega}|D u|^{2} x \cdot \nu d \sigma=-\left(\frac{n-2}{2}\right) \int_{\Omega}|D u|^{2} d x+\frac{n}{p} \int_{\Omega}|u|^{p} d x
$$

- If $f(u)=|u|^{p-2} u, \quad p>2, \Omega$ an annulus \Longrightarrow infinitely many [Kazdan - Warner (1975)]

Is the nontriviality of the topology of the domain sufficient or necessary for the existence of solutions?

- Nonexistence results in contractible domains (solid-tori) for $n \geq 4$ and $p>\frac{2(n-1)}{n-3}=: 2_{n-1}^{*} \quad$ [Passaseo (1993)]
- Nonexistence results in contractible domains (solid-tori) for $n \geq 4$ and $p>\frac{2(n-1)}{n-3}=: 2_{n-1}^{*} \quad$ [Passaseo (1993)]
- For every $p>2^{*}$, existence results in contractible domains ("near" non-contractible domains) [Passaseo (1998)]
- Nonexistence results in contractible domains (solid-tori) for $n \geq 4$ and $p>\frac{2(n-1)}{n-3}=: 2_{n-1}^{*} \quad$ [Passaseo (1993)]
- For every $p>2^{*}$, existence results in contractible domains ("near" non-contractible domains) [Passaseo (1998)]

In the supercritical case the geometry of the domain affect the existence of solutions

- Nonexistence results in contractible domains (solid-tori) for $n \geq 4$ and $p>\frac{2(n-1)}{n-3}=: 2_{n-1}^{*} \quad$ [Passaseo (1993)]
- For every $p>2^{*}$, existence results in contractible domains ("near" non-contractible domains) [Passaseo (1998)]

In the supercritical case the geometry of the domain affect the existence of solutions
[Dancer, Del Pino, Felmer, Guo, Micheletti, M., Musso, Pacard, Pistoia, Passaseo, Struwe, Wei, Yan, . . .]
[Wei - Yan (2011)]: existence of infinitely many positive solutions in suitable contractible domains for $f(u)=|u|^{p-2} u$ with
$p=2_{n-k}^{*}:=\frac{2(n-k)}{(n-k)-2}$

There exists solutions in nearly star-shaped domains?

Definition [M. - Passaseo (2002)]

$$
\sigma(\Omega)=\sup _{x_{0} \in \Omega} \inf \left\{\frac{x-x_{0}}{\left|x-x_{0}\right|} \cdot \nu(x): x \in \partial \Omega\right\}
$$

$\nu(x)$ is the outward normal to $\partial \Omega$.

- Ω strictly star-shaped $\leftrightarrow \sigma(\Omega)>0$

There exists solutions in nearly star-shaped domains?

Definition [M. - Passaseo (2002)]

$$
\sigma(\Omega)=\sup _{x_{0} \in \Omega} \inf \left\{\frac{x-x_{0}}{\left|x-x_{0}\right|} \cdot \nu(x): x \in \partial \Omega\right\}
$$

$\nu(x)$ is the outward normal to $\partial \Omega$.

- Ω strictly star-shaped $\leftrightarrow \sigma(\Omega)>0$
- " Ω nearly star-shaped $\quad \leadsto \rightsquigarrow \sigma(\Omega)^{-}=\max \{0,-\sigma(\Omega)\}$ small"

In [Dancer - Zhang (2000)] a different definition of nearly star-shaped domains

- Theorem (2002) For every $\eta>0$ there exists $\Omega_{\eta} \subset \mathbb{R}^{n}$ and $\varepsilon_{\eta}>0$ such that $\sigma(\Omega)^{-}<\eta$ and problem

$$
-\Delta u=u^{2^{*}-1+\varepsilon} \text { in } \Omega_{\eta} \quad u=0 \text { on } \partial \Omega_{\eta}
$$

has multiple positive solutions for every $\varepsilon \in\left(0, \varepsilon_{\eta}\right)$.

- Theorem (2002) For every $\eta>0$ there exists $\Omega_{\eta} \subset \mathbb{R}^{n}$ and $\varepsilon_{\eta}>0$ such that $\sigma(\Omega)^{-}<\eta$ and problem

$$
-\Delta u=u^{2^{*}-1+\varepsilon} \text { in } \Omega_{\eta} \quad u=0 \text { on } \partial \Omega_{\eta}
$$

has multiple positive solutions for every $\varepsilon \in\left(0, \varepsilon_{\eta}\right)$.

- Theorem (2006) For every $\eta>0$ there exists $\Omega_{\eta} \subset \mathbb{R}^{n}$ and $p_{\eta}>0$ such that $\sigma(\Omega)^{-}<\eta$ and problem

$$
-\Delta u=u^{p} \text { in } \Omega_{\eta} \quad u=0 \text { on } \partial \Omega_{\eta}
$$

has multiple positive solutions for every $p>p_{\eta}$.

- Theorem (2002) For every $\eta>0$ there exists $\Omega_{\eta} \subset \mathbb{R}^{n}$ and $\varepsilon_{\eta}>0$ such that $\sigma(\Omega)^{-}<\eta$ and problem

$$
-\Delta u=u^{2^{*}-1+\varepsilon} \text { in } \Omega_{\eta} \quad u=0 \text { on } \partial \Omega_{\eta}
$$

has multiple positive solutions for every $\varepsilon \in\left(0, \varepsilon_{\eta}\right)$.

- Theorem (2006) For every $\eta>0$ there exists $\Omega_{\eta} \subset \mathbb{R}^{n}$ and $p_{\eta}>0$ such that $\sigma(\Omega)^{-}<\eta$ and problem

$$
-\Delta u=u^{p} \text { in } \Omega_{\eta} \quad u=0 \text { on } \partial \Omega_{\eta}
$$

has multiple positive solutions for every $p>p_{\eta}$.

What about nonexistence in domains far from star-shaped ones?

New nonexistence results

In our problem

$$
(P) \quad-\Delta u=f(u) \text { in } \Omega \quad u=0 \text { on } \partial \Omega \quad u \not \equiv 0
$$

we assume f a continuous function such that

$$
(f) \quad t f(t) \geq p \int_{0}^{t} f(\tau) d \tau \geq 0 \quad \forall t \in \mathbb{R}
$$

for a given $p>2^{*}$
p can be arbitrarily chosen near 2^{*}
no symmetry assumption will be required for Ω

Notation: $\quad F(t)=\int_{0}^{t} f(\tau) d \tau \quad \forall t \in \mathbb{R}$

Construction of the tubular domains:

- $\gamma \in \mathcal{C}^{3}\left([a, b], \mathbb{R}^{n}\right)$ injective and s.t. $\gamma^{\prime} \neq 0$ in $[a, b]$
- $N_{\varepsilon}(t)=\left\{\xi \in \mathbb{R}^{n}: \xi \cdot \gamma^{\prime}(t)=0,|\xi|<\varepsilon\right\}$
- ε so small that $t_{1} \neq t_{2} \Longrightarrow$

$$
\left[\gamma\left(t_{1}\right)+N_{\varepsilon}\left(t_{1}\right)\right] \cap\left[\gamma\left(t_{2}\right)+N_{\varepsilon}\left(t_{2}\right)\right]=\emptyset
$$

$$
T_{\varepsilon}^{\gamma}:=\bigcup_{t \in(a, b)}\left[\gamma(t)+N_{\varepsilon}(t)\right]
$$

Main result:

- Theorem (2019) If $f \in \mathcal{C}(\mathbb{R})$ satisfies

$$
(f) \quad t f(t) \geq p \int_{0}^{t} f(\tau) d \tau \geq 0 \quad \forall t \in \mathbb{R}
$$

with $p>2^{*}$ then problem

$$
-\Delta u=f(u) \text { in } T_{\varepsilon}^{\gamma} \quad u=0 \text { on } \partial T_{\varepsilon}^{\gamma} \quad u \not \equiv 0
$$

has no solution for ε small.

An integral identity:

- Lemma u a solution of $(P), V \in \mathcal{C}^{1}\left(\bar{\Omega}, \mathbb{R}^{n}\right) \Longrightarrow$

$$
\begin{aligned}
& \frac{1}{2} \int_{\partial \Omega}|D u|^{2} V \cdot \nu d \sigma= \\
& \quad \int_{\Omega} d V[D u] \cdot D u d x+\int_{\Omega} \operatorname{div} V\left(F(u)-\frac{1}{2}|D u|^{2}\right) d x
\end{aligned}
$$

here $d V[\eta]=\sum_{i=1}^{n} D_{i} V \eta_{i}, \forall \eta \in \mathbb{R}^{n}$.

An integral identity:

- Lemma u a solution of $(P), V \in \mathcal{C}^{1}\left(\bar{\Omega}, \mathbb{R}^{n}\right) \Longrightarrow$

$$
\begin{aligned}
& \frac{1}{2} \int_{\partial \Omega}|D u|^{2} V \cdot \nu d \sigma= \\
& \quad \int_{\Omega} d V[D u] \cdot D u d x+\int_{\Omega} \operatorname{div} V\left(F(u)-\frac{1}{2}|D u|^{2}\right) d x
\end{aligned}
$$

here $d V[\eta]=\sum_{i=1}^{n} D_{i} V \eta_{i}, \forall \eta \in \mathbb{R}^{n}$.
proof: apply Gauss-Green to $V \cdot D u D u$ and use (P)
\diamond in Pohozaev $V(x)=x$

The vector field:

$$
V(\gamma(t)+\psi)=\left[1-\psi \cdot \gamma^{\prime \prime}(t)\right] t \gamma^{\prime}(t)+\psi
$$

The vector field:

$$
V(\gamma(t)+\psi)=\left[1-\psi \cdot \gamma^{\prime \prime}(t)\right] t \gamma^{\prime}(t)+\psi
$$

Properties:

(1) $V \cdot \nu>0$ on $\partial \bar{T}_{\varepsilon}^{\gamma}$
(2) $\lim _{\varepsilon \rightarrow 0} \sup \left\{|1-d V(x)[\eta] \cdot \eta|: x \in T_{\varepsilon}^{\gamma}, \eta \in \mathbb{R}^{n},|\eta|=1\right\}=0$
(3) $\lim _{\varepsilon \rightarrow 0} \sup \left\{|n-\operatorname{div} V(x)|: x \in T_{\varepsilon}^{\gamma}\right\}=0$

The vector field:

$$
V(\gamma(t)+\psi)=\left[1-\psi \cdot \gamma^{\prime \prime}(t)\right] t \gamma^{\prime}(t)+\psi
$$

Properties:

(1) $V \cdot \nu>0$ on $\partial \bar{T}_{\varepsilon}^{\gamma}$
(2) $\lim _{\varepsilon \rightarrow 0} \sup \left\{|1-d V(x)[\eta] \cdot \eta|: x \in T_{\varepsilon}^{\gamma}, \eta \in \mathbb{R}^{n},|\eta|=1\right\}=0$
(3) $\lim _{\varepsilon \rightarrow 0} \sup \left\{|n-\operatorname{div} V(x)|: x \in T_{\varepsilon}^{\gamma}\right\}=0$
u_{ε} a solution of (P) on $T_{\varepsilon}^{\gamma} \Longrightarrow$
$\frac{1}{2} \int_{\partial T_{\varepsilon}^{\gamma}}\left|D u_{\varepsilon}\right|^{2} V \cdot \nu=\int_{T_{\varepsilon}^{\gamma}} d V\left[D u_{\varepsilon}\right] \cdot D u_{\varepsilon}+\int_{T_{\varepsilon}^{\gamma}} \operatorname{div} V\left(F\left(u_{\varepsilon}\right)-\frac{1}{2}\left|D u_{\varepsilon}\right|^{2}\right)$
so

$$
0 \leq\left(1-\frac{n}{2}+O(1)\right) \int_{T_{\varepsilon}^{\gamma}}\left|D u_{\varepsilon}\right|^{2}+(n+O(1)) \int_{T_{\varepsilon}^{\gamma}} F\left(u_{\varepsilon}\right)
$$

End of the proof:

$$
\begin{aligned}
0 \leq(1 & \left.-\frac{n}{2}+O(1)\right) \int_{T_{\varepsilon}^{\gamma}}\left|D u_{\varepsilon}\right|^{2} d x+(n+O(1)) \int_{T_{\varepsilon}^{\gamma}} F\left(u_{\varepsilon}\right) d x \\
& \Longrightarrow \text { (by assumption }(f) \text {) }
\end{aligned}
$$

$$
0 \leq\left(1-\frac{n}{2}+O(1)\right) \int_{T_{\varepsilon}^{\gamma}}\left|D u_{\varepsilon}\right|^{2} d x+(n+O(1)) \frac{1}{p} \int_{T_{\varepsilon}^{\gamma}} u_{\varepsilon} f\left(u_{\varepsilon}\right) d x
$$

End of the proof:

$$
\begin{aligned}
0 \leq(1 & \left.-\frac{n}{2}+O(1)\right) \int_{T_{\varepsilon}^{\gamma}}\left|D u_{\varepsilon}\right|^{2} d x+(n+O(1)) \int_{T_{\varepsilon}^{\gamma}} F\left(u_{\varepsilon}\right) d x \\
& \Longrightarrow(\text { by assumption }(f))
\end{aligned}
$$

$$
\begin{aligned}
0 \leq(1 & \left.-\frac{n}{2}+O(1)\right) \int_{T_{\varepsilon}^{\gamma}}\left|D u_{\varepsilon}\right|^{2} d x+(n+O(1)) \frac{1}{p} \int_{T_{\varepsilon}^{\gamma}} u_{\varepsilon} f\left(u_{\varepsilon}\right) d x \\
& \Longrightarrow\left(\text { since } u_{\varepsilon} \text { solves }(P)\right) \\
0 \leq(1 & \left.-\frac{n}{2}+\frac{n}{p}+O(1)\right) \int_{T_{\varepsilon}^{\gamma}}\left|D u_{\varepsilon}\right|^{2} d x
\end{aligned}
$$

contrary to $1-\frac{n}{2}+\frac{n}{p}<0$ (i.e. $p>2^{*}$), for small ε

Tubular neighbourhood of closed circuit

(-) In previous result $\gamma(a) \neq \gamma(b)$

Tubular neighbourhood of closed circuit

(-) In previous result $\gamma(a) \neq \gamma(b)$
$(-) \quad \gamma$ closed curve $\Rightarrow V(\gamma(a)+\psi) \neq V(\gamma(b)+\psi)$

Tubular neighbourhood of closed circuit

(-) In previous result $\gamma(a) \neq \gamma(b)$
$(-) \quad \gamma$ closed curve $\Rightarrow V(\gamma(a)+\psi) \neq V(\gamma(b)+\psi)$
(-) for $p \in\left(2^{*}, 2_{n-1}^{*}\right)$ solutions can exist

Tubular neighbourhood of closed circuit

(-) In previous result $\gamma(a) \neq \gamma(b)$
$(-) \quad \gamma$ closed curve $\Rightarrow V(\gamma(a)+\psi) \neq V(\gamma(b)+\psi)$
(-) for $p \in\left(2^{*}, 2_{n-1}^{*}\right)$ solutions can exist

- Theorem Let $\gamma \in \mathcal{C}^{2}\left([a, b], \mathbb{R}^{n}\right)$ be a regular curve such that $\gamma(a)=\gamma(b)$ and $\gamma^{\prime}(a)=\gamma^{\prime}(b)$.
If $f \in \mathcal{C}(\mathbb{R})$ satisfies (f) with $\mathbf{p}>\mathbf{2}_{\mathbf{n}-\mathbf{1}}^{*}$ then problem

$$
-\Delta u=f(u) \text { in } T_{\varepsilon}^{\gamma} \quad u=0 \text { on } \partial T_{\varepsilon}^{\gamma} \quad u \not \equiv 0
$$

has no solution for ε small.

Proof. The vector field:

$$
\widetilde{V}(\gamma(t)+\psi)=\psi
$$

Proof. The vector field:

$$
\widetilde{V}(\gamma(t)+\psi)=\psi
$$

Properties:

(1) $\widetilde{V} \cdot \nu>0$ on $\partial \bar{T}_{\varepsilon}^{\gamma}$
(2) $\lim _{\varepsilon \rightarrow 0} \sup \left\{|1-d \widetilde{V}(x)[\eta] \cdot \eta|: x \in T_{\varepsilon}^{\gamma}, \eta \in \mathbb{R}^{n},|\eta|=1\right\}=0$
(3) $\lim _{\varepsilon \rightarrow 0} \sup \left\{|(n-1)-\operatorname{div} \tilde{V}(x)|: x \in T_{\varepsilon}^{\gamma}\right\}=0$

Proof. The vector field:

$$
\widetilde{F}(\sim(t)+\psi)=\psi
$$

Properties:

(1) $\widetilde{V} \cdot \nu>0$ on $\partial \bar{T}_{\varepsilon}^{\gamma}$
(2) $\lim _{\varepsilon \rightarrow 0} \sup \left\{|1-d \widetilde{V}(x)[\eta] \cdot \eta|: x \in T_{\varepsilon}^{\gamma}, \eta \in \mathbb{R}^{n},|\eta|=1\right\}=0$
(3) $\lim _{\varepsilon \rightarrow 0} \sup \left\{|(n-1)-\operatorname{div} \tilde{V}(x)|: x \in T_{\varepsilon}^{\gamma}\right\}=0$
u_{ε} a solution of (P) on $T_{\varepsilon}^{\gamma} \Longrightarrow$
$\frac{1}{2} \int_{\partial T_{\varepsilon}^{\gamma}}\left|D u_{\varepsilon}\right|^{2} \widetilde{V} \cdot \nu=\int_{T_{\varepsilon}^{\gamma}} d \widetilde{V}\left[D u_{\varepsilon}\right] \cdot D u_{\varepsilon}+\int_{T_{\varepsilon}^{\gamma}} \operatorname{div} \widetilde{V}\left(F\left(u_{\varepsilon}\right)-\frac{1}{2}\left|D u_{\varepsilon}\right|^{2}\right)$
so

$$
0 \leq\left(1-\frac{(n-1)}{2}+\frac{(n-1)}{p}+O(1)\right) \int_{T_{\varepsilon}^{\gamma}}\left|D u_{\varepsilon}\right|^{2}
$$

Proof. The vector field:

$$
\widetilde{F}(\sim(t)+\psi)=\psi
$$

Properties:

(1) $\widetilde{V} \cdot \nu>0$ on $\partial \bar{T}_{\varepsilon}^{\gamma}$
(2) $\lim _{\varepsilon \rightarrow 0} \sup \left\{|1-d \widetilde{V}(x)[\eta] \cdot \eta|: x \in T_{\varepsilon}^{\gamma}, \eta \in \mathbb{R}^{n},|\eta|=1\right\}=0$
(3) $\lim _{\varepsilon \rightarrow 0} \sup \left\{|(n-1)-\operatorname{div} \widetilde{V}(x)|: x \in T_{\varepsilon}^{\gamma}\right\}=0$
u_{ε} a solution of (P) on $T_{\varepsilon}^{\gamma} \Longrightarrow$
$\frac{1}{2} \int_{\partial T_{\varepsilon}^{\gamma}}\left|D u_{\varepsilon}\right|^{2} \widetilde{V} \cdot \nu=\int_{T_{\varepsilon}^{\gamma}} d \widetilde{V}\left[D u_{\varepsilon}\right] \cdot D u_{\varepsilon}+\int_{T_{\varepsilon}^{\gamma}} \operatorname{div} \widetilde{V}\left(F\left(u_{\varepsilon}\right)-\frac{1}{2}\left|D u_{\varepsilon}\right|^{2}\right)$
so

$$
0 \leq\left(1-\frac{(n-1)}{2}+\frac{(n-1)}{p}+O(1)\right) \int_{T_{\varepsilon}^{\gamma}}\left|D u_{\varepsilon}\right|^{2}
$$

contrary to $1-\frac{(n-1)}{2}+\frac{(n-1)}{p}<0$ (ie. $p>2_{n-1}^{*}$), for small ε

Higher dimensional tubular domains $-\exists$ results

- $\gamma_{k}: \mathbb{R}^{k} \rightarrow \mathbb{R}^{n}$ the stereographic projection on a k-dim. sphere
- $\Gamma_{k}^{r}=\left\{\gamma_{k}(x):|x|<r\right\}$
- $T_{\bar{\varepsilon}}\left(\Gamma_{k}^{r}\right)$ an $\bar{\varepsilon}$-normal tubular neighbourhood of Γ_{k}^{r}

Here: $2 \leq k \leq n-1$ and $2_{n-k+1}^{*}= \begin{cases}\frac{2(n-k+1)}{n-k-1} & \text { if } k<n-1 \\ \infty & \text { if } k=n-1\end{cases}$

$$
f(u)=|u|^{p-2} u
$$

Higher dimensional tubular domains $-\exists$ results

- $\gamma_{k}: \mathbb{R}^{k} \rightarrow \mathbb{R}^{n}$ the stereographic projection on a k-dim. sphere
- $\Gamma_{k}^{r}=\left\{\gamma_{k}(x):|x|<r\right\}$
- $T_{\bar{\varepsilon}}\left(\Gamma_{k}^{r}\right)$ an $\bar{\varepsilon}$-normal tubular neighbourhood of Γ_{k}^{r}

Here: $2 \leq k \leq n-1$ and $2_{n-k+1}^{*}= \begin{cases}\frac{2(n-k+1)}{n-k-1} & \text { if } k<n-1 \\ \infty & \text { if } k=n-1\end{cases}$

$$
f(u)=|u|^{p-2} u
$$

(a) Fixed $p \in\left[2^{*}, 2_{n-k+1}^{*}\right)$, there exists $\bar{r}>0$ s.t. (P) has solution in $T_{\bar{\varepsilon}}\left(\Gamma_{k}^{r}\right), \forall r>\bar{r}$.

Higher dimensional tubular domains $-\exists$ results

- $\gamma_{k}: \mathbb{R}^{k} \rightarrow \mathbb{R}^{n}$ the stereographic projection on a k-dim. sphere
- $\Gamma_{k}^{r}=\left\{\gamma_{k}(x):|x|<r\right\}$
- $T_{\bar{\varepsilon}}\left(\Gamma_{k}^{r}\right)$ an $\bar{\varepsilon}$-normal tubular neighbourhood of Γ_{k}^{r}

Here: $2 \leq k \leq n-1$ and $2_{n-k+1}^{*}= \begin{cases}\frac{2(n-k+1)}{n-k-1} & \text { if } k<n-1 \\ \infty & \text { if } k=n-1\end{cases}$

$$
f(u)=|u|^{p-2} u
$$

(a) Fixed $p \in\left[2^{*}, 2_{n-k+1}^{*}\right)$, there exists $\bar{r}>0$ s.t. (P) has solution in $T_{\bar{\varepsilon}}\left(\Gamma_{k}^{r}\right), \forall r>\bar{r}$.
(b) Fixed $r>1$, there exists $\tilde{p}>2^{*}$ such that (P) has solution in $T_{\bar{\varepsilon}}\left(\Gamma_{k}^{r}\right), \forall p \in\left(2^{*}, \tilde{p}\right)$.

Higher dimensional tubular domains $-\exists$ results

- $\gamma_{k}: \mathbb{R}^{k} \rightarrow \mathbb{R}^{n}$ the stereographic projection on a k-dim. sphere
- $\Gamma_{k}^{r}=\left\{\gamma_{k}(x):|x|<r\right\}$
- $T_{\bar{\varepsilon}}\left(\Gamma_{k}^{r}\right)$ an $\bar{\varepsilon}$-normal tubular neighbourhood of Γ_{k}^{r}

Here: $2 \leq k \leq n-1$ and $2_{n-k+1}^{*}= \begin{cases}\frac{2(n-k+1)}{n-k-1} & \text { if } k<n-1 \\ \infty & \text { if } k=n-1\end{cases}$

$$
f(u)=|u|^{p-2} u
$$

(a) Fixed $p \in\left[2^{*}, 2_{n-k+1}^{*}\right)$, there exists $\bar{r}>0$ s.t. (P) has solution in $T_{\bar{\varepsilon}}\left(\Gamma_{k}^{r}\right), \forall r>\bar{r}$.
(b) Fixed $r>1$, there exists $\tilde{p}>2^{*}$ such that (P) has solution in $T_{\bar{\varepsilon}}\left(\Gamma_{k}^{r}\right), \forall p \in\left(2^{*}, \tilde{p}\right)$.
(c) Fixed $r>1$, there exists $\bar{p}<2_{n-k+1}^{*}$ such that (P) has solution in $T_{\bar{\varepsilon}}\left(\Gamma_{k}^{r}\right), \forall p \in\left(\bar{p}, 2_{n-k+1}^{*}\right)$.

Higher dimensional tubular domains - \nexists results

(-) $\quad \Gamma_{k}$ a smooth, compact, k-dimensional submanifold in \mathbb{R}^{n}
(-) $T_{\varepsilon}\left(\Gamma_{k}\right)$ the tubular neighbourhood of Γ_{k} of size ε

Higher dimensional tubular domains - \nexists results

(-) $\quad \Gamma_{k}$ a smooth, compact, k-dimensional submanifold in \mathbb{R}^{n}
$(-) T_{\varepsilon}\left(\Gamma_{k}\right)$ the tubular neighbourhood of Γ_{k} of size ε

- Theorem Let $1 \leq k<n-2$ and assume that $f \in \mathcal{C}(\mathbb{R})$ satisfies (f) with $\mathbf{p}>\mathbf{2}_{\mathbf{n}-\mathbf{k}}^{*}$ then problem

$$
(P) \quad-\Delta u=f(u) \text { in } T_{\varepsilon}\left(\Gamma_{k}\right) \quad u=0 \text { on } \partial T_{\varepsilon}\left(\Gamma_{k}\right) \quad u \not \equiv 0
$$

has no solution for ε small.

Higher dimensional tubular domains - \nexists results

(-) $\quad \Gamma_{k}$ a smooth, compact, k-dimensional submanifold in \mathbb{R}^{n}
(-) $T_{\varepsilon}\left(\Gamma_{k}\right)$ the tubular neighbourhood of Γ_{k} of size ε

- Theorem Let $1 \leq k<n-2$ and assume that $f \in \mathcal{C}(\mathbb{R})$ satisfies (f) with $\mathbf{p}>\mathbf{2}_{\mathbf{n}-\mathbf{k}}^{*}$ then problem

$$
(P) \quad-\Delta u=f(u) \text { in } T_{\varepsilon}\left(\Gamma_{k}\right) \quad u=0 \text { on } \partial T_{\varepsilon}\left(\Gamma_{k}\right) \quad u \not \equiv 0
$$

has no solution for ε small.
$\diamond k \geq n-2$ or $k<n-2$ and $p<2_{n-k}^{*} \quad \Rightarrow \quad$ if Γ_{k} is a k-dimensional sphere then (P) has solution

Nonexistence results for the q-laplacian

$(-) \quad \gamma \in \mathcal{C}^{3}\left([a, b], \mathbb{R}^{2}\right)$ injective and s.t. $\gamma^{\prime} \neq 0$ in $[a, b]$
(-) T_{ε}^{γ} the ε-neighbourhood of $\gamma([a, b])$

- Theorem $q \in(1,2)$. If $f \in \mathcal{C}(\mathbb{R})$ satisfies (f) with $p>q^{*}=\frac{2 q}{2-q}$ then problem

$$
\text { (q) } \quad-\operatorname{div}\left(|D u|^{q-2} D u\right)=f(u) \text { in } T_{\varepsilon}^{\gamma} \quad u=0 \text { on } \partial T_{\varepsilon}^{\gamma} \quad u \not \equiv 0
$$

has no solution for $\varepsilon>0$ small.

Nonexistence results for the q-laplacian

$(-) \quad \gamma \in \mathcal{C}^{3}\left([a, b], \mathbb{R}^{2}\right)$ injective and s.t. $\gamma^{\prime} \neq 0$ in $[a, b]$
(-) T_{ε}^{γ} the ε-neighbourhood of $\gamma([a, b])$

- Theorem $q \in(1,2)$. If $f \in \mathcal{C}(\mathbb{R})$ satisfies (f) with $p>q^{*}=\frac{2 q}{2-q}$ then problem

$$
(q) \quad-\operatorname{div}\left(|D u|^{q-2} D u\right)=f(u) \text { in } T_{\varepsilon}^{\gamma} \quad u=0 \text { on } \partial T_{\varepsilon}^{\gamma} \quad u \not \equiv 0
$$

has no solution for $\varepsilon>0$ small.

Similar results in \mathbb{R}^{n} with $n \geq 3$
Nonexistence results on contractible neighbourhood of graphs in \mathbb{R}^{2}
Conjecture: nonexistence of solutions in contractible domains in \mathbb{R}^{2}

Thanks for Your Attention

