Nonexistence results for elliptic problems in contractible domains

Riccardo Molle Università di Roma "Tor Vergata" (joint works with Donato Passaseo)

NONLINEAR GEOMETRIC PDE'S Banff International Research Station MAY 9, 2019

Main problem - outline of the talk

$$(P) \qquad \left| -\Delta u = f(u) \text{ in } \Omega \qquad u = 0 \text{ on } \partial \Omega \qquad u \not\equiv 0$$

 $\Omega \subset \mathbb{R}^n$, $n \geq 3$, f supercritical and regular

 $\diamondsuit \text{ model case } f(u) = |u|^{p-2}u, \qquad p > 2^* := \tfrac{2n}{n-2}$

Main problem - outline of the talk

$$(P) \qquad -\Delta u = f(u) \text{ in } \Omega \qquad u = 0 \text{ on } \partial \Omega \qquad u \not\equiv 0$$

 $\Omega \subset \mathbb{R}^n, n \geq 3,$ f supercritical and regular $\diamondsuit \mod f(u) = |u|^{p-2}u,$ $p > 2^* := \frac{2n}{n-2}$

- known facts
- existence results in nearly star-shaped domains
- new nonexistence results
- extensions to the *q*-Laplace operator
- work in progress

Well-known facts

- f has subcritical growth \implies a (positive) solution exists
- $f(u) = |u|^{p-2}u$, $p > 2^*$, Ω star-shaped \implies no solution: Pohozaev identity

$$\frac{1}{2}\int_{\partial\Omega}|Du|^2\,x\cdot\nu\,d\sigma=-\left(\frac{n-2}{2}\right)\int_{\Omega}|Du|^2dx+\frac{n}{p}\int_{\Omega}|u|^pdx$$

Well-known facts

- f has subcritical growth \implies a (positive) solution exists
- $f(u) = |u|^{p-2}u$, $p > 2^*$, Ω star-shaped \implies no solution: Pohozaev identity

$$\frac{1}{2}\int_{\partial\Omega}|Du|^2\,x\cdot\nu\,d\sigma=-\left(\frac{n-2}{2}\right)\int_{\Omega}|Du|^2dx+\frac{n}{p}\int_{\Omega}|u|^pdx$$

• If $f(u) = |u|^{p-2}u$, p > 2, Ω an annulus \implies infinitely many [Kazdan - Warner (1975)]

Well-known facts

- f has subcritical growth \implies a (positive) solution exists
- $f(u) = |u|^{p-2}u$, $p > 2^*$, Ω star-shaped \implies no solution: Pohozaev identity

$$\frac{1}{2}\int_{\partial\Omega}|Du|^2\,x\cdot\nu\,d\sigma = -\left(\frac{n-2}{2}\right)\int_{\Omega}|Du|^2dx + \frac{n}{p}\int_{\Omega}|u|^pdx$$

• If $f(u) = |u|^{p-2}u$, p > 2, Ω an annulus \implies infinitely many [Kazdan - Warner (1975)]

Is the nontriviality of the topology of the domain sufficient or necessary for the existence of solutions?

• Nonexistence results in contractible domains (solid-tori) for $n \ge 4$ and $p > \frac{2(n-1)}{n-3} =: 2^*_{n-1}$ [Passaseo (1993)]

- Nonexistence results in contractible domains (solid-tori) for $n \ge 4$ and $p > \frac{2(n-1)}{n-3} =: 2^*_{n-1}$ [Passaseo (1993)]
- For every $p > 2^*$, existence results in contractible domains ("near" non-contractible domains) [Passaseo (1998)]

- Nonexistence results in contractible domains (solid-tori) for $n \ge 4$ and $p > \frac{2(n-1)}{n-3} =: 2^*_{n-1}$ [Passaseo (1993)]
- For every $p > 2^*$, existence results in contractible domains ("near" non-contractible domains) [Passaseo (1998)]

In the supercritical case the geometry of the domain affect the existence of solutions

- Nonexistence results in contractible domains (solid-tori) for $n \ge 4$ and $p > \frac{2(n-1)}{n-3} =: 2_{n-1}^*$ [Passaseo (1993)]
- For every $p > 2^*$, existence results in contractible domains ("near" non-contractible domains) [Passaseo (1998)]

In the supercritical case the geometry of the domain affect the existence of solutions

[Dancer, Del Pino, Felmer, Guo, Micheletti, M., Musso, Pacard, Pistoia, Passaseo, Struwe, Wei, Yan, ...]

[Wei - Yan (2011)]: existence of infinitely many positive solutions in suitable contractible domains for $f(u) = |u|^{p-2}u$ with $p = 2^*_{n-k} := \frac{2(n-k)}{(n-k)-2}$

There exists solutions in nearly star-shaped domains?

Definition [M. – Passaseo (2002)]

$$\sigma(\Omega) = \sup_{x_0 \in \Omega} \inf \left\{ \frac{x - x_0}{|x - x_0|} \cdot \nu(x) : x \in \partial \Omega \right\}$$

 $\nu(x)$ is the outward normal to $\partial\Omega$.

• Ω strictly star-shaped $\leftrightarrow \sigma(\Omega) > 0$

There exists solutions in nearly star-shaped domains?

Definition [M. - Passaseo (2002)]

$$\sigma(\Omega) = \sup_{x_0 \in \Omega} \inf \left\{ \frac{x - x_0}{|x - x_0|} \cdot \nu(x) : x \in \partial \Omega \right\}$$

 $\nu(x)$ is the outward normal to $\partial\Omega$.

- Ω strictly star-shaped $\leftrightarrow \sigma(\Omega) > 0$
- " Ω nearly star-shaped $\iff \sigma(\Omega)^- = \max\{0, -\sigma(\Omega)\}$ small"

In [Dancer – Zhang (2000)] a different definition of nearly star-shaped domains

• <u>Theorem</u> (2002) For every $\eta > 0$ there exists $\Omega_{\eta} \subset \mathbb{R}^n$ and $\varepsilon_{\eta} > 0$ such that $\sigma(\Omega)^- < \eta$ and problem

$$-\Delta u = u^{2^*-1+arepsilon}$$
 in Ω_η $u = 0$ on $\partial \Omega_\eta$

has multiple positive solutions for every $\varepsilon \in (0, \varepsilon_{\eta})$.

• <u>Theorem</u> (2002) For every $\eta > 0$ there exists $\Omega_{\eta} \subset \mathbb{R}^n$ and $\varepsilon_{\eta} > 0$ such that $\sigma(\Omega)^- < \eta$ and problem

$$-\Delta u = u^{2^* - 1 + \varepsilon}$$
 in Ω_η $u = 0$ on $\partial \Omega_\eta$

has multiple positive solutions for every $\varepsilon \in (0, \varepsilon_{\eta})$.

• <u>Theorem</u> (2006) For every $\eta > 0$ there exists $\Omega_{\eta} \subset \mathbb{R}^n$ and $p_{\eta} > 0$ such that $\sigma(\Omega)^- < \eta$ and problem

$$-\Delta u = u^p$$
 in Ω_η $u = 0$ on $\partial \Omega_\eta$

has multiple positive solutions for every $p > p_{\eta}$.

• <u>Theorem</u> (2002) For every $\eta > 0$ there exists $\Omega_{\eta} \subset \mathbb{R}^n$ and $\varepsilon_{\eta} > 0$ such that $\sigma(\Omega)^- < \eta$ and problem

$$-\Delta u = u^{2^* - 1 + \varepsilon}$$
 in Ω_η $u = 0$ on $\partial \Omega_\eta$

has multiple positive solutions for every $\varepsilon \in (0, \varepsilon_{\eta})$.

• <u>Theorem</u> (2006) For every $\eta > 0$ there exists $\Omega_{\eta} \subset \mathbb{R}^n$ and $p_{\eta} > 0$ such that $\sigma(\Omega)^- < \eta$ and problem

$$-\Delta u = u^p \text{ in } \Omega_\eta \qquad u = 0 \text{ on } \partial \Omega_\eta$$

has multiple positive solutions for every $p > p_{\eta}$.

What about nonexistence in domains far from star-shaped ones?

New nonexistence results

In our problem

$$(P) \qquad -\Delta u = f(u) \text{ in } \Omega \qquad u = 0 \text{ on } \partial \Omega \qquad u \not\equiv 0$$

we assume f a continuous function such that

$$(f) \qquad tf(t) \geq p \int_0^t f(\tau) d\tau \geq 0 \qquad \forall t \in \mathbb{R}$$
 for a given $p > 2^*$

 $\diamondsuit \ p$ can be arbitrarily chosen near 2^*

 \diamondsuit no symmetry assumption will be required for Ω

Notation:
$$F(t) = \int_0^t f(\tau) d\tau \quad \forall t \in \mathbb{R}$$

Construction of the tubular domains:

- $\gamma \in \mathcal{C}^3([a,b],\mathbb{R}^n)$ injective and s.t. $\gamma' \neq 0$ in [a,b]
- $N_{\varepsilon}(t) = \{\xi \in \mathbb{R}^n : \xi \cdot \gamma'(t) = 0, |\xi| < \varepsilon\}$
- ε so small that $t_1 \neq t_2 \Longrightarrow$

$$[\gamma(t_1) + N_{\varepsilon}(t_1)] \cap [\gamma(t_2) + N_{\varepsilon}(t_2)] = \emptyset$$

$$T_{\varepsilon}^{\gamma} := \bigcup_{t \in (a,b)} [\gamma(t) + N_{\varepsilon}(t)]$$

Main result:

• Theorem (2019) If $f \in \mathcal{C}(\mathbb{R})$ satisfies

(f)
$$tf(t) \ge p \int_0^t f(\tau) d\tau \ge 0 \quad \forall t \in \mathbb{R}$$

with $p>2^{\ast}$ then problem

$$-\Delta u = f(u) \text{ in } T_{\varepsilon}^{\gamma} \qquad u = 0 \text{ on } \partial T_{\varepsilon}^{\gamma} \qquad u \not\equiv 0$$

has no solution for ε small.

An integral identity:

• Lemma u a solution of (P), $V \in \mathcal{C}^1(\overline{\Omega}, \mathbb{R}^n) \implies$

$$\frac{1}{2} \int_{\partial \Omega} |Du|^2 \, V \cdot \nu \, d\sigma =$$

$$\int_{\Omega} dV[Du] \cdot Du \, dx + \int_{\Omega} \operatorname{div} V\left(F(u) - \frac{1}{2}|Du|^2\right) \, dx$$

here $dV[\eta] = \sum_{i=1}^{n} D_i V \eta_i, \forall \eta \in \mathbb{R}^n.$

An integral identity:

• Lemma u a solution of (P), $V \in \mathcal{C}^1(\overline{\Omega}, \mathbb{R}^n) \implies$

$$\frac{1}{2} \int_{\partial \Omega} |Du|^2 \, V \cdot \nu \, d\sigma =$$

$$\int_{\Omega} dV[Du] \cdot Du \, dx + \int_{\Omega} \operatorname{div} V\left(F(u) - \frac{1}{2}|Du|^2\right) \, dx$$

here $dV[\eta] = \sum_{i=1}^{n} D_i V \eta_i, \forall \eta \in \mathbb{R}^n.$

<u>proof</u>: apply Gauss-Green to $V \cdot Du Du$ and use (P)

 \diamondsuit in Pohozaev V(x) = x

Nonexistence results

The vector field:

$$V(\gamma(t) + \psi) = [1 - \psi \cdot \gamma''(t)] t \gamma'(t) + \psi$$

The vector field:

$$V(\gamma(t) + \psi) = [1 - \psi \cdot \gamma''(t)] t \gamma'(t) + \psi$$

Properties:

- (1) $V \cdot \nu > 0 \text{ on } \partial \overline{T}_{\varepsilon}^{\gamma}$
- (2) $\lim_{\varepsilon \to 0} \sup\{|1 dV(x)[\eta] \cdot \eta| : x \in T^{\gamma}_{\varepsilon}, \eta \in \mathbb{R}^{n}, |\eta| = 1\} = 0$
- (3) $\lim_{\varepsilon \to 0} \sup\{|n \operatorname{div} V(x)| : x \in T_{\varepsilon}^{\gamma}\} = 0$

The vector field:

$$V(\gamma(t) + \psi) = [1 - \psi \cdot \gamma''(t)] t \gamma'(t) + \psi$$

Properties:

- (1) $V \cdot \nu > 0 \text{ on } \partial \overline{T}_{\varepsilon}^{\gamma}$
- (2) $\lim_{\varepsilon \to 0} \sup\{|1 dV(x)[\eta] \cdot \eta| : x \in T^{\gamma}_{\varepsilon}, \eta \in \mathbb{R}^{n}, |\eta| = 1\} = 0$
- (3) $\lim_{\varepsilon \to 0} \sup\{|n \operatorname{div} V(x)| : x \in T_{\varepsilon}^{\gamma}\} = 0$

$$\begin{split} u_{\varepsilon} \text{ a solution of } (P) \text{ on } T_{\varepsilon}^{\gamma} \implies \\ \frac{1}{2} \int_{\partial T_{\varepsilon}^{\gamma}} |Du_{\varepsilon}|^2 V \cdot \nu &= \int_{T_{\varepsilon}^{\gamma}} dV [Du_{\varepsilon}] \cdot Du_{\varepsilon} + \int_{T_{\varepsilon}^{\gamma}} \operatorname{div} V \left(F(u_{\varepsilon}) - \frac{1}{2} |Du_{\varepsilon}|^2 \right) \\ \mathbf{so} \end{split}$$

$$0 \le \left(1 - \frac{n}{2} + O(1)\right) \int_{T_{\varepsilon}^{\gamma}} |Du_{\varepsilon}|^2 + (n + O(1)) \int_{T_{\varepsilon}^{\gamma}} F(u_{\varepsilon})$$

End of the proof:

$$0 \le \left(1 - \frac{n}{2} + O(1)\right) \int_{T_{\varepsilon}^{\gamma}} |Du_{\varepsilon}|^2 \, dx + (n + O(1)) \int_{T_{\varepsilon}^{\gamma}} F(u_{\varepsilon}) \, dx$$
$$\implies \text{(by assumption } (f)\text{)}$$

$$0 \le \left(1 - \frac{n}{2} + O(1)\right) \int_{T_{\varepsilon}^{\gamma}} |Du_{\varepsilon}|^2 \, dx + (n + O(1)) \frac{1}{p} \int_{T_{\varepsilon}^{\gamma}} u_{\varepsilon} f(u_{\varepsilon}) \, dx$$

End of the proof:

$$0 \le \left(1 - \frac{n}{2} + O(1)\right) \int_{T_{\varepsilon}^{\gamma}} |Du_{\varepsilon}|^2 dx + (n + O(1)) \int_{T_{\varepsilon}^{\gamma}} F(u_{\varepsilon}) dx$$

 \implies (by assumption (f))

$$0 \le \left(1 - \frac{n}{2} + O(1)\right) \int_{T_{\varepsilon}^{\gamma}} |Du_{\varepsilon}|^2 \, dx + (n + O(1)) \frac{1}{p} \int_{T_{\varepsilon}^{\gamma}} u_{\varepsilon} f(u_{\varepsilon}) \, dx$$

 \implies (since u_{ε} solves (P))

$$0 \le \left(1 - \frac{n}{2} + \frac{n}{p} + O(1)\right) \int_{T_{\varepsilon}^{\gamma}} |Du_{\varepsilon}|^2 dx$$

contrary to $1-\frac{n}{2}+\frac{n}{p}<0$ (i.e. $p>2^*$), for small ε

(-) In previous result $\gamma(a) \neq \gamma(b)$

- (-) In previous result $\gamma(a) \neq \gamma(b)$
- (-) $\gamma \operatorname{closed} \operatorname{curve} \Rightarrow V(\gamma(a) + \psi) \neq V(\gamma(b) + \psi)$

- (-) In previous result $\gamma(a) \neq \gamma(b)$
- (-) γ closed curve $\Rightarrow V(\gamma(a) + \psi) \neq V(\gamma(b) + \psi)$
- (-) for $p\in (2^*,2^*_{n-1})$ solutions can exist

- (-) In previous result $\gamma(a) \neq \gamma(b)$
- (-) γ closed curve $\Rightarrow V(\gamma(a) + \psi) \neq V(\gamma(b) + \psi)$
- (-) for $p \in (2^*, 2^*_{n-1})$ solutions can exist

• <u>Theorem</u> Let $\gamma \in C^2([a, b], \mathbb{R}^n)$ be a regular curve such that $\gamma(a) = \gamma(b)$ and $\gamma'(a) = \gamma'(b)$. If $f \in C(\mathbb{R})$ satisfies (f) with $\mathbf{p} > \mathbf{2^*_{n-1}}$ then problem

$$-\Delta u = f(u) \ \text{ in } T_{\varepsilon}^{\gamma} \qquad u = 0 \ \text{ on } \partial T_{\varepsilon}^{\gamma} \qquad u \not\equiv 0$$

has no solution for ε small.

Nonexistence results

Proof. The vector field:

$$\widetilde{V}(\gamma(t) + \psi) = \psi$$

Proof. The vector field:

$$\widetilde{V}(\gamma(t) + \psi) = \psi$$

Properties:

(1) $\widetilde{V} \cdot \nu > 0$ on $\partial \overline{T}_{\varepsilon}^{\gamma}$

- (2) $\lim_{\varepsilon \to 0} \sup\{|1 d\widetilde{V}(x)[\eta] \cdot \eta| : x \in T^{\gamma}_{\varepsilon}, \eta \in \mathbb{R}^{n}, |\eta| = 1\} = 0$
- (3) $\lim_{\varepsilon \to 0} \sup\{|(n-1) \operatorname{div} \widetilde{V}(x)| : x \in T_{\varepsilon}^{\gamma}\} = 0$

Proof. The vector field:

$$\widetilde{V}(\gamma(t) + \psi) = \psi$$

Properties:

(1)
$$\widetilde{V} \cdot \nu > 0$$
 on $\partial \overline{T}_{\varepsilon}^{\gamma}$

(2)
$$\lim_{\varepsilon \to 0} \sup\{|1 - d\widetilde{V}(x)[\eta] \cdot \eta| : x \in T^{\gamma}_{\varepsilon}, \eta \in \mathbb{R}^{n}, |\eta| = 1\} = 0$$

(3)
$$\lim_{\varepsilon \to 0} \sup\{ |(n-1) - \operatorname{div} \widetilde{V}(x)| : x \in T_{\varepsilon}^{\gamma} \} = 0$$

$$u_{\varepsilon} \text{ a solution of } (P) \text{ on } T_{\varepsilon}^{\gamma} \implies \\ \frac{1}{2} \int_{\partial T_{\varepsilon}^{\gamma}} |Du_{\varepsilon}|^{2} \widetilde{V} \cdot \nu = \int_{T_{\varepsilon}^{\gamma}} d\widetilde{V} [Du_{\varepsilon}] \cdot Du_{\varepsilon} + \int_{T_{\varepsilon}^{\gamma}} \operatorname{div} \widetilde{V} \left(F(u_{\varepsilon}) - \frac{1}{2} |Du_{\varepsilon}|^{2} \right)$$

SO

$$0 \le \left(1 - \frac{(n-1)}{2} + \frac{(n-1)}{p} + O(1)\right) \int_{T_{\varepsilon}^{\gamma}} |Du_{\varepsilon}|^2$$

Proof. The vector field:

$$\widetilde{V}(\gamma(t) + \psi) = \psi$$

Properties:

(1)
$$\widetilde{V} \cdot \nu > 0$$
 on $\partial \overline{T}_{\varepsilon}^{\gamma}$

(2)
$$\lim_{\varepsilon \to 0} \sup\{|1 - d\widetilde{V}(x)[\eta] \cdot \eta| : x \in T^{\gamma}_{\varepsilon}, \eta \in \mathbb{R}^{n}, |\eta| = 1\} = 0$$

(3)
$$\lim_{\varepsilon \to 0} \sup\{ |(n-1) - \operatorname{div} \widetilde{V}(x)| : x \in T_{\varepsilon}^{\gamma} \} = 0$$

$$u_{\varepsilon} \text{ a solution of } (P) \text{ on } T_{\varepsilon}^{\gamma} \implies$$

$$\frac{1}{2} \int_{\partial T_{\varepsilon}^{\gamma}} |Du_{\varepsilon}|^{2} \widetilde{V} \cdot \nu = \int_{T_{\varepsilon}^{\gamma}} d\widetilde{V} [Du_{\varepsilon}] \cdot Du_{\varepsilon} + \int_{T_{\varepsilon}^{\gamma}} \operatorname{div} \widetilde{V} \left(F(u_{\varepsilon}) - \frac{1}{2} |Du_{\varepsilon}|^{2} \right)$$

SO

$$0 \le \left(1 - \frac{(n-1)}{2} + \frac{(n-1)}{p} + O(1)\right) \int_{T_{\varepsilon}^{\gamma}} |Du_{\varepsilon}|^2$$

contrary to $1-\frac{(n-1)}{2}+\frac{(n-1)}{p}<0$ (i.e. $p>2^*_{n-1}$), for small ε

Higher dimensional tubular domains

- $\gamma_k : \mathbb{R}^k \to \mathbb{R}^n$ the stereographic projection on a k-dim. sphere
- $\Gamma_k^r = \{ \gamma_k(x) : |x| < r \}$
- $T_{ar{arepsilon}}(\Gamma_k^r)$ an $ar{arepsilon}$ -normal tubular neighbourhood of Γ_k^r

Here:
$$2 \le k \le n-1$$
 and $2^*_{n-k+1} = \begin{cases} \frac{2(n-k+1)}{n-k-1} & \text{if } k < n-1 \\ \infty & \text{if } k = n-1 \end{cases}$
 $f(u) = |u|^{p-2}u$

- $\gamma_k : \mathbb{R}^k \to \mathbb{R}^n$ the stereographic projection on a k-dim. sphere
- $\Gamma_k^r = \{ \gamma_k(x) : |x| < r \}$
- $T_{ar{arepsilon}}(\Gamma_k^r)$ an $ar{arepsilon}$ -normal tubular neighbourhood of Γ_k^r

Here:
$$2 \le k \le n-1$$
 and $2^*_{n-k+1} = \begin{cases} \frac{2(n-k+1)}{n-k-1} & \text{if } k < n-1 \\ \infty & \text{if } k = n-1 \end{cases}$
 $f(u) = |u|^{p-2}u$

 $\begin{array}{ll} (a) & \mbox{Fixed } p \in [2^*,2^*_{n-k+1}) \mbox{, there exists } \bar{r} > 0 \mbox{ s.t. } (P) \mbox{ has solution in } \\ & T_{\bar{\varepsilon}}(\Gamma^r_k) \mbox{, } \forall r > \bar{r}. \end{array}$

- $\gamma_k : \mathbb{R}^k \to \mathbb{R}^n$ the stereographic projection on a k-dim. sphere
- $\Gamma_k^r = \{ \gamma_k(x) : |x| < r \}$
- $T_{\bar{\varepsilon}}(\Gamma_k^r)$ an $\bar{\varepsilon}$ -normal tubular neighbourhood of Γ_k^r

Here:
$$2 \le k \le n-1$$
 and $2^*_{n-k+1} = \begin{cases} \frac{2(n-k+1)}{n-k-1} & \text{if } k < n-1 \\ \infty & \text{if } k = n-1 \end{cases}$
 $f(u) = |u|^{p-2}u$

- (a) Fixed $p \in [2^*, 2^*_{n-k+1})$, there exists $\bar{r} > 0$ s.t. (P) has solution in $T_{\bar{\varepsilon}}(\Gamma^r_k)$, $\forall r > \bar{r}$.
- $\begin{array}{ll} (b) & \mbox{Fixed } r>1 \mbox{, there exists } \tilde{p}>2^* \ \mbox{ such that } (P) \mbox{ has solution in } \\ & T_{\bar{\varepsilon}}(\Gamma^r_k), \forall p\in(2^*,\tilde{p}). \end{array}$

- $\gamma_k : \mathbb{R}^k \to \mathbb{R}^n$ the stereographic projection on a k-dim. sphere
- $\Gamma_k^r = \{ \gamma_k(x) : |x| < r \}$
- $T_{\bar{\varepsilon}}(\Gamma_k^r)$ an $\bar{\varepsilon}$ -normal tubular neighbourhood of Γ_k^r

Here:
$$2 \le k \le n-1$$
 and $2^*_{n-k+1} = \begin{cases} \frac{2(n-k+1)}{n-k-1} & \text{if } k < n-1 \\ \infty & \text{if } k = n-1 \end{cases}$
 $f(u) = |u|^{p-2}u$

- (a) Fixed $p \in [2^*, 2^*_{n-k+1})$, there exists $\bar{r} > 0$ s.t. (P) has solution in $T_{\bar{\varepsilon}}(\Gamma^r_k)$, $\forall r > \bar{r}$.
- $\begin{array}{ll} (b) & \mbox{Fixed } r>1 \mbox{, there exists } \tilde{p}>2^* \ \mbox{ such that } (P) \mbox{ has solution in } \\ & T_{\bar{\varepsilon}}(\Gamma^r_k), \forall p\in(2^*,\tilde{p}). \end{array}$
- $\begin{array}{ll} (c) & \mbox{Fixed } r>1 \mbox{, there exists } \bar{p} < 2^*_{n-k+1} \mbox{ such that } (P) \mbox{ has solution in } \\ & T_{\bar{\varepsilon}}(\Gamma^r_k) \mbox{, } \forall p \in (\bar{p}, 2^*_{n-k+1}). \end{array}$

- (-) Γ_k a smooth, compact, k-dimensional submanifold in \mathbb{R}^n
- (-) $T_{\varepsilon}(\Gamma_k)$ the tubular neighbourhood of Γ_k of size ε

- (-) Γ_k a smooth, compact, *k*-dimensional submanifold in \mathbb{R}^n
- (-) $T_{\varepsilon}(\Gamma_k)$ the tubular neighbourhood of Γ_k of size ε
 - Theorem Let $1 \le k < n-2$ and assume that $f \in C(\mathbb{R})$ satisfies (f) with $\mathbf{p} > \mathbf{2}^*_{\mathbf{n}-\mathbf{k}}$ then problem

$$(P) \qquad -\Delta u = f(u) \text{ in } T_{\varepsilon}(\Gamma_k) \qquad u = 0 \text{ on } \partial T_{\varepsilon}(\Gamma_k) \qquad u \not\equiv 0$$

has no solution for ε small.

- (-) Γ_k a smooth, compact, *k*-dimensional submanifold in \mathbb{R}^n
- (-) $T_{\varepsilon}(\Gamma_k)$ the tubular neighbourhood of Γ_k of size ε
 - Theorem Let $1 \le k < n-2$ and assume that $f \in C(\mathbb{R})$ satisfies (f) with $\mathbf{p} > \mathbf{2}^*_{\mathbf{n}-\mathbf{k}}$ then problem

$$(P) \qquad -\Delta u = f(u) \text{ in } T_{\varepsilon}(\Gamma_k) \qquad u = 0 \text{ on } \partial T_{\varepsilon}(\Gamma_k) \qquad u \not\equiv 0$$

has no solution for ε small.

 $\diamondsuit k \ge n-2 \text{ or } k < n-2 \text{ and } p < 2^*_{n-k} \implies \text{if } \Gamma_k \text{ is a } k \text{-dimensional sphere then } (P) \text{ has solution}$

Nonexistence results for the q-laplacian

(-) $\gamma \in C^3([a, b], \mathbb{R}^2)$ injective and s.t. $\gamma' \neq 0$ in [a, b](-) T_{ε}^{γ} the ε -neighbourhood of $\gamma([a, b])$

• <u>Theorem</u> $q \in (1, 2)$. If $f \in C(\mathbb{R})$ satisfies (f) with $p > q^* = \frac{2q}{2-q}$ then problem

$$(q) \qquad -\operatorname{div}(|Du|^{q-2}Du) = f(u) \text{ in } T_{\varepsilon}^{\gamma} \quad u = 0 \text{ on } \partial T_{\varepsilon}^{\gamma} \quad u \not\equiv 0$$

has no solution for $\varepsilon > 0$ small.

Nonexistence results for the q-laplacian

(-) $\gamma \in C^3([a, b], \mathbb{R}^2)$ injective and s.t. $\gamma' \neq 0$ in [a, b](-) T_{ε}^{γ} the ε -neighbourhood of $\gamma([a, b])$

• <u>Theorem</u> $q \in (1, 2)$. If $f \in \mathcal{C}(\mathbb{R})$ satisfies (f) with $p > q^* = \frac{2q}{2-q}$ then problem

$$(q) \qquad -\operatorname{div}(|Du|^{q-2}Du) = f(u) \text{ in } T_{\varepsilon}^{\gamma} \quad u = 0 \text{ on } \partial T_{\varepsilon}^{\gamma} \quad u \not\equiv 0$$

has no solution for $\varepsilon > 0$ small.

- \diamondsuit Similar results in \mathbb{R}^n with $n \geq 3$
- \diamond Nonexistence results on contractible neighbourhood of graphs in \mathbb{R}^2
- \diamondsuit Conjecture: nonexistence of solutions in contractible domains in \mathbb{R}^2

Thanks for Your Attention