BubBLING NODAL SOLUTIONS FOR A LARGE perturbation of The Moser-Trudinger EQUATION ON PLANAR DOMAINS

Gabriele Mancini

SAPIENZA
 Università di Roma

Dipartimento di Scienze di Base e Applicate per l'Ingegneria

$$
\begin{gathered}
\text { May 7, } 2019 \\
\text { Nonlinear Geometric PDE's } \\
\text { Banff International Research Station }
\end{gathered}
$$

A CRITICAL PROBLEM IN DIMENSION TWO

Let $\Omega \subseteq \mathbb{R}^{2}$ be a bounded smooth domain. We want to discuss the existence of non-trivial weak solutions of the problem

$$
\left\{\begin{array}{cc}
-\Delta u=f(u) & \text { in } \Omega \\
u=0 & \text { on } \partial \Omega
\end{array}\right.
$$

where is f a non-linearity with critical growth i.e. $f(u) \sim \lambda u e^{u^{2}}$ for some $\lambda>0$.

A CRITICAL PROBLEM IN DIMENSION TWO

Let $\Omega \subseteq \mathbb{R}^{2}$ be a bounded smooth domain. We want to discuss the existence of non-trivial weak solutions of the problem

$$
\left\{\begin{aligned}
-\Delta u & =f(u) & & \text { in } \Omega, \\
u & =0 & & \text { on } \partial \Omega,
\end{aligned}\right.
$$

where is f a non-linearity with critical growth i.e. $f(u) \sim \lambda u e^{u^{2}}$ for some $\lambda>0$.

Theorem (Pohozaev '65, Trudinger '67, Moser '71)

- $u \in H_{0}^{1}(\Omega) \Longrightarrow e^{u^{2}} \in L^{1}(\Omega)$.
- Uniform integrability on spheres in $H_{0}^{1}(\Omega)$:

$$
\sup _{u \in H_{0}^{1}(\Omega),\|\nabla u\|_{2}^{2}=\Lambda} \int_{\Omega} e^{u^{2}} d x<+\infty \quad \Longleftrightarrow \Lambda \leq 4 \pi .
$$

MT critical Equation and its perturbations

Carleson-Chang 86, Struwe '88 Flucher 92: The supremum in the MTinequality is attained for any $\Lambda \leq 4 \pi$.

Extremal functions for the MT inequality solve MT critical equation

$$
\begin{equation*}
-\Delta u=\lambda u e^{u^{2}} \tag{MT}
\end{equation*}
$$

Equation (MT) has been studied by several authors (Adimurthi, Carleson, Chang, Del Pino, Druet, Li, Malchiodi, Martinazzi, Musso, Ruf, Thizy, Yadava ...)

MT CRITICAL EQUATION AND ITS PERTURBATIONS

Carleson-Chang 86, Struwe '88 Flucher 92: The supremum in the MTinequality is attained for any $\Lambda \leq 4 \pi$.

Extremal functions for the MT inequality solve MT critical equation

$$
\begin{equation*}
-\Delta u=\lambda u e^{u^{2}} \tag{MT}
\end{equation*}
$$

Equation (MT) has been studied by several authors (Adimurthi, Carleson, Chang, Del Pino, Druet, Li, Malchiodi, Martinazzi, Musso, Ruf, Thizy, Yadava ...)

Question: What happens if $\lambda u e^{u^{2}}$ is replaced by a similar function? General notions of functions with critical growth were introduced e.g. by Atkinson-Peletier '87, Adimurthi '90, Adimurthi-Druet '01, Druet '06...

MT CRITICAL EQUATION AND ITS PERTURBATIONS

Carleson-Chang 86, Struwe ' 88 Flucher 92: The supremum in the MTinequality is attained for any $\Lambda \leq 4 \pi$.

Extremal functions for the MT inequality solve MT critical equation

$$
\begin{equation*}
-\Delta u=\lambda u e^{u^{2}} \tag{MT}
\end{equation*}
$$

Equation (MT) has been studied by several authors (Adimurthi, Carleson, Chang, Del Pino, Druet, Li, Malchiodi, Martinazzi, Musso, Ruf, Thizy, Yadava ...)

Question: What happens if $\lambda u e^{u^{2}}$ is replaced by a similar function? General notions of functions with critical growth were introduced e.g. by Atkinson-Peletier '87, Adimurthi '90, Adimurthi-Druet '01, Druet '06...

Model nonlinearities:

$$
f(u)=\lambda u e^{u^{2} \pm a|u|^{p}} \quad \lambda>0, a \geq 0, p \in[0,2) .
$$

The model problem

We will discuss the existence of solutions for the problem

$$
\left\{\begin{array}{cc}
-\Delta u=\lambda u e^{u^{2}+|u|^{p}} & \text { in } \Omega \\
u=0 & \text { on } \partial \Omega
\end{array}\right.
$$

with $\lambda>0, p \in(0,2)$.

The model problem

We will discuss the existence of solutions for the problem

$$
\left\{\begin{array}{cc}
-\Delta u=\lambda u e^{u^{2}+|u|^{p}} & \text { in } \Omega \\
u=0 & \text { on } \partial \Omega
\end{array}\right.
$$

with $\lambda>0, p \in(0,2)$.
Plan of the talk:
(1) An overview of the main existence results for $\left(\mathcal{P}_{\lambda, p}\right)$
(2) Existence of bubbling sign-changing solutions on generic Ω, when λ is small and $p \in(1,2), p \sim 1$.

Grossi, M., Naimen, Pistoia, Bubbling nodal solutions for a large perturbation of the Moser-Trudinger equation on planar domains, preprint 2019.

Positive solutions

Adimurthi '90: $\left(\mathcal{P}_{\lambda, p}\right)$ admits a positive solution for any $p \in(0,2)$ if $0<\lambda<\lambda_{1}$, where $\lambda_{1}=\lambda_{1}(\Omega)$ is the first eigenvalue of $-\Delta$ on Ω.

Positive solutions

Adimurthi '90: $\left(\mathcal{P}_{\lambda, p}\right)$ admits a positive solution for any $p \in(0,2)$ if $0<\lambda<\lambda_{1}$, where $\lambda_{1}=\lambda_{1}(\Omega)$ is the first eigenvalue of $-\Delta$ on Ω.
Idea: Consider the energy functional

$$
J(u):=\frac{1}{2} \int_{\Omega}|\nabla u|^{2} d x-\int_{\Omega} F(u) d x, \quad F(t):=\lambda \int_{0}^{t} s e^{s^{2}+s^{p}} d s
$$

and let \mathcal{N} be the corresponding Nehari manifold

$$
\mathcal{N}:=\left\{u \in H_{0}^{1}(\Omega):\|u\|^{2}=\lambda \int_{\Omega} u^{2} e^{u^{2}+|u|^{p}} d x\right\} .
$$

Positive solutions

Adimurthi '90: $\left(\mathcal{P}_{\lambda, p}\right)$ admits a positive solution for any $p \in(0,2)$ if $0<\lambda<\lambda_{1}$, where $\lambda_{1}=\lambda_{1}(\Omega)$ is the first eigenvalue of $-\Delta$ on Ω.
Idea: Consider the energy functional

$$
J(u):=\frac{1}{2} \int_{\Omega}|\nabla u|^{2} d x-\int_{\Omega} F(u) d x, \quad F(t):=\lambda \int_{0}^{t} s e^{s^{2}+s^{p}} d s
$$

and let \mathcal{N} be the corresponding Nehari manifold

$$
\mathcal{N}:=\left\{u \in H_{0}^{1}(\Omega):\|u\|^{2}=\lambda \int_{\Omega} u^{2} e^{u^{2}+|u|^{p}} d x\right\} .
$$

- J satisfies the Palais-Smale condition in the energy range $(-\infty, 2 \pi)$.
- If $\lambda<\lambda_{1}$, then $0<\inf _{\mathcal{N}} J<2 \pi$.

Positive solutions

Adimurthi '90: $\left(\mathcal{P}_{\lambda, p}\right)$ admits a positive solution for any $p \in(0,2)$ if $0<\lambda<\lambda_{1}$, where $\lambda_{1}=\lambda_{1}(\Omega)$ is the first eigenvalue of $-\Delta$ on Ω.
Idea: Consider the energy functional

$$
J(u):=\frac{1}{2} \int_{\Omega}|\nabla u|^{2} d x-\int_{\Omega} F(u) d x, \quad F(t):=\lambda \int_{0}^{t} s e^{s^{2}+s^{p}} d s .
$$

and let \mathcal{N} be the corresponding Nehari manifold

$$
\mathcal{N}:=\left\{u \in H_{0}^{1}(\Omega):\|u\|^{2}=\lambda \int_{\Omega} u^{2} e^{u^{2}+|u|^{p}} d x\right\} .
$$

- J satisfies the Palais-Smale condition in the energy range $(-\infty, 2 \pi)$.
- If $\lambda<\lambda_{1}$, then $0<\inf _{\mathcal{N}} J<2 \pi$.

Remarks:

- $\lambda<\lambda_{1}$ is necessary for the existence of a positive solution.
- The solution blows-up as $\lambda \rightarrow 0$ (Adimurthi-Druet '01).

Existence of sign-changing solutions

Adimurthi-Yadava '90: Assume $\Omega=B(0,1)$. If $0<\lambda<\lambda_{1}$ and $p>1$, then for any $k \in \mathbb{N},\left(\mathcal{P}_{\lambda, p}\right)$ admits a non-trivial radial weak solution with k nodal regions.

Existence of sign-changing solutions

Adimurthi-Yadava '90: Assume $\Omega=B(0,1)$. If $0<\lambda<\lambda_{1}$ and $p>1$, then for any $k \in \mathbb{N},\left(\mathcal{P}_{\lambda, p}\right)$ admits a non-trivial radial weak solution with k nodal regions.

Idea: Minimize J on \mathcal{N}_{k}, where

$$
\begin{aligned}
& \mathcal{N}_{k}:=\left\{u \in H_{0, r}^{1}: \exists 0=r_{0}<r_{1}<\ldots<r_{k}=1 \text { s.t. } u \in \Gamma\left(r_{0}, \ldots, r_{k}\right)\right\} \\
& \Gamma\left(r_{0}, \ldots, r_{k}\right)=\left\{u:\left.(-1)^{i} u\right|_{\left(r_{i}, r_{i+1}\right)}>0, u \chi_{\left(r_{i}, r_{i+1}\right)} \in \mathcal{N}, 0 \leq i \leq k-1\right\} .
\end{aligned}
$$

Sharpness of the growth condition

Adimurthi-Yadava '92: If $p \leq 1$, then there exists $\lambda_{A Y}=\lambda_{A Y}(p)>0$ such that ($\mathcal{P}_{\lambda, p}$) has no radial sign-changing solution when $\Omega=B(0,1)$ and $0<\lambda<\lambda_{A Y}$.

Sharpness of The growth Condition

Adimurthi-Yadava '92: If $p \leq 1$, then there exists $\lambda_{A Y}=\lambda_{A Y}(p)>0$ such that ($\mathcal{P}_{\lambda, p}$) has no radial sign-changing solution when $\Omega=B(0,1)$ and $0<\lambda<\lambda_{A Y}$.

Remarks:

- The case $p=1$ defines a borderline case between existence and non-existence of radial nodal solutions on $B(0,1)$ for small λ.
- If $\Omega=B(0,1)$, one can find non-radial solutions for any $\lambda>0$, $p \in(0,2)$. But when Ω is non-symmetric, it is not known whether ($\mathcal{P}_{\lambda, p}$) has sign-changing solutions when $0<\lambda<\lambda_{1}$ and $0 \leq p \leq 1$.

Sharpness of The growth Condition

Adimurthi-Yadava '92: If $p \leq 1$, then there exists $\lambda_{A Y}=\lambda_{A Y}(p)>0$ such that ($\mathcal{P}_{\lambda, p}$) has no radial sign-changing solution when $\Omega=B(0,1)$ and $0<\lambda<\lambda_{A Y}$.

Remarks:

- The case $p=1$ defines a borderline case between existence and non-existence of radial nodal solutions on $B(0,1)$ for small λ.
- If $\Omega=B(0,1)$, one can find non-radial solutions for any $\lambda>0$, $p \in(0,2)$. But when Ω is non-symmetric, it is not known whether ($\mathcal{P}_{\lambda, p}$) has sign-changing solutions when $0<\lambda<\lambda_{1}$ and $0 \leq p \leq 1$.

Question: For $0<\lambda<\min \left\{\lambda_{A Y}(1), \lambda_{1}\right\}$, what is the behavior of solutions as $p \rightarrow 1^{+}$?

Asymptotic of Radial solutions

Assume $\Omega=B(0,1)$ and consider ($\mathcal{P}_{\lambda, p}$) with $p=1+\varepsilon$ and a small fixed λ. For $k \in \mathbb{N}, \varepsilon>0$, let $u_{\varepsilon} \in \mathcal{N}_{k, \varepsilon}$ be s.t. $J_{\varepsilon}\left(u_{\varepsilon}\right)=\min _{\mathcal{N}_{k, \varepsilon}} J_{\varepsilon}$.

Asymptotic of Radial solutions

Assume $\Omega=B(0,1)$ and consider $\left(\mathcal{P}_{\lambda, p}\right)$ with $p=1+\varepsilon$ and a small fixed λ. For $k \in \mathbb{N}, \varepsilon>0$, let $u_{\varepsilon} \in \mathcal{N}_{k, \varepsilon}$ be s.t. $J_{\varepsilon}\left(u_{\varepsilon}\right)=\min _{\mathcal{N}_{k, \varepsilon}} J_{\varepsilon}$.

Grossi-Naimen '18: As $\varepsilon \rightarrow 0$ we have:

- Let $0<r_{1, \varepsilon}<\ldots<r_{k-1, \varepsilon}<r_{k, \varepsilon}=1$ be the zeroes of u_{ε}, then $r_{i, \varepsilon} \rightarrow 0$ for $1 \leq i \leq k-1$.
- $u_{\varepsilon} \rightarrow(-1)^{k-1} u_{0}$ in $C_{l o c}^{2}(B(0,1) \backslash\{0\})$, where u_{0} is the unique positive radial solution to $\left(\mathcal{P}_{\lambda, 1}\right)$.
- For $i=1, \ldots, k$ let $A_{i, \varepsilon}$ be the i-th nodal region of u_{ε} and let $M_{i, \varepsilon}$ be a maximum point of $\left|u_{\varepsilon}\right|$ on $A_{i, \varepsilon}$. Then, $\exists \delta_{i, \varepsilon}>0$, s.t.

$$
2 u_{\varepsilon}\left(M_{i, \varepsilon}\right)\left(u_{\varepsilon}\left(M_{i, \varepsilon}+\delta_{i, \varepsilon} r\right)-u_{\varepsilon}\left(M_{i, \varepsilon}\right)\right) \rightarrow-2 \log \left(1+\frac{r^{2}}{8}\right)
$$

in $C_{\text {loc }}^{1}([0, \infty))$.

Asymptotic of Radial solutions

Assume $\Omega=B(0,1)$ and consider ($\mathcal{P}_{\lambda, p}$) with $p=1+\varepsilon$ and a small fixed λ. For $k \in \mathbb{N}, \varepsilon>0$, let $u_{\varepsilon} \in \mathcal{N}_{k, \varepsilon}$ be s.t. $J_{\varepsilon}\left(u_{\varepsilon}\right)=\min _{\mathcal{N}_{k, \varepsilon}} J_{\varepsilon}$.

Grossi-Naimen '18: As $\varepsilon \rightarrow 0$ we have:

- Let $0<r_{1, \varepsilon}<\ldots<r_{k-1, \varepsilon}<r_{k, \varepsilon}=1$ be the zeroes of u_{ε}, then $r_{i, \varepsilon} \rightarrow 0$ for $1 \leq i \leq k-1$.
- $u_{\varepsilon} \rightarrow(-1)^{k-1} u_{0}$ in $C_{l o c}^{2}(B(0,1) \backslash\{0\})$, where u_{0} is the unique positive radial solution to ($\mathcal{P}_{\lambda, 1}$).
- For $i=1, \ldots, k$ let $A_{i, \varepsilon}$ be the i-th nodal region of u_{ε} and let $M_{i, \varepsilon}$ be a maximum point of $\left|u_{\varepsilon}\right|$ on $A_{i, \varepsilon}$. Then, $\exists \delta_{i, \varepsilon}>0$, s.t.

$$
2 u_{\varepsilon}\left(M_{i, \varepsilon}\right)\left(u_{\varepsilon}\left(M_{i, \varepsilon}+\delta_{i, \varepsilon} r\right)-u_{\varepsilon}\left(M_{i, \varepsilon}\right)\right) \rightarrow-2 \log \left(1+\frac{r^{2}}{8}\right)
$$

in $C_{\text {loc }}^{1}([0, \infty))$.
Question: If Ω is not a ball, are there solutions with a similar behavior as $p \rightarrow 1^{+}$?

Asymptotic of Radial solutions

Assume $\Omega=B(0,1)$ and consider ($\mathcal{P}_{\lambda, p}$) with $p=1+\varepsilon$ and a small fixed λ. For $k \in \mathbb{N}, \varepsilon>0$, let $u_{\varepsilon} \in \mathcal{N}_{k, \varepsilon}$ be s.t. $J_{\varepsilon}\left(u_{\varepsilon}\right)=\min _{\mathcal{N}_{k, \varepsilon}} J_{\varepsilon}$.

Grossi-Naimen '18: As $\varepsilon \rightarrow 0$ we have:

- Let $0<r_{1, \varepsilon}<\ldots<r_{k-1, \varepsilon}<r_{k, \varepsilon}=1$ be the zeroes of u_{ε}, then $r_{i, \varepsilon} \rightarrow 0$ for $1 \leq i \leq k-1$.
- $u_{\varepsilon} \rightarrow(-1)^{k-1} u_{0}$ in $C_{l o c}^{2}(B(0,1) \backslash\{0\})$, where u_{0} is the unique positive radial solution to ($\mathcal{P}_{\lambda, 1}$).
- For $i=1, \ldots, k$ let $A_{i, \varepsilon}$ be the i-th nodal region of u_{ε} and let $M_{i, \varepsilon}$ be a maximum point of $\left|u_{\varepsilon}\right|$ on $A_{i, \varepsilon}$. Then, $\exists \delta_{i, \varepsilon}>0$, s.t.

$$
2 u_{\varepsilon}\left(M_{i, \varepsilon}\right)\left(u_{\varepsilon}\left(M_{i, \varepsilon}+\delta_{i, \varepsilon} r\right)-u_{\varepsilon}\left(M_{i, \varepsilon}\right)\right) \rightarrow-2 \log \left(1+\frac{r^{2}}{8}\right)
$$

in $C_{\text {loc }}^{1}([0, \infty))$.
Question: If Ω is not a ball, are there solutions with a similar behavior as $p \rightarrow 1^{+}$? YES, $k=2$.

OUR MAIN RESULT

Let $\Omega \subseteq \mathbb{R}^{2}$ be an arbitrary domain and fix $0<\lambda<\lambda_{1}$. Consider

$$
\begin{cases}-\Delta u=\lambda u e^{u^{2}+|u|^{1+\varepsilon}}=: f_{\varepsilon}(u) & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

OUR MAIN RESULT

Let $\Omega \subseteq \mathbb{R}^{2}$ be an arbitrary domain and fix $0<\lambda<\lambda_{1}$. Consider

$$
\begin{cases}-\Delta u=\lambda u e^{u^{2}+|u|^{1+\varepsilon}}=: f_{\varepsilon}(u) & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

Theorem
Let u_{0} be a positive solution to $\left(\mathcal{P}_{0}\right)$. Assume that
(A1) u_{0} is non-degenerate i.e. $-\Delta \varphi=f_{0}^{\prime}\left(u_{0}\right) \varphi$ has no non-zero weak solution $\varphi \in H_{0}^{1}(\Omega)$.
(A2) u_{0} has a stable critical point ξ_{0} such that $u_{0}(\xi)>\frac{1}{2}$.
Then we can find $\varepsilon_{0} \in(0,1)$, s.t. for any $\varepsilon \in(0,1)$ problem $\left(\mathcal{P}_{\varepsilon}\right)$ has a solution u_{ε} with 2 nodal regions. Moreover, as $\varepsilon \rightarrow 0, u_{\varepsilon}$ satisfies

- u_{ε} blows-up at ξ_{0} i.e. $\sup _{B_{r}\left(\xi_{0}\right)} u_{\varepsilon} \rightarrow+\infty \quad \forall 0<r<d\left(\xi_{0}, \partial \Omega\right)$.
- $u_{\varepsilon} \rightarrow-u_{0}$ in $C_{\text {loc }}^{1}\left(\bar{\Omega} \backslash\left\{\xi_{0}\right\}\right)$.

Idea of the proof: notation and preliminaries
Strategy: Lyapunov-Schmidt reduction methods.

Idea of the proof: notation and preliminaries
Strategy: Lyapunov-Schmidt reduction methods.

- Solutions of the Liouville equation in \mathbb{R}^{2} :

$$
\left\{\begin{array}{l}
-\Delta U=e^{U} \\
e^{U} \in L^{1}\left(\mathbb{R}^{2}\right)
\end{array} \Longleftrightarrow U=\log \left(\frac{8 \delta^{2}}{\left(\delta^{2}+|x-\xi|^{2}\right)^{2}}\right), \delta>0, \xi \in \mathbb{R}^{2}\right.
$$

Idea of the proof: notation and preliminaries

Strategy: Lyapunov-Schmidt reduction methods.

- Solutions of the Liouville equation in \mathbb{R}^{2} :

$$
\left\{\begin{array}{l}
-\Delta U=e^{U} \\
e^{U} \in L^{1}\left(\mathbb{R}^{2}\right)
\end{array} \Longleftrightarrow U=\log \left(\frac{8 \delta^{2}}{\left(\delta^{2}+|x-\xi|^{2}\right)^{2}}\right), \delta>0, \xi \in \mathbb{R}^{2} .\right.
$$

- Notation for Liouville bubbles:

$$
U_{\delta, \mu, \xi}:=\log \left(\frac{8 \delta^{2} \mu^{2}}{\left(\delta^{2} \mu^{2}+|x-\xi|^{2}\right)^{2}}\right)
$$

Idea of the proof: notation and preliminaries

Strategy: Lyapunov-Schmidt reduction methods.

- Solutions of the Liouville equation in \mathbb{R}^{2} :

$$
\left\{\begin{array}{l}
-\Delta U=e^{U} \\
e^{U} \in L^{1}\left(\mathbb{R}^{2}\right)
\end{array} \Longleftrightarrow U=\log \left(\frac{8 \delta^{2}}{\left(\delta^{2}+|x-\xi|^{2}\right)^{2}}\right), \delta>0, \xi \in \mathbb{R}^{2}\right.
$$

- Notation for Liouville bubbles:

$$
U_{\delta, \mu, \xi}:=\log \left(\frac{8 \delta^{2} \mu^{2}}{\left(\delta^{2} \mu^{2}+|x-\xi|^{2}\right)^{2}}\right)
$$

- Projected bubbles: let $(-\Delta)^{-1}: L^{q} \rightarrow H_{0}^{1}$ be the inverse of $-\Delta$, then

$$
P U_{\delta, \mu, \xi}=(-\Delta)^{-1} e^{U_{\delta, \mu, \xi}}, \quad \delta>0, \mu>0, \xi \in \Omega
$$

Idea of the proof: notation and preliminaries

Strategy: Lyapunov-Schmidt reduction methods.

- Solutions of the Liouville equation in \mathbb{R}^{2} :

$$
\left\{\begin{array}{c}
-\Delta U=e^{U} \\
e^{U} \in L^{1}\left(\mathbb{R}^{2}\right)
\end{array} \Longleftrightarrow U=\log \left(\frac{8 \delta^{2}}{\left(\delta^{2}+|x-\xi|^{2}\right)^{2}}\right), \delta>0, \xi \in \mathbb{R}^{2} .\right.
$$

- Notation for Liouville bubbles:

$$
U_{\delta, \mu, \xi}:=\log \left(\frac{8 \delta^{2} \mu^{2}}{\left(\delta^{2} \mu^{2}+|x-\xi|^{2}\right)^{2}}\right)
$$

- Projected bubbles: let $(-\Delta)^{-1}: L^{q} \rightarrow H_{0}^{1}$ be the inverse of $-\Delta$, then

$$
P U_{\delta, \mu, \xi}=(-\Delta)^{-1} e^{U_{\delta, \mu, \xi}}, \quad \delta>0, \mu>0, \xi \in \Omega .
$$

Remark: Del Pino, Musso, Ruf constructed bubbling positive solutions to $-\Delta u=\lambda u e^{u^{2}}$, when λ is small. In the 1-bubble case they take $\alpha P U_{\delta, \mu, \xi}$ as approximate solution for suitable α, δ, μ, ξ.

The approximate solution

First idea: Use $\omega=\omega_{\alpha, \delta, \mu, \xi}:=\alpha P U_{\delta, \mu, \xi}-u_{0}$ as an approximate solution.
Question: How small is the error term

$$
\begin{aligned}
& R: \\
&=\Delta \omega+f_{\varepsilon}(\omega) \\
&=\lambda \omega e^{\omega^{2}+|\omega|^{1+\varepsilon}}-\alpha e^{U_{\delta, \mu, \xi}}-\alpha \Delta u_{0} ?
\end{aligned}
$$

The approximate solution

First idea: Use $\omega=\omega_{\alpha, \delta, \mu, \xi}:=\alpha P U_{\delta, \mu, \xi}-u_{0}$ as an approximate solution.
Question: How small is the error term

$$
\begin{aligned}
& R: \\
&=\Delta \omega+f_{\varepsilon}(\omega) \\
&=\lambda \omega e^{\omega^{2}+|\omega|^{+\varepsilon}}-\alpha e^{U_{\delta, \mu, \xi}}-\alpha \Delta u_{0} ?
\end{aligned}
$$

Choice of α and δ : For any $0<\varepsilon \ll 1, \mu>0, \xi \in \Omega$, with $u_{0}(\xi)>\frac{1}{2}$, there exist $(\alpha, \delta) \in \mathbb{R}^{+} \times \mathbb{R}^{+}$s. t .

$$
R=O\left(\alpha^{3} e^{U_{\delta, \mu, \xi}}\right) \quad \text { in } B(\xi, r \delta), r>0
$$

Moreover

$$
\alpha=\frac{1}{2} e^{-\frac{\log \left(2 u_{0}(\xi)\right)+o(1)}{\varepsilon}} \quad \text { and } \quad \delta=e^{-\frac{1+o(1)}{8 \alpha^{2}}} .
$$

The approximate solution

First idea: Use $\omega=\omega_{\alpha, \delta, \mu, \xi}:=\alpha P U_{\delta, \mu, \xi}-u_{0}$ as an approximate solution.
Question: How small is the error term

$$
\begin{aligned}
& R: \\
&=\Delta \omega+f_{\varepsilon}(\omega) \\
&=\lambda \omega e^{\omega^{2}+|\omega|^{1+\varepsilon}}-\alpha e^{U_{\delta, \mu, \xi}}-\alpha \Delta u_{0} ?
\end{aligned}
$$

Choice of α and δ : For any $0<\varepsilon \ll 1, \mu>0, \xi \in \Omega$, with $u_{0}(\xi)>\frac{1}{2}$, there exist $(\alpha, \delta) \in \mathbb{R}^{+} \times \mathbb{R}^{+}$s. t .

$$
R=O\left(\alpha^{3} e^{U_{\delta, \mu, \xi}}\right) \quad \text { in } B(\xi, r \delta), r>0
$$

Moreover

$$
\alpha=\frac{1}{2} e^{-\frac{\log \left(2 u_{0}(\xi)\right)+o(1)}{\varepsilon}} \quad \text { and } \quad \delta=e^{-\frac{1+o(1)}{8 \alpha^{2}}} .
$$

Remark: Assumption (A2) is crucial in the choice of α and δ.

A Refined approximate solution

Problem: For any $\sigma>0$ we have $R=O(\varepsilon)$ in $\Omega \backslash B(\xi, \sigma)$.

A REFined Approximate solution

Problem: For any $\sigma>0$ we have $R=O(\varepsilon)$ in $\Omega \backslash B(\xi, \sigma)$.
A refined ansatz:
(A1) \Longrightarrow for $\varepsilon \in\left(0, \varepsilon_{0}\right)$, there exists $v_{\varepsilon} \in H^{1}(\Omega)$ s.t.

$$
\left\{\begin{array}{cl}
-\Delta v_{\varepsilon}=\lambda e^{v_{\varepsilon}^{2}+\left|v_{\varepsilon}\right|^{1+\varepsilon}} & \text { in } \Omega \\
v_{\varepsilon}>0 & \text { in } \Omega \\
v_{\varepsilon}=0 & \text { on } \partial \Omega \\
v_{\varepsilon} \rightarrow u_{0} \text { in } C^{1}(\bar{\Omega}) & \text { as } \varepsilon \rightarrow 0 .
\end{array}\right.
$$

We define

$$
\omega:=\alpha P U_{\delta, \mu, \xi}-v_{\varepsilon} .
$$

A REFINED APPROXIMATE SOLUTION

Problem: For any $\sigma>0$ we have $R=O(\varepsilon)$ in $\Omega \backslash B(\xi, \sigma)$.
A refined ansatz:
$(A 1) \Longrightarrow$ for $\varepsilon \in\left(0, \varepsilon_{0}\right)$, there exists $v_{\varepsilon} \in H^{1}(\Omega)$ s.t.

$$
\left\{\begin{array}{cl}
-\Delta v_{\varepsilon}=\lambda e^{v_{\varepsilon}^{2}+\left|v_{\varepsilon}\right|^{1+\varepsilon}} & \text { in } \Omega \\
v_{\varepsilon}>0 & \text { in } \Omega \\
v_{\varepsilon}=0 & \text { on } \partial \Omega \\
v_{\varepsilon} \rightarrow u_{0} \text { in } C^{1}(\bar{\Omega}) & \text { as } \varepsilon \rightarrow 0 .
\end{array}\right.
$$

We define

$$
\omega:=\alpha P U_{\delta, \mu, \xi}-v_{\varepsilon} .
$$

As before, for any μ, ξ and any small ε we can choose α and δ that

$$
\begin{aligned}
& R=O\left(\alpha^{3} e^{U_{\varepsilon, \mu, \xi}}\right) \text { in } B(\xi, r \delta), r>0 \\
& R=O(\alpha) \text { in } \Omega \backslash B(\xi, \sigma), \sigma>0
\end{aligned}
$$

The final ansatz

We take

$$
\omega=\alpha P U_{\delta, \mu, \xi}-v_{\varepsilon}-\alpha w_{\varepsilon, \xi}-\alpha^{2} z_{\varepsilon, \xi}
$$

where

$$
\begin{cases}\Delta w_{\varepsilon, \xi}+f_{\varepsilon}^{\prime}\left(v_{\varepsilon}\right) w_{\varepsilon, \xi}=8 \pi f_{\varepsilon}^{\prime}\left(v_{\varepsilon}\right) G_{\xi} & \text { in } \Omega \\ \Delta z_{\varepsilon, \xi}+f_{\varepsilon}^{\prime}\left(v_{\varepsilon}\right) z_{\varepsilon, \xi}=\frac{1}{2} f^{\prime \prime}\left(-v_{\varepsilon}\right)\left(8 \pi G_{\xi}-w_{\varepsilon, \xi}\right)^{2} & \text { in } \Omega \\ w_{\varepsilon}=z_{\varepsilon}=0 & \text { on } \partial \Omega\end{cases}
$$

With this choice we have

$$
\begin{aligned}
& R=O\left(\alpha^{3} e^{U_{\varepsilon, \mu, \xi}}\right) \text { in } B(\xi, r \delta), r>0 \\
& R=O\left(\alpha^{3}\right) \text { in } \Omega \backslash B(\xi, \sigma), \sigma>0
\end{aligned}
$$

The final ansatz

We take

$$
\omega=\alpha P U_{\delta, \mu, \xi}-v_{\varepsilon}-\alpha w_{\varepsilon, \xi}-\alpha^{2} z_{\varepsilon, \xi}
$$

where

$$
\begin{cases}\Delta w_{\varepsilon, \xi}+f_{\varepsilon}^{\prime}\left(v_{\varepsilon}\right) w_{\varepsilon, \xi}=8 \pi f_{\varepsilon}^{\prime}\left(v_{\varepsilon}\right) G_{\xi} & \text { in } \Omega \\ \Delta z_{\varepsilon, \xi}+f_{\varepsilon}^{\prime}\left(v_{\varepsilon}\right) z_{\varepsilon, \xi}=\frac{1}{2} f^{\prime \prime}\left(-v_{\varepsilon}\right)\left(8 \pi G_{\xi}-w_{\varepsilon, \xi}\right)^{2} & \text { in } \Omega \\ w_{\varepsilon}=z_{\varepsilon}=0 & \text { on } \partial \Omega\end{cases}
$$

With this choice we have

$$
\begin{aligned}
& R=O\left(\alpha^{3} e^{U_{\varepsilon, \mu, \xi}}\right) \text { in } B(\xi, r \delta), r>0 \\
& R=O\left(\alpha^{3}\right) \text { in } \Omega \backslash B(\xi, \sigma), \sigma>0
\end{aligned}
$$

We can define a suitable norm $\|\cdot\|_{*}$ such that we have the global estimate

$$
\|R\|_{*}=O\left(\alpha^{3}\right)
$$

The Linear Theory

For $\varphi \in H_{0}^{1}(\Omega)$ the function $u=\omega+\varphi$ solves ($\mathcal{P}_{\varepsilon}$) iff

$$
-\Delta \varphi-f_{\varepsilon}^{\prime}(\omega) \varphi=R+N(\varphi) .
$$

The Linear Theory

For $\varphi \in H_{0}^{1}(\Omega)$ the function $u=\omega+\varphi$ solves $\left(\mathcal{P}_{\varepsilon}\right)$ iff

$$
\varphi-(-\Delta)^{-1} f_{\varepsilon}^{\prime}(\omega) \varphi=(-\Delta)^{-1}(R+N(\varphi)) .
$$

The Linear Theory

For $\varphi \in H_{0}^{1}(\Omega)$ the function $u=\omega+\varphi$ solves $\left(\mathcal{P}_{\varepsilon}\right)$ iff

$$
\underbrace{\varphi-(-\Delta)^{-1} f_{\varepsilon}^{\prime}(\omega) \varphi}_{=: \mathcal{L} \varphi}=(-\Delta)^{-1}(R+N(\varphi)) .
$$

The Linear Theory

For $\varphi \in H_{0}^{1}(\Omega)$ the function $u=\omega+\varphi$ solves $\left(\mathcal{P}_{\varepsilon}\right)$ iff

$$
\underbrace{\varphi-(-\Delta)^{-1} f_{\varepsilon}^{\prime}(\omega) \varphi}_{=: \mathcal{L} \varphi}=(-\Delta)^{-1}(R+N(\varphi)) .
$$

- $\mathcal{L} \sim \mathcal{L}_{0}$ where $\mathcal{L}_{0} \varphi:=\varphi-(-\Delta)^{-1} e^{U_{\delta, \mu, \xi}} \varphi$ in $B(\xi, \delta r)$.
- $\mathcal{L} \sim \mathcal{L}_{1}$ where $\mathcal{L}_{1} \varphi:=\varphi-(-\Delta)^{-1}\left(f_{0}^{\prime}\left(u_{0}\right) \varphi\right)$ in $\Omega \backslash B(\xi, \sigma), \sigma>0$.

The Linear Theory

For $\varphi \in H_{0}^{1}(\Omega)$ the function $u=\omega+\varphi$ solves $\left(\mathcal{P}_{\varepsilon}\right)$ iff

$$
\underbrace{\varphi-(-\Delta)^{-1} f_{\varepsilon}^{\prime}(\omega) \varphi}_{=: \mathcal{L} \varphi}=(-\Delta)^{-1}(R+N(\varphi)) .
$$

- $\mathcal{L} \sim \mathcal{L}_{0}$ where $\mathcal{L}_{0} \varphi:=\varphi-(-\Delta)^{-1} e^{U_{\delta, \mu, \xi}} \varphi$ in $B(\xi, \delta r)$.
- $\mathcal{L} \sim \mathcal{L}_{1}$ where $\mathcal{L}_{1} \varphi:=\varphi-(-\Delta)^{-1}\left(f_{0}^{\prime}\left(u_{0}\right) \varphi\right)$ in $\Omega \backslash B(\xi, \sigma), \sigma>0$.

Remark:

- \mathcal{L}_{1} is invertible because of ($A 1$).
- \mathcal{L}_{0} has a 3-d approximate kernel:

$$
\begin{gathered}
\left\{\begin{array}{l}
\mathcal{L}_{0} \varphi=0 \\
\varphi \in L^{\infty}\left(\mathbb{R}^{2}\right)
\end{array} \Longleftrightarrow \quad \varphi \in \operatorname{Span}\left\{Z_{0, \delta, \mu, \xi}, Z_{1, \delta, \mu, \xi}, Z_{2, \delta, \mu, \xi}\right\}\right. \\
Z_{0, \delta, \mu, \xi}:=\frac{\delta^{2} \mu^{2}-|x-\xi|^{2}}{\delta^{2} \mu^{2}+|x-\xi|^{2}}, \quad Z_{i, \delta, \mu, \xi}:=\frac{2 \delta \mu\left(x_{i}-\xi_{i}\right)}{\delta^{2} \mu^{2}+|x-\xi|^{2}}, i=1,2 .
\end{gathered}
$$

The final argument

For any $0<\varepsilon \ll 1, \mu>0$ and ξ close to $\xi_{0}, \exists \varphi=\varphi_{\varepsilon, \mu, \xi} \in H_{0}^{1}(\Omega)$, and $\kappa_{i}=\kappa_{i}(\varepsilon, \mu), i=0,1,2$, s.t. $\|\varphi\|_{L^{\infty}(\Omega)}=O\left(\alpha^{3}\right)$ and $u=\omega+\varphi$ solves

$$
-\Delta u=f_{\varepsilon}(u)+\sum_{i=0}^{3} \kappa_{i, \varepsilon} e^{U_{\delta, \mu, \xi}} Z_{i, \delta, \mu, \xi}
$$

The Final ARGUMENT

For any $0<\varepsilon \ll 1, \mu>0$ and ξ close to $\xi_{0}, \exists \varphi=\varphi_{\varepsilon, \mu, \xi} \in H_{0}^{1}(\Omega)$, and $\kappa_{i}=\kappa_{i}(\varepsilon, \mu), i=0,1,2$, s.t. $\|\varphi\|_{L^{\infty}(\Omega)}=O\left(\alpha^{3}\right)$ and $u=\omega+\varphi$ solves

$$
-\Delta u=f_{\varepsilon}(u)+\sum_{i=0}^{3} \kappa_{i, \varepsilon} e^{U_{\delta, \mu, \xi}} Z_{i, \delta, \mu, \xi}
$$

(1) For $i=0,1,2, \kappa_{i, \varepsilon}$ depends continuously on μ and ξ.
(2) We have the expansions

$$
\begin{aligned}
\kappa_{0, \varepsilon}(\mu, \xi) & =6 \pi \alpha^{3}\left(2-\log \left(8 \mu^{-2}\right)\right)+o\left(\alpha^{3}\right) \\
\kappa_{i, \varepsilon}(\mu, \xi) & =-\kappa_{0, \varepsilon} O\left(\alpha^{2}\right)+\frac{3}{2} \mu \delta \frac{\partial u_{0}}{\partial x_{i}}(\xi)+o(\delta), \quad i=1,2
\end{aligned}
$$

The Final ARGUMENT

For any $0<\varepsilon \ll 1, \mu>0$ and ξ close to $\xi_{0}, \exists \varphi=\varphi_{\varepsilon, \mu, \xi} \in H_{0}^{1}(\Omega)$, and $\kappa_{i}=\kappa_{i}(\varepsilon, \mu), i=0,1,2$, s.t. $\|\varphi\|_{L^{\infty}(\Omega)}=O\left(\alpha^{3}\right)$ and $u=\omega+\varphi$ solves

$$
-\Delta u=f_{\varepsilon}(u)+\sum_{i=0}^{3} \kappa_{i, \varepsilon} e^{U_{\delta, \mu, \xi}} Z_{i, \delta, \mu, \xi}
$$

(1) For $i=0,1,2, \kappa_{i, \varepsilon}$ depends continuously on μ and ξ.
(2) We have the expansions

$$
\begin{aligned}
\kappa_{0, \varepsilon}(\mu, \xi) & =6 \pi \alpha^{3}\left(2-\log \left(8 \mu^{-2}\right)\right)+o\left(\alpha^{3}\right) \\
\kappa_{i, \varepsilon}(\mu, \xi) & =-\kappa_{0, \varepsilon} O\left(\alpha^{2}\right)+\frac{3}{2} \mu \delta \frac{\partial u_{0}}{\partial x_{i}}(\xi)+o(\delta), \quad i=1,2
\end{aligned}
$$

Conclusion:

Since $\left(\sqrt{8} e^{-1}, \xi_{0}\right)$ is a stable zero of $V_{0}(\mu, \xi):=\left(2-\log \left(8 \mu^{-2}\right), \nabla u_{0}\right)$, for any small ε we can find $\mu=\mu(\xi), \xi=\xi(\varepsilon)$, s.t. $\kappa_{i, \varepsilon}=0, i=0,1,2$.

THANK YOU

FOR YOUR ATTENTION!

