BUBBLING NODAL SOLUTIONS FOR A LARGE PERTURBATION OF THE MOSER-TRUDINGER EQUATION ON PLANAR DOMAINS

GABRIELE MANCINI

Dipartimento di Scienze di Base e Applicate per l'Ingegneria

May 7, 2019 Nonlinear Geometric PDE's Banff International Research Station

Gabriele Mancini

Sapienza, Dipartimento S.B.A.I.

A CRITICAL PROBLEM IN DIMENSION TWO

Let $\Omega\subseteq \mathbb{R}^2$ be a bounded smooth domain. We want to discuss the existence of non-trivial weak solutions of the problem

$$\begin{cases} -\Delta u = f(u) & \text{ in } \Omega, \\ u = 0 & \text{ on } \partial\Omega, \end{cases}$$

where is f a non-linearity with critical growth i.e. $f(u) \sim \lambda u e^{u^2}$ for some $\lambda > 0$.

A CRITICAL PROBLEM IN DIMENSION TWO

Let $\Omega\subseteq \mathbb{R}^2$ be a bounded smooth domain. We want to discuss the existence of non-trivial weak solutions of the problem

$$\begin{cases} -\Delta u = f(u) & \text{ in } \Omega, \\ u = 0 & \text{ on } \partial\Omega, \end{cases}$$

where is f a non-linearity with critical growth i.e. $f(u) \sim \lambda u e^{u^2}$ for some $\lambda > 0$.

Theorem (Pohozaev '65, Trudinger '67, Moser '71)

 $\blacktriangleright \ u \in H^1_0(\Omega) \implies e^{u^2} \in L^1(\Omega).$

• Uniform integrability on spheres in $H_0^1(\Omega)$:

$$\sup_{u\in H_0^1(\Omega), \|\nabla u\|_2^2 = \Lambda} \int_{\Omega} e^{u^2} dx < +\infty \quad \Longleftrightarrow \quad \Lambda \leq 4\pi$$

MT CRITICAL EQUATION AND ITS PERTURBATIONS

Carleson-Chang 86, Struwe '88 Flucher 92: The supremum in the MT-inequality is attained for any $\Lambda \leq 4\pi$.

Extremal functions for the MT inequality solve MT critical equation

$$-\Delta u = \lambda u e^{u^2} \tag{MT}$$

Equation (MT) has been studied by several authors (Adimurthi, Carleson, Chang, Del Pino, Druet, Li, Malchiodi, Martinazzi, Musso, Ruf, Thizy, Yadava ...)

MT CRITICAL EQUATION AND ITS PERTURBATIONS

Carleson-Chang 86, Struwe '88 Flucher 92: The supremum in the MT-inequality is attained for any $\Lambda \leq 4\pi$.

Extremal functions for the MT inequality solve MT critical equation

$$-\Delta u = \lambda u e^{u^2} \tag{MT}$$

Equation (MT) has been studied by several authors (Adimurthi, Carleson, Chang, Del Pino, Druet, Li, Malchiodi, Martinazzi, Musso, Ruf, Thizy, Yadava ...)

Question: What happens if $\lambda u e^{u^2}$ is replaced by a similar function? General notions of functions with **critical growth** were introduced e.g. by Atkinson-Peletier '87, Adimurthi '90, Adimurthi-Druet '01, Druet '06...

MT CRITICAL EQUATION AND ITS PERTURBATIONS

Carleson-Chang 86, Struwe '88 Flucher 92: The supremum in the MT-inequality is attained for any $\Lambda \leq 4\pi$.

Extremal functions for the MT inequality solve MT critical equation

$$-\Delta u = \lambda u e^{u^2} \tag{MT}$$

Equation (MT) has been studied by several authors (Adimurthi, Carleson, Chang, Del Pino, Druet, Li, Malchiodi, Martinazzi, Musso, Ruf, Thizy, Yadava ...)

Question: What happens if $\lambda u e^{u^2}$ is replaced by a similar function? General notions of functions with **critical growth** were introduced e.g. by Atkinson-Peletier '87, Adimurthi '90, Adimurthi-Druet '01, Druet '06...

Model nonlinearities:

$$f(u) = \lambda u e^{u^2 \pm a |u|^p}$$
 $\lambda > 0, a \ge 0, p \in [0, 2).$

Gabriele Mancini

Sapienza, Dipartimento S.B.A.I.

The model problem

We will discuss the existence of solutions for the problem

$$\begin{cases} -\Delta u = \lambda u e^{u^2 + |u|^p} & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega \end{cases}$$
 $(\mathcal{P}_{\lambda, p})$

with $\lambda > 0$, $p \in (0, 2)$.

The model problem

We will discuss the existence of solutions for the problem

$$\begin{cases} -\Delta u = \lambda u e^{u^2 + |u|^p} & \text{in } \Omega\\ u = 0 & \text{on } \partial\Omega \end{cases}$$
 $(\mathcal{P}_{\lambda,p})$

with $\lambda > 0$, $p \in (0, 2)$.

Plan of the talk:

- **1** An overview of the main existence results for $(\mathcal{P}_{\lambda,p})$
- **2** Existence of **bubbling sign-changing solutions** on generic Ω , when λ is small and $p \in (1, 2)$, $p \sim 1$.
- Grossi, M., Naimen, Pistoia, *Bubbling nodal solutions for a large perturbation of the Moser-Trudinger equation on planar domains*, preprint 2019.

POSITIVE SOLUTIONS

Adimurthi '90: $(\mathcal{P}_{\lambda,p})$ admits a positive solution for any $p \in (0,2)$ if $0 < \lambda < \lambda_1$, where $\lambda_1 = \lambda_1(\Omega)$ is the first eigenvalue of $-\Delta$ on Ω .

POSITIVE SOLUTIONS

Adimurthi '90: $(\mathcal{P}_{\lambda,p})$ admits a positive solution for any $p \in (0, 2)$ if $0 < \lambda < \lambda_1$, where $\lambda_1 = \lambda_1(\Omega)$ is the first eigenvalue of $-\Delta$ on Ω .

Idea: Consider the energy functional

$$J(u) := \frac{1}{2} \int_{\Omega} |\nabla u|^2 dx - \int_{\Omega} F(u) dx, \qquad F(t) := \lambda \int_0^t s e^{s^2 + s^p} ds.$$

and let ${\mathcal N}$ be the corresponding Nehari manifold

$$\mathcal{N} := \left\{ u \in H^1_0(\Omega) : \|u\|^2 = \lambda \int_{\Omega} u^2 e^{u^2 + |u|^p} dx \right\}.$$

-

Positive solutions

-

Adimurthi '90: $(\mathcal{P}_{\lambda,p})$ admits a positive solution for any $p \in (0,2)$ if $0 < \lambda < \lambda_1$, where $\lambda_1 = \lambda_1(\Omega)$ is the first eigenvalue of $-\Delta$ on Ω .

Idea: Consider the energy functional

$$J(u) := \frac{1}{2} \int_{\Omega} |\nabla u|^2 dx - \int_{\Omega} F(u) dx, \qquad F(t) := \lambda \int_0^t s e^{s^2 + s^p} ds.$$

and let $\mathcal N$ be the corresponding Nehari manifold

$$\mathcal{N} := \left\{ u \in H^1_0(\Omega) : \|u\|^2 = \lambda \int_{\Omega} u^2 e^{u^2 + |u|^p} dx \right\}.$$

J satisfies the Palais-Smale condition in the energy range (-∞, 2π).
 If λ < λ₁, then 0 < inf_N J < 2π.

POSITIVE SOLUTIONS

Adimurthi '90: $(\mathcal{P}_{\lambda,p})$ admits a positive solution for any $p \in (0,2)$ if $0 < \lambda < \lambda_1$, where $\lambda_1 = \lambda_1(\Omega)$ is the first eigenvalue of $-\Delta$ on Ω .

Idea: Consider the energy functional

$$J(u) := \frac{1}{2} \int_{\Omega} |\nabla u|^2 dx - \int_{\Omega} F(u) dx, \qquad F(t) := \lambda \int_0^t s e^{s^2 + s^p} ds.$$

and let $\ensuremath{\mathcal{N}}$ be the corresponding Nehari manifold

$$\mathcal{N} := \left\{ u \in H^1_0(\Omega) : \|u\|^2 = \lambda \int_{\Omega} u^2 e^{u^2 + |u|^p} dx \right\}.$$

J satisfies the Palais-Smale condition in the energy range (-∞, 2π).
 If λ < λ₁, then 0 < inf_N J < 2π.

Remarks:

-

- $\lambda < \lambda_1$ is necessary for the existence of a positive solution.
- The solution blows-up as $\lambda \rightarrow 0$ (Adimurthi-Druet '01).

Gabriele Mancini

Sapienza, Dipartimento S.B.A.I.

EXISTENCE OF SIGN-CHANGING SOLUTIONS

Adimurthi-Yadava '90: Assume $\Omega = B(0,1)$. If $0 < \lambda < \lambda_1$ and p > 1, then for any $k \in \mathbb{N}$, $(\mathcal{P}_{\lambda,p})$ admits a non-trivial radial weak solution with k nodal regions.

EXISTENCE OF SIGN-CHANGING SOLUTIONS

Adimurthi-Yadava '90: Assume $\Omega = B(0, 1)$. If $0 < \lambda < \lambda_1$ and p > 1, then for any $k \in \mathbb{N}$, $(\mathcal{P}_{\lambda,p})$ admits a non-trivial radial weak solution with k nodal regions.

Idea: Minimize J on \mathcal{N}_k , where

 $\mathcal{N}_k := \{ u \in H^1_{0,r} : \exists 0 = r_0 < r_1 < \ldots < r_k = 1 \text{ s.t. } u \in \Gamma(r_0, \ldots, r_k) \}$ $\Gamma(r_0, \ldots, r_k) = \{ u : (-1)^i u |_{(r_i, r_{i+1})} > 0, \ u \chi_{(r_i, r_{i+1})} \in \mathcal{N}, 0 \le i \le k-1 \}.$

Gabriele Mancini

SHARPNESS OF THE GROWTH CONDITION

Adimurthi-Yadava '92: If $p \leq 1$, then there exists $\lambda_{AY} = \lambda_{AY}(p) > 0$ such that $(\mathcal{P}_{\lambda,p})$ has **no radial sign-changing solution** when $\Omega = B(0,1)$ and $0 < \lambda < \lambda_{AY}$.

Sharpness of the growth condition

Adimurthi-Yadava '92: If $p \leq 1$, then there exists $\lambda_{AY} = \lambda_{AY}(p) > 0$ such that $(\mathcal{P}_{\lambda,p})$ has **no radial sign-changing solution** when $\Omega = B(0,1)$ and $0 < \lambda < \lambda_{AY}$.

Remarks:

- The case p = 1 defines a borderline case between existence and non-existence of radial nodal solutions on B(0,1) for small λ.
- If Ω = B(0, 1), one can find non-radial solutions for any λ > 0, p ∈ (0, 2). But when Ω is non-symmetric, it is not known whether (P_{λ,p}) has sign-changing solutions when 0 < λ < λ₁ and 0 ≤ p ≤ 1.

Sharpness of the growth condition

Adimurthi-Yadava '92: If $p \leq 1$, then there exists $\lambda_{AY} = \lambda_{AY}(p) > 0$ such that $(\mathcal{P}_{\lambda,p})$ has **no radial sign-changing solution** when $\Omega = B(0,1)$ and $0 < \lambda < \lambda_{AY}$.

Remarks:

- The case p = 1 defines a borderline case between existence and non-existence of radial nodal solutions on B(0,1) for small λ.
- If Ω = B(0, 1), one can find non-radial solutions for any λ > 0, p ∈ (0, 2). But when Ω is non-symmetric, it is not known whether (P_{λ,p}) has sign-changing solutions when 0 < λ < λ₁ and 0 ≤ p ≤ 1.

Question: For $0 < \lambda < \min{\{\lambda_{AY}(1), \lambda_1\}}$, what is the behavior of solutions as $p \to 1^+$?

Assume $\Omega = B(0, 1)$ and consider $(\mathcal{P}_{\lambda, p})$ with $p = 1 + \varepsilon$ and a small fixed λ . For $k \in \mathbb{N}$, $\varepsilon > 0$, let $u_{\varepsilon} \in \mathcal{N}_{k, \varepsilon}$ be s.t. $J_{\varepsilon}(u_{\varepsilon}) = \min_{\mathcal{N}_{k, \varepsilon}} J_{\varepsilon}$.

Assume $\Omega = B(0,1)$ and consider $(\mathcal{P}_{\lambda,p})$ with $p = 1 + \varepsilon$ and a small fixed λ . For $k \in \mathbb{N}$, $\varepsilon > 0$, let $u_{\varepsilon} \in \mathcal{N}_{k,\varepsilon}$ be s.t. $J_{\varepsilon}(u_{\varepsilon}) = \min_{\mathcal{N}_{k,\varepsilon}} J_{\varepsilon}$.

Grossi-Naimen '18: As $\varepsilon \rightarrow 0$ we have:

- ▶ Let $0 < r_{1,\varepsilon} < \ldots < r_{k-1,\varepsilon} < r_{k,\varepsilon} = 1$ be the zeroes of u_{ε} , then $r_{i,\varepsilon} \to 0$ for $1 \le i \le k-1$.
- $u_{\varepsilon} \to (-1)^{k-1} u_0$ in $C^2_{loc}(B(0,1) \setminus \{0\})$, where u_0 is the unique positive radial solution to $(\mathcal{P}_{\lambda,1})$.
- For i = 1,..., k let A_{i,ε} be the *i*-th nodal region of u_ε and let M_{i,ε} be a maximum point of |u_ε| on A_{i,ε}. Then, ∃ δ_{i,ε} > 0, s.t.

$$2u_{\varepsilon}(M_{i,\varepsilon})\left(u_{\varepsilon}(M_{i,\varepsilon}+\delta_{i,\varepsilon}r)-u_{\varepsilon}(M_{i,\varepsilon})\right)\to -2\log\left(1+\frac{r^{2}}{8}\right)$$
$$C^{1}_{loc}([0,\infty)).$$

in

Assume $\Omega = B(0,1)$ and consider $(\mathcal{P}_{\lambda,p})$ with $p = 1 + \varepsilon$ and a small fixed λ . For $k \in \mathbb{N}$, $\varepsilon > 0$, let $u_{\varepsilon} \in \mathcal{N}_{k,\varepsilon}$ be s.t. $J_{\varepsilon}(u_{\varepsilon}) = \min_{\mathcal{N}_{k,\varepsilon}} J_{\varepsilon}$.

Grossi-Naimen '18: As $\varepsilon \rightarrow 0$ we have:

- ▶ Let $0 < r_{1,\varepsilon} < \ldots < r_{k-1,\varepsilon} < r_{k,\varepsilon} = 1$ be the zeroes of u_{ε} , then $r_{i,\varepsilon} \to 0$ for $1 \le i \le k-1$.
- $u_{\varepsilon} \to (-1)^{k-1} u_0$ in $C^2_{loc}(B(0,1) \setminus \{0\})$, where u_0 is the unique positive radial solution to $(\mathcal{P}_{\lambda,1})$.
- For i = 1,..., k let A_{i,ε} be the *i*-th nodal region of u_ε and let M_{i,ε} be a maximum point of |u_ε| on A_{i,ε}. Then, ∃ δ_{i,ε} > 0, s.t.

$$2u_{\varepsilon}(M_{i,\varepsilon})\left(u_{\varepsilon}(M_{i,\varepsilon}+\delta_{i,\varepsilon}r)-u_{\varepsilon}(M_{i,\varepsilon})\right) \to -2\log\left(1+\frac{r^{2}}{8}\right)$$

in $C^{1}_{loc}([0,\infty)).$

Question: If Ω is not a ball, are there solutions with a similar behavior as $p \rightarrow 1^+$?

Assume $\Omega = B(0,1)$ and consider $(\mathcal{P}_{\lambda,p})$ with $p = 1 + \varepsilon$ and a small fixed λ . For $k \in \mathbb{N}$, $\varepsilon > 0$, let $u_{\varepsilon} \in \mathcal{N}_{k,\varepsilon}$ be s.t. $J_{\varepsilon}(u_{\varepsilon}) = \min_{\mathcal{N}_{k,\varepsilon}} J_{\varepsilon}$.

Grossi-Naimen '18: As $\varepsilon \rightarrow 0$ we have:

- ▶ Let $0 < r_{1,\varepsilon} < \ldots < r_{k-1,\varepsilon} < r_{k,\varepsilon} = 1$ be the zeroes of u_{ε} , then $r_{i,\varepsilon} \to 0$ for $1 \le i \le k-1$.
- $u_{\varepsilon} \to (-1)^{k-1} u_0$ in $C^2_{loc}(B(0,1) \setminus \{0\})$, where u_0 is the unique positive radial solution to $(\mathcal{P}_{\lambda,1})$.
- For i = 1,..., k let A_{i,ε} be the *i*-th nodal region of u_ε and let M_{i,ε} be a maximum point of |u_ε| on A_{i,ε}. Then, ∃ δ_{i,ε} > 0, s.t.

$$2u_{\varepsilon}(M_{i,\varepsilon})\left(u_{\varepsilon}(M_{i,\varepsilon}+\delta_{i,\varepsilon}r)-u_{\varepsilon}(M_{i,\varepsilon})\right)\to -2\log\left(1+\frac{r^{2}}{8}\right)$$

$$C^{1}_{loc}([0,\infty)).$$

Question: If Ω is not a ball, are there solutions with a similar behavior as $p \rightarrow 1^+$? YES, k = 2.

in

OUR MAIN RESULT

Let $\Omega \subseteq \mathbb{R}^2$ be an **arbitrary domain** and fix $0 < \lambda < \lambda_1$. Consider

$$\begin{cases} -\Delta u = \lambda u e^{u^2 + |u|^{1+\varepsilon}} =: f_{\varepsilon}(u) & \text{in } \Omega\\ u = 0 & \text{on } \partial\Omega. \end{cases}$$
 ($\mathcal{P}_{\varepsilon}$)

OUR MAIN RESULT

Let $\Omega \subseteq \mathbb{R}^2$ be an **arbitrary domain** and fix $0 < \lambda < \lambda_1$. Consider

$$\begin{cases} -\Delta u = \lambda u e^{u^2 + |u|^{1+\varepsilon}} =: f_{\varepsilon}(u) & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega. \end{cases}$$
 $(\mathcal{P}_{\varepsilon})$

Theorem

Let u_0 be a positive solution to (\mathcal{P}_0) . Assume that

(A1) u_0 is non-degenerate i.e. $-\Delta \varphi = f'_0(u_0)\varphi$ has no non-zero weak solution $\varphi \in H^1_0(\Omega)$.

(A2) u_0 has a stable critical point ξ_0 such that $u_0(\xi) > \frac{1}{2}$.

Then we can find $\varepsilon_0 \in (0,1)$, s.t. for any $\varepsilon \in (0,1)$ problem $(\mathcal{P}_{\varepsilon})$ has a solution u_{ε} with 2 nodal regions. Moreover, as $\varepsilon \to 0$, u_{ε} satisfies

►
$$u_{\varepsilon}$$
 blows-up at ξ_0 i.e. $\sup_{B_r(\xi_0)} u_{\varepsilon} \to +\infty \quad \forall \ 0 < r < d(\xi_0, \partial \Omega).$

•
$$u_{\varepsilon} \rightarrow -u_0$$
 in $C^1_{loc}(\bar{\Omega} \setminus \{\xi_0\}).$

Strategy: Lyapunov-Schmidt reduction methods.

Strategy: Lyapunov-Schmidt reduction methods.

Solutions of the Liouville equation in \mathbb{R}^2 :

$$\left\{ egin{array}{ll} -\Delta U = e^U \ e^U \in L^1(\mathbb{R}^2) \end{array}
ight. \iff U = \log\left(rac{8\delta^2}{(\delta^2+|x-\xi|^2)^2}
ight), \delta > 0, \xi \in \mathbb{R}^2.$$

Strategy: Lyapunov-Schmidt reduction methods.

Solutions of the Liouville equation in \mathbb{R}^2 :

$$\left(egin{array}{c} -\Delta U = e^U \ e^U \in L^1(\mathbb{R}^2) \end{array} \iff U = \log\left(rac{8\delta^2}{(\delta^2+|x-\xi|^2)^2}
ight), \delta > 0, \xi \in \mathbb{R}^2.$$

Notation for Liouville bubbles:

$$U_{\delta,\mu,\xi} := \log\left(rac{8\delta^2\mu^2}{(\delta^2\mu^2 + |x-\xi|^2)^2}
ight)$$

Strategy: Lyapunov-Schmidt reduction methods.

Solutions of the Liouville equation in \mathbb{R}^2 :

$$\left\{egin{array}{c} -\Delta U = e^U \ e^U \in \mathcal{L}^1(\mathbb{R}^2) \end{array} \quad \Longleftrightarrow \quad U = \log\left(rac{8\delta^2}{(\delta^2+|x-\xi|^2)^2}
ight), \delta > 0, \xi \in \mathbb{R}^2.$$

Notation for Liouville bubbles:

$$U_{\delta,\mu,\xi} := \log\left(rac{8\delta^2\mu^2}{(\delta^2\mu^2 + |x-\xi|^2)^2}
ight)$$

▶ Projected bubbles: let $(-\Delta)^{-1} : L^q \to H^1_0$ be the inverse of $-\Delta$, then $PU_{\delta,\mu,\xi} = (-\Delta)^{-1} e^{U_{\delta,\mu,\xi}}, \quad \delta > 0, \mu > 0, \xi \in \Omega.$

Strategy: Lyapunov-Schmidt reduction methods.

Solutions of the Liouville equation in \mathbb{R}^2 :

$$\left\{egin{array}{ll} -\Delta U = e^U \ e^U \in L^1(\mathbb{R}^2) \end{array} & \Longleftrightarrow \quad U = \log\left(rac{8\delta^2}{(\delta^2+|x-\xi|^2)^2}
ight), \delta > 0, \xi \in \mathbb{R}^2.$$

Notation for Liouville bubbles:

$$U_{\delta,\mu,\xi} := \log\left(rac{8\delta^2\mu^2}{(\delta^2\mu^2 + |x-\xi|^2)^2}
ight)$$

▶ Projected bubbles: let $(-\Delta)^{-1}: L^q \to H^1_0$ be the inverse of $-\Delta$, then

$$extsf{PU}_{\delta,\mu,\xi}=(-\Delta)^{-1}e^{U_{\delta,\mu,\xi}},\quad \delta>0,\mu>0,\xi\in\Omega.$$

Remark: Del Pino, Musso, Ruf constructed bubbling positive solutions to $-\Delta u = \lambda u e^{u^2}$, when λ is small. In the 1-bubble case they take $\alpha PU_{\delta,\mu,\xi}$ as approximate solution for suitable α , δ , μ , ξ .

Gabriele Mancini

Sapienza, Dipartimento S.B.A.I.

The approximate solution

First idea: Use $\omega = \omega_{\alpha,\delta,\mu,\xi} := \alpha P U_{\delta,\mu,\xi} - u_0$ as an approximate solution. Question: How small is the error term

$$\begin{split} & \mathcal{R} := \Delta \omega + f_{\varepsilon}(\omega) \\ & = \lambda \omega e^{\omega^2 + |\omega|^{1+\varepsilon}} - \alpha e^{U_{\delta,\mu,\xi}} - \alpha \Delta u_0? \end{split}$$

The approximate solution

First idea: Use $\omega = \omega_{\alpha,\delta,\mu,\xi} := \alpha P U_{\delta,\mu,\xi} - u_0$ as an approximate solution. Question: How small is the error term

$$R := \Delta \omega + f_{\varepsilon}(\omega)$$

= $\lambda \omega e^{\omega^2 + |\omega|^{1+\varepsilon}} - \alpha e^{U_{\delta,\mu,\xi}} - \alpha \Delta u_0?$

Choice of α and δ : For any $0 < \varepsilon \ll 1$, $\mu > 0$, $\xi \in \Omega$, with $u_0(\xi) > \frac{1}{2}$, there exist $(\alpha, \delta) \in \mathbb{R}^+ \times \mathbb{R}^+$ s. t.

$$R = O(\alpha^3 e^{U_{\delta,\mu,\xi}}) \quad \text{ in } B(\xi,r\delta), r > 0.$$

Moreover

$$\alpha = \frac{1}{2}e^{-\frac{\log(2u_0(\xi)) + o(1)}{\varepsilon}} \quad \text{and} \quad \delta = e^{-\frac{1 + o(1)}{8\alpha^2}}$$

THE APPROXIMATE SOLUTION

First idea: Use $\omega = \omega_{\alpha,\delta,\mu,\xi} := \alpha P U_{\delta,\mu,\xi} - u_0$ as an approximate solution. Question: How small is the error term

$$R := \Delta \omega + f_{\varepsilon}(\omega)$$

= $\lambda \omega e^{\omega^2 + |\omega|^{1+\varepsilon}} - \alpha e^{U_{\delta,\mu,\xi}} - \alpha \Delta u_0?$

Choice of α and δ : For any $0 < \varepsilon \ll 1$, $\mu > 0$, $\xi \in \Omega$, with $u_0(\xi) > \frac{1}{2}$, there exist $(\alpha, \delta) \in \mathbb{R}^+ \times \mathbb{R}^+$ s. t.

$$R = O(\alpha^3 e^{U_{\delta,\mu,\xi}})$$
 in $B(\xi, r\delta), r > 0.$

Moreover

$$\alpha = \frac{1}{2}e^{-\frac{\log(2u_0(\xi)) + o(1)}{\varepsilon}} \quad \text{and} \quad \delta = e^{-\frac{1 + o(1)}{8\alpha^2}}$$

Remark: Assumption (A2) is crucial in the choice of α and δ .

Sapienza, Dipartimento S.B.A.I.

٠

A REFINED APPROXIMATE SOLUTION

Problem: For any $\sigma > 0$ we have $R = O(\varepsilon)$ in $\Omega \setminus B(\xi, \sigma)$.

A REFINED APPROXIMATE SOLUTION

Problem: For any $\sigma > 0$ we have $R = O(\varepsilon)$ in $\Omega \setminus B(\xi, \sigma)$. A refined ansatz: $(A1) \Longrightarrow$ for $\varepsilon \in (0, \varepsilon_0)$, there exists $v_{\varepsilon} \in H^1(\Omega)$ s.t.

$$\begin{cases} -\Delta v_{\varepsilon} = \lambda e^{v_{\varepsilon}^2 + |v_{\varepsilon}|^{1+\varepsilon}} & \text{in } \Omega \\ v_{\varepsilon} > 0 & \text{in } \Omega \\ v_{\varepsilon} = 0 & \text{on } \partial\Omega \\ v_{\varepsilon} \to u_0 \text{ in } C^1(\bar{\Omega}) & \text{as } \varepsilon \to 0. \end{cases}$$

We define

 $\omega := \alpha P U_{\delta,\mu,\xi} - \mathbf{v}_{\varepsilon}.$

A refined approximate solution

Problem: For any $\sigma > 0$ we have $R = O(\varepsilon)$ in $\Omega \setminus B(\xi, \sigma)$. A refined ansatz: $(A1) \Longrightarrow$ for $\varepsilon \in (0, \varepsilon_0)$, there exists $v_{\varepsilon} \in H^1(\Omega)$ s.t.

$$\begin{cases} -\Delta v_{\varepsilon} = \lambda e^{v_{\varepsilon}^{2} + |v_{\varepsilon}|^{1+\varepsilon}} & \text{in } \Omega \\ v_{\varepsilon} > 0 & \text{in } \Omega \\ v_{\varepsilon} = 0 & \text{on } \partial\Omega \\ v_{\varepsilon} \to u_{0} \text{ in } C^{1}(\bar{\Omega}) & \text{as } \varepsilon \to 0. \end{cases}$$

We define

 $\omega := \alpha P U_{\delta,\mu,\xi} - \mathbf{v}_{\varepsilon}.$

As before, for any μ , ξ and any small ε we can choose α and δ that

$$R = O(\alpha^3 e^{U_{\varepsilon,\mu,\xi}}) \text{ in } B(\xi, r\delta), r > 0$$

$$R = O(\alpha) \text{ in } \Omega \setminus B(\xi, \sigma), \sigma > 0.$$

Sapienza, Dipartimento S.B.A.I.

THE FINAL ANSATZ

We take

$$\omega = \alpha P U_{\delta,\mu,\xi} - \mathbf{v}_{\varepsilon} - \alpha \mathbf{w}_{\varepsilon,\xi} - \alpha^2 z_{\varepsilon,\xi}$$

where

$$\begin{cases} \Delta w_{\varepsilon,\xi} + f_{\varepsilon}'(v_{\varepsilon})w_{\varepsilon,\xi} = 8\pi f_{\varepsilon}'(v_{\varepsilon})G_{\xi} & \text{in }\Omega\\ \Delta z_{\varepsilon,\xi} + f_{\varepsilon}'(v_{\varepsilon})z_{\varepsilon,\xi} = \frac{1}{2}f''(-v_{\varepsilon})(8\pi G_{\xi} - w_{\varepsilon,\xi})^2 & \text{in }\Omega\\ w_{\varepsilon} = z_{\varepsilon} = 0 & \text{on }\partial\Omega \end{cases}$$

With this choice we have

$$\begin{split} & R = O(\alpha^3 e^{U_{\varepsilon,\mu,\xi}}) \text{ in } B(\xi,r\delta), r > 0 \\ & R = O(\alpha^3) \text{ in } \Omega \setminus B(\xi,\sigma), \sigma > 0 \end{split}$$

THE FINAL ANSATZ

We take

$$\omega = \alpha P U_{\delta,\mu,\xi} - \mathbf{v}_{\varepsilon} - \alpha \mathbf{w}_{\varepsilon,\xi} - \alpha^2 z_{\varepsilon,\xi}$$

where

$$\begin{cases} \Delta w_{\varepsilon,\xi} + f_{\varepsilon}'(v_{\varepsilon})w_{\varepsilon,\xi} = 8\pi f_{\varepsilon}'(v_{\varepsilon})G_{\xi} & \text{in }\Omega\\ \Delta z_{\varepsilon,\xi} + f_{\varepsilon}'(v_{\varepsilon})z_{\varepsilon,\xi} = \frac{1}{2}f''(-v_{\varepsilon})(8\pi G_{\xi} - w_{\varepsilon,\xi})^2 & \text{in }\Omega\\ w_{\varepsilon} = z_{\varepsilon} = 0 & \text{on }\partial\Omega \end{cases}$$

With this choice we have

$$egin{aligned} R &= O(lpha^3 e^{U_{arepsilon,\mu,arepsilon}}) ext{ in } B(\xi,r\delta), r > 0 \ R &= O(lpha^3) ext{ in } \Omega \setminus B(\xi,\sigma), \sigma > 0 \end{aligned}$$

We can define a suitable norm $\|\cdot\|_*$ such that we have the global estimate

$$\|R\|_* = O(\alpha^3).$$

Sapienza, Dipartimento S.B.A.I.

THE LINEAR THEORY

For $\varphi \in H^1_0(\Omega)$ the function $u = \omega + \varphi$ solves $(\mathcal{P}_{\varepsilon})$ iff

$$-\Delta \varphi - f_{\varepsilon}'(\omega) \varphi = R + N(\varphi).$$

THE LINEAR THEORY

For $\varphi \in H_0^1(\Omega)$ the function $u = \omega + \varphi$ solves $(\mathcal{P}_{\varepsilon})$ iff

 $\varphi - (-\Delta)^{-1} f_{\varepsilon}'(\omega) \varphi = (-\Delta)^{-1} (R + N(\varphi)).$

The linear theory

For $\varphi \in H_0^1(\Omega)$ the function $u = \omega + \varphi$ solves $(\mathcal{P}_{\varepsilon})$ iff

$$\underbrace{\varphi - (-\Delta)^{-1} f_{\varepsilon}'(\omega) \varphi}_{=:\mathcal{L}\varphi} = (-\Delta)^{-1} (R + N(\varphi)).$$

The linear theory

For $\varphi \in H_0^1(\Omega)$ the function $u = \omega + \varphi$ solves $(\mathcal{P}_{\varepsilon})$ iff $\underbrace{\varphi - (-\Delta)^{-1} f_{\varepsilon}'(\omega) \varphi}_{=:\mathcal{L}\varphi} = (-\Delta)^{-1} (R + \mathcal{N}(\varphi)).$

• $\mathcal{L} \sim \mathcal{L}_0$ where $\mathcal{L}_0 \varphi := \varphi - (-\Delta)^{-1} e^{U_{\delta,\mu,\xi}} \varphi$ in $B(\xi, \delta r)$. • $\mathcal{L} \sim \mathcal{L}_1$ where $\mathcal{L}_1 \varphi := \varphi - (-\Delta)^{-1} (f'_0(u_0)\varphi)$ in $\Omega \setminus B(\xi, \sigma), \sigma > 0$.

The linear theory

For $\varphi \in H_0^1(\Omega)$ the function $u = \omega + \varphi$ solves $(\mathcal{P}_{\varepsilon})$ iff $\underbrace{\varphi - (-\Delta)^{-1} f_{\varepsilon}'(\omega) \varphi}_{=:\mathcal{L}\varphi} = (-\Delta)^{-1} (R + N(\varphi)).$

• $\mathcal{L} \sim \mathcal{L}_0$ where $\mathcal{L}_0 \varphi := \varphi - (-\Delta)^{-1} e^{U_{\delta,\mu,\xi}} \varphi$ in $B(\xi, \delta r)$. • $\mathcal{L} \sim \mathcal{L}_1$ where $\mathcal{L}_1 \varphi := \varphi - (-\Delta)^{-1} (f'_0(u_0)\varphi)$ in $\Omega \setminus B(\xi, \sigma), \sigma > 0$.

Remark:

• \mathcal{L}_1 is invertible because of (A1).

L₀ has a 3-d approximate kernel:

$$\begin{cases} \mathcal{L}_0 \varphi = 0\\ \varphi \in L^{\infty}(\mathbb{R}^2) \end{cases} \iff \varphi \in \mathsf{Span}\{Z_{0,\delta,\mu,\xi}, Z_{1,\delta,\mu,\xi}, Z_{2,\delta,\mu,\xi}\}\\ Z_{0,\delta,\mu,\xi} := \frac{\delta^2 \mu^2 - |x - \xi|^2}{\delta^2 \mu^2 + |x - \xi|^2}, \quad Z_{i,\delta,\mu,\xi} := \frac{2\delta \mu(x_i - \xi_i)}{\delta^2 \mu^2 + |x - \xi|^2}, \quad i = 1, 2.\end{cases}$$

The final argument

For any $0 < \varepsilon \ll 1$, $\mu > 0$ and ξ close to ξ_0 , $\exists \varphi = \varphi_{\varepsilon,\mu,\xi} \in H_0^1(\Omega)$, and $\kappa_i = \kappa_i(\varepsilon,\mu)$, i = 0, 1, 2, s.t. $\|\varphi\|_{L^{\infty}(\Omega)} = O(\alpha^3)$ and $u = \omega + \varphi$ solves

$$-\Delta u = f_{\varepsilon}(u) + \sum_{i=0}^{3} \kappa_{i,\varepsilon} e^{U_{\delta,\mu,\xi}} Z_{i,\delta,\mu,\xi}$$

The final argument

For any $0 < \varepsilon \ll 1$, $\mu > 0$ and ξ close to ξ_0 , $\exists \varphi = \varphi_{\varepsilon,\mu,\xi} \in H_0^1(\Omega)$, and $\kappa_i = \kappa_i(\varepsilon,\mu)$, i = 0, 1, 2, s.t. $\|\varphi\|_{L^{\infty}(\Omega)} = O(\alpha^3)$ and $u = \omega + \varphi$ solves

$$-\Delta u = f_{\varepsilon}(u) + \sum_{i=0}^{3} \kappa_{i,\varepsilon} e^{U_{\delta,\mu,\xi}} Z_{i,\delta,\mu,\xi}$$

For i = 0, 1, 2, κ_{i,ε} depends continuously on μ and ξ.
We have the expansions

$$\begin{aligned} \kappa_{0,\varepsilon}(\mu,\xi) &= 6\pi\alpha^3 \left(2 - \log(8\mu^{-2})\right) + o(\alpha^3) \\ \kappa_{i,\varepsilon}(\mu,\xi) &= -\kappa_{0,\varepsilon} O(\alpha^2) + \frac{3}{2}\mu\delta \frac{\partial u_0}{\partial x_i}(\xi) + o(\delta), \quad i = 1, 2, \end{aligned}$$

The final argument

For any $0 < \varepsilon \ll 1$, $\mu > 0$ and ξ close to ξ_0 , $\exists \varphi = \varphi_{\varepsilon,\mu,\xi} \in H_0^1(\Omega)$, and $\kappa_i = \kappa_i(\varepsilon,\mu)$, i = 0, 1, 2, s.t. $\|\varphi\|_{L^{\infty}(\Omega)} = O(\alpha^3)$ and $u = \omega + \varphi$ solves

$$-\Delta u = f_{\varepsilon}(u) + \sum_{i=0}^{3} \kappa_{i,\varepsilon} e^{U_{\delta,\mu,\xi}} Z_{i,\delta,\mu,\xi}$$

For i = 0, 1, 2, κ_{i,ε} depends continuously on μ and ξ.
We have the expansions

$$\begin{aligned} \kappa_{0,\varepsilon}(\mu,\xi) &= 6\pi\alpha^3 \left(2 - \log(8\mu^{-2})\right) + o(\alpha^3) \\ \kappa_{i,\varepsilon}(\mu,\xi) &= -\kappa_{0,\varepsilon}O(\alpha^2) + \frac{3}{2}\mu\delta\frac{\partial u_0}{\partial x_i}(\xi) + o(\delta), \quad i = 1, 2, \end{aligned}$$

Conclusion:

Since $(\sqrt{8}e^{-1},\xi_0)$ is a stable zero of $V_0(\mu,\xi) := (2 - \log(8\mu^{-2}), \nabla u_0)$, for any small ε we can find $\mu = \mu(\xi)$, $\xi = \xi(\varepsilon)$, s.t. $\kappa_{i,\varepsilon} = 0$, i = 0, 1, 2.

Gabriele Mancini

Sapienza, Dipartimento S.B.A.I.

THANK YOU FOR YOUR ATTENTION!