On the Sobolev quotient in CR geometry Joint work with J.H.Cheng and P.Yang

Andrea Malchiodi (SNS)

Banff, May 7th 2019

Andrea Malchiodi (SNS)

Banff, May 7th 2019 1 / 16

1

5900

Andrea Malchiodi (SNS)

Banff, May 7th 2019 2 / 16

900

《日》《圖》《臣》《臣》 [][]

The Yamabe problem consists in finding conformal metrics with constant scalar curvature on a compact manifold (M, g).

200

The Yamabe problem consists in finding conformal metrics with constant scalar curvature on a compact manifold (M, g). If R_g is the background one, setting $\tilde{g}(x) = \lambda(x)g(x) = u(x)^{\frac{4}{n-2}}g(x)$, u(x) one has to solve

$$(Y) -c_n\Delta u + R_g = \overline{R} u^{\frac{n+2}{n-2}}; c_n = 4\frac{n-1}{n-2}, \quad \overline{R} \in \mathbb{R}.$$

200

《曰》 《問》 《臣》 《臣》 三臣

The Yamabe problem consists in finding conformal metrics with constant scalar curvature on a compact manifold (M, g). If R_g is the background one, setting $\tilde{g}(x) = \lambda(x)g(x) = u(x)^{\frac{4}{n-2}}g(x)$, u(x) one has to solve

$$(Y) -c_n\Delta u + R_g = \overline{R} u^{\frac{n+2}{n-2}}; c_n = 4\frac{n-1}{n-2}, \quad \overline{R} \in \mathbb{R}.$$

Considering \overline{R} as a Lagrange multiplier, one can try to find solutions by minimizing the *Sobolev-Yamabe quotient*

$$Q_{SY}(u) = \frac{\int_M \left(c_n |\nabla u|^2 + R_g u^2 \right) dV}{\left(\int_M |u|^{2^*} dV \right)^{\frac{2}{2^*}}}; \qquad 2^* = \frac{2n}{n-2}.$$

2 / 16

Banff, May 7th 2019

Andrea Malchiodi (SNS)

The Yamabe problem consists in finding conformal metrics with constant scalar curvature on a compact manifold (M,g). If R_g is the background one, setting $\tilde{g}(x) = \lambda(x)g(x) = u(x)^{\frac{4}{n-2}}g(x)$, u(x) one has to solve

$$(Y) -c_n\Delta u + R_g = \overline{R} u^{\frac{n+2}{n-2}}; c_n = 4\frac{n-1}{n-2}, \quad \overline{R} \in \mathbb{R}.$$

Considering \overline{R} as a Lagrange multiplier, one can try to find solutions by minimizing the *Sobolev-Yamabe quotient*

$$Q_{SY}(u) = \frac{\int_M \left(c_n |\nabla u|^2 + R_g u^2 \right) dV}{\left(\int_M |u|^{2^*} dV \right)^{\frac{2}{2^*}}}; \qquad 2^* = \frac{2n}{n-2}$$

The Sobolev-Yamabe constant is defined as

$$Y(M,[g]) = \inf_{u \neq 0} Q_{SY}(u).$$

Andrea Malchiodi (SNS)

Banff, May 7th 2019 2 / 16

200

Andrea Malchiodi (SNS)

▲□ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ □ ♥ へ ○
 Banff, May 7th 2019 3 / 16

Recall the Sobolev-Gagliardo-Nirenberg inequality in \mathbb{R}^n

$$||u||_{L^{2^*}(\mathbb{R}^n)}^2 \le B_n \int_{\mathbb{R}^n} |\nabla u|^2 dx; \qquad u \in C_c^{\infty}(\mathbb{R}^n).$$

590

Recall the Sobolev-Gagliardo-Nirenberg inequality in \mathbb{R}^n

$$||u||_{L^{2^*}(\mathbb{R}^n)}^2 \le B_n \int_{\mathbb{R}^n} |\nabla u|^2 dx; \qquad u \in C_c^{\infty}(\mathbb{R}^n).$$

As for Y(M, [g]), define the Sobolev quotient $S_n = \inf_u \frac{\int_{\mathbb{R}^n} c_n |\nabla u|^2 dx}{\|u\|_{L^{2^*}(\mathbb{R}^n)}^2}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Recall the Sobolev-Gagliardo-Nirenberg inequality in \mathbb{R}^n

$$||u||_{L^{2^*}(\mathbb{R}^n)}^2 \le B_n \int_{\mathbb{R}^n} |\nabla u|^2 dx; \qquad u \in C_c^{\infty}(\mathbb{R}^n).$$

As for Y(M, [g]), define the Sobolev quotient $S_n = \inf_u \frac{\int_{\mathbb{R}^n} c_n |\nabla u|^2 dx}{\|u\|_{L^{2^*}(\mathbb{R}^n)}^2}$.

Completing $C_c^{\infty}(\mathbb{R}^n)$, S_n is attained by ([Aubin, '76], [Talenti, '76])

$$U_{p,\lambda}(x) := \frac{\lambda^{\frac{n-2}{2}}}{(1+\lambda^2|x-p|^2)^{\frac{n-2}{2}}}; \qquad p \in \mathbb{R}^n, \lambda > 0.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Banff, May 7th 2019

3 / 16

Andrea Malchiodi (SNS)

Recall the Sobolev-Gagliardo-Nirenberg inequality in \mathbb{R}^n

$$||u||_{L^{2^*}(\mathbb{R}^n)}^2 \le B_n \int_{\mathbb{R}^n} |\nabla u|^2 dx; \qquad u \in C_c^{\infty}(\mathbb{R}^n).$$

As for Y(M, [g]), define the Sobolev quotient $S_n = \inf_u \frac{\int_{\mathbb{R}^n} c_n |\nabla u|^2 dx}{\|u\|_{L^{2^*}(\mathbb{R}^n)}^2}$.

Completing $C_c^{\infty}(\mathbb{R}^n)$, S_n is attained by ([Aubin, '76], [Talenti, '76])

$$U_{p,\lambda}(x) := \frac{\lambda^{\frac{n-2}{2}}}{(1+\lambda^2|x-p|^2)^{\frac{n-2}{2}}}; \qquad p \in \mathbb{R}^n, \lambda > 0.$$

• Since S^n is conformal to \mathbb{R}^n , one has that $Y(S^n, [g_{S^n}]) = S_n$.

イロト イヨト イヨト イヨト ヨー つくで

Brief history on the Yamabe problem

Andrea Malchiodi (SNS)

Banff, May 7th 2019 4 / 16

999

《曰》 《問》 《注》 《注》 三注

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ のへぐ

- In 1968 Trudinger proved that (Y) is solvable provided $Y(M, [g]) \leq \varepsilon_n$ for some $\varepsilon_n > 0$.

イロト イヨト イヨト イヨト 三日 - のくや

- In 1968 Trudinger proved that (Y) is solvable provided $Y(M, [g]) \leq \varepsilon_n$ for some $\varepsilon_n > 0$. In particular for negative and zero Yamabe class.

イロト イヨト イヨト イヨト 一日 - のへの

- In 1968 Trudinger proved that (Y) is solvable provided $Y(M, [g]) \leq \varepsilon_n$ for some $\varepsilon_n > 0$. In particular for negative and zero Yamabe class.

- In 1976 Aubin proved that (Y) is solvable provided $Y(M, [g]) < S_n$.

イロト イヨト イヨト イヨト 一日 - のへの

- In 1968 Trudinger proved that (Y) is solvable provided $Y(M, [g]) \leq \varepsilon_n$ for some $\varepsilon_n > 0$. In particular for negative and zero Yamabe class.

- In 1976 Aubin proved that (Y) is solvable provided $Y(M, [g]) < S_n$. He also verified this inequality when $n \ge 6$ and (M, g) is not locally conformally flat, unless $(M, g) \simeq (S^n, g_{S^n})$.

イロト イヨト イヨト イヨト 一日 - のへの

4 / 16

Banff, May 7th 2019

- In 1968 Trudinger proved that (Y) is solvable provided $Y(M, [g]) \leq \varepsilon_n$ for some $\varepsilon_n > 0$. In particular for negative and zero Yamabe class.

- In 1976 Aubin proved that (Y) is solvable provided $Y(M, [g]) < S_n$. He also verified this inequality when $n \ge 6$ and (M, g) is not locally conformally flat, unless $(M, g) \simeq (S^n, g_{S^n})$.

- In 1984 Schoen proved that $Y(M, [g]) < S_n$ in all other cases, i.e. $n \leq 5$ or (M, g) locally conformally flat, unless $(M, g) \simeq (S^n, g_{S^n})$.

Andrea Malchiodi (SNS)

Banff, May 7th 2019 4 / 16

イロト イヨト イヨト イヨト 一日 - のへの

Andrea Malchiodi (SNS)

▲□▶ ▲□▶ ▲ ■▶ ▲ ■▶ ▲ ■ シ へ ○

 Banff, May 7th 2019
 5 / 16

The inequality is proved using Aubin-Talenti's functions.

▲□ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ □ ♥ ○ ○
 Banff, May 7th 2019 5 / 16

The inequality is proved using Aubin-Talenti's functions. Given $p \in M$, consider a conformal metric $\tilde{g} \simeq U_{p,\lambda}^{\frac{4}{n-2}} g$ with λ large.

The inequality is proved using Aubin-Talenti's functions. Given $p \in M$, consider a conformal metric $\tilde{g} \simeq U_{p,\lambda}^{\frac{4}{n-2}}g$ with λ large. Since locally $(M,g) \simeq \mathbb{R}^n$ and since $U_{p,\lambda}$ is highly concentrated, $Q_{SY}(U_{p,\lambda}) \simeq S_n$, with small correction terms due to the geometry of M.

・ロト ・回ト ・ヨト ・ヨト ・ 回・ つくの

The inequality is proved using Aubin-Talenti's functions. Given $p \in M$, consider a conformal metric $\tilde{g} \simeq U_{p,\lambda}^{\frac{4}{n-2}}g$ with λ large. Since locally $(M,g) \simeq \mathbb{R}^n$ and since $U_{p,\lambda}$ is highly concentrated, $Q_{SY}(U_{p,\lambda}) \simeq S_n$, with small correction terms due to the geometry of M.

Since $U_{p,\lambda}$ decays like $\frac{1}{|x|^{n-2}}$ at infinity, it is more *localized* in large dimension.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ つ ・

The inequality is proved using Aubin-Talenti's functions. Given $p \in M$, consider a conformal metric $\tilde{g} \simeq U_{p,\lambda}^{\frac{4}{n-2}} g$ with λ large. Since locally $(M,g) \simeq \mathbb{R}^n$ and since $U_{p,\lambda}$ is highly concentrated, $Q_{SY}(U_{p,\lambda}) \simeq S_n$, with small correction terms due to the geometry of M.

Since $U_{p,\lambda}$ decays like $\frac{1}{|x|^{n-2}}$ at infinity, it is more *localized* in large dimension. Aubin proved that for $n \geq 6$ the corrections are given by $-\frac{|W_g|^2(p)}{\lambda^4}$, a local quantity depending on the Weyl tensor.

イロト イヨト イヨト イヨト 一日 - のへの

The inequality is proved using Aubin-Talenti's functions. Given $p \in M$, consider a conformal metric $\tilde{g} \simeq U_{p,\lambda}^{\frac{4}{n-2}} g$ with λ large. Since locally $(M,g) \simeq \mathbb{R}^n$ and since $U_{p,\lambda}$ is highly concentrated, $Q_{SY}(U_{p,\lambda}) \simeq S_n$, with small correction terms due to the geometry of M.

Since $U_{p,\lambda}$ decays like $\frac{1}{|x|^{n-2}}$ at infinity, it is more *localized* in large dimension. Aubin proved that for $n \geq 6$ the corrections are given by $-\frac{|W_g|^2(p)}{\lambda^4}$, a local quantity depending on the Weyl tensor.

イロト イヨト イヨト イヨト 一日 - のへの

Banff, May 7th 2019

5 / 16

For $n \leq 5$ the correction is of global nature.

The inequality is proved using Aubin-Talenti's functions. Given $p \in M$, consider a conformal metric $\tilde{g} \simeq U_{p,\lambda}^{\frac{4}{n-2}} g$ with λ large. Since locally $(M,g) \simeq \mathbb{R}^n$ and since $U_{p,\lambda}$ is highly concentrated, $Q_{SY}(U_{p,\lambda}) \simeq S_n$, with small correction terms due to the geometry of M.

Since $U_{p,\lambda}$ decays like $\frac{1}{|x|^{n-2}}$ at infinity, it is more *localized* in large dimension. Aubin proved that for $n \geq 6$ the corrections are given by $-\frac{|W_g|^2(p)}{\lambda^4}$, a local quantity depending on the Weyl tensor.

For $n \leq 5$ the correction is of global nature. Heuristics:

イロト イヨト イヨト イヨト 一日 - のへの

The inequality is proved using Aubin-Talenti's functions. Given $p \in M$, consider a conformal metric $\tilde{g} \simeq U_{p,\lambda}^{\frac{4}{n-2}} g$ with λ large. Since locally $(M,g) \simeq \mathbb{R}^n$ and since $U_{p,\lambda}$ is highly concentrated, $Q_{SY}(U_{p,\lambda}) \simeq S_n$, with small correction terms due to the geometry of M.

Since $U_{p,\lambda}$ decays like $\frac{1}{|x|^{n-2}}$ at infinity, it is more *localized* in large dimension. Aubin proved that for $n \geq 6$ the corrections are given by $-\frac{|W_g|^2(p)}{\lambda^4}$, a local quantity depending on the Weyl tensor.

For $n \leq 5$ the correction is of global nature. Heuristics: if $u \simeq U_{p,\lambda}$ then

$$L_g u := -c_n \Delta u + R_g u \simeq U_{p,\lambda}^{\frac{n+2}{n-2}} \simeq \frac{1}{\lambda} \delta_p.$$

Andrea Malchiodi (SNS)

Banff, May 7th 2019 5 / 16

イロト イヨト イヨト イヨト 一日 - のへの

The inequality is proved using Aubin-Talenti's functions. Given $p \in M$, consider a conformal metric $\tilde{g} \simeq U_{p,\lambda}^{\frac{4}{n-2}} g$ with λ large. Since locally $(M,g) \simeq \mathbb{R}^n$ and since $U_{p,\lambda}$ is highly concentrated, $Q_{SY}(U_{p,\lambda}) \simeq S_n$, with small correction terms due to the geometry of M.

Since $U_{p,\lambda}$ decays like $\frac{1}{|x|^{n-2}}$ at infinity, it is more *localized* in large dimension. Aubin proved that for $n \geq 6$ the corrections are given by $-\frac{|W_g|^2(p)}{\lambda^4}$, a local quantity depending on the Weyl tensor.

For $n \leq 5$ the correction is of global nature. Heuristics: if $u \simeq U_{p,\lambda}$ then

$$L_g u := -c_n \Delta u + R_g u \simeq U_{p,\lambda}^{\frac{n+2}{n-2}} \simeq \frac{1}{\lambda} \delta_p.$$

At large scales an approximate solution looks like the Green's function G_p of the operator L_g .

Andrea Malchiodi (SNS)

Banff, May 7th 2019 5 / 16

The inequality is proved using Aubin-Talenti's functions. Given $p \in M$, consider a conformal metric $\tilde{g} \simeq U_{p,\lambda}^{\frac{4}{n-2}}g$ with λ large. Since locally $(M,g) \simeq \mathbb{R}^n$ and since $U_{p,\lambda}$ is highly concentrated, $Q_{SY}(U_{p,\lambda}) \simeq S_n$, with small correction terms due to the geometry of M.

Since $U_{p,\lambda}$ decays like $\frac{1}{|x|^{n-2}}$ at infinity, it is more *localized* in large dimension. Aubin proved that for $n \geq 6$ the corrections are given by $-\frac{|W_g|^2(p)}{\lambda^4}$, a local quantity depending on the Weyl tensor.

For $n \leq 5$ the correction is of global nature. Heuristics: if $u \simeq U_{p,\lambda}$ then

$$L_g u := -c_n \Delta u + R_g u \simeq U_{p,\lambda}^{\frac{n+2}{n-2}} \simeq \frac{1}{\lambda} \delta_p.$$

At large scales an approximate solution looks like the Green's function G_p of the operator L_g . If $G_p \simeq \frac{1}{|x|^{n-2}} + A$ at p, the correction is $-A/\lambda^{n-2}$.

A brief excursion in general relativity

Andrea Malchiodi (SNS)

Banff, May 7th 2019 6 / 16

900

《曰》 《問》 《注》 《注》 三注

A brief excursion in general relativity

To understand the value of A, general relativity comes into play.

▲ □ ▶ ▲ □ ▶ ▲ ■ ▶ ▲ ■ ▶ ▲ ■ ▶ ▲ ■ ♪ ♀ ○
 Banff, May 7th 2019 6 / 16

A brief excursion in general relativity

To understand the value of A, general relativity comes into play.

A manifold (N^3, \tilde{g}) is said to be asymptotically flat if it is a union of a compact set K (possibly with topology), and such that $N \setminus K$ is diffeomorphic to $\mathbb{R}^3 \setminus B_1(0)$.

イロト イヨト イヨト イヨト 一日 - のへの

To understand the value of A, general relativity comes into play.

A manifold (N^3, \tilde{g}) is said to be asymptotically flat if it is a union of a compact set K (possibly with topology), and such that $N \setminus K$ is diffeomorphic to $\mathbb{R}^3 \setminus B_1(0)$. It is required that the metric satisfies

6 / 16

To understand the value of A, general relativity comes into play.

A manifold (N^3, \tilde{g}) is said to be asymptotically flat if it is a union of a compact set K (possibly with topology), and such that $N \setminus K$ is diffeomorphic to $\mathbb{R}^3 \setminus B_1(0)$. It is required that the metric satisfies

In general relativity these manifolds describe static gravitational systems.

Andrea Malchiodi (SNS)

The mass of an asymptotically flat manifold

Andrea Malchiodi (SNS)

Banff, May 7th 2019 7 / 16

590

《曰》 《問》 《注》 《注》 三注

The mass of an asymptotically flat manifold

The ADM mass $m(\tilde{g})$ ([ADM, '60]) of such manifolds is defined as

$$m(\tilde{g}) := \lim_{r \to \infty} \oint_{S_r} \left(\partial_k \, \tilde{g}_{jk} - \partial_j \, \tilde{g}_{kk} \right) \nu^j d\sigma.$$

Banff, May 7th 2019 7 / 16

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ のへぐ

The ADM mass $m(\tilde{g})$ ([ADM, '60]) of such manifolds is defined as

$$m(\tilde{g}) := \lim_{r \to \infty} \oint_{S_r} \left(\partial_k \, \tilde{g}_{jk} - \partial_j \, \tilde{g}_{kk} \right) \nu^j d\sigma.$$

Theorem ([Schoen-Yau, '79])

イロト イヨト イヨト イヨト 三日 - のくや

The ADM mass $m(\tilde{g})$ ([ADM, '60]) of such manifolds is defined as

$$m(\tilde{g}) := \lim_{r \to \infty} \oint_{S_r} \left(\partial_k \, \tilde{g}_{jk} - \partial_j \, \tilde{g}_{kk} \right) \nu^j d\sigma.$$

Theorem ([Schoen-Yau, '79]) If $R_{\tilde{g}} \ge 0$ then $m(\tilde{g}) \ge 0$.

イロト イヨト イヨト イヨト 三日 - のくや

The ADM mass $m(\tilde{g})$ ([ADM, '60]) of such manifolds is defined as

$$m(\tilde{g}) := \lim_{r \to \infty} \oint_{S_r} \left(\partial_k \, \tilde{g}_{jk} - \partial_j \, \tilde{g}_{kk} \right) \nu^j d\sigma.$$

Theorem ([Schoen-Yau, '79])

If $R_{\tilde{g}} \geq 0$ then $m(\tilde{g}) \geq 0$. In case $m(\tilde{g}) = 0$, then (M, \tilde{g}) is <u>isometric</u> to the flat Euclidean space (\mathbb{R}^3, dx^2) .

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ のへぐ

The ADM mass $m(\tilde{g})$ ([ADM, '60]) of such manifolds is defined as

$$m(\tilde{g}) := \lim_{r \to \infty} \oint_{S_r} \left(\partial_k \, \tilde{g}_{jk} - \partial_j \, \tilde{g}_{kk} \right) \nu^j d\sigma.$$

Theorem ([Schoen-Yau, '79])

If $R_{\tilde{g}} \geq 0$ then $m(\tilde{g}) \geq 0$. In case $m(\tilde{g}) = 0$, then (M, \tilde{g}) is <u>isometric</u> to the flat Euclidean space (\mathbb{R}^3, dx^2) .

Application: Conformal blow-ups.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

The ADM mass $m(\tilde{g})$ ([ADM, '60]) of such manifolds is defined as

$$m(\tilde{g}) := \lim_{r \to \infty} \oint_{S_r} \left(\partial_k \, \tilde{g}_{jk} - \partial_j \, \tilde{g}_{kk} \right) \nu^j d\sigma.$$

Theorem ([Schoen-Yau, '79])

If $R_{\tilde{g}} \geq 0$ then $m(\tilde{g}) \geq 0$. In case $m(\tilde{g}) = 0$, then (M, \tilde{g}) is <u>isometric</u> to the flat Euclidean space (\mathbb{R}^3, dx^2) .

Application: Conformal blow-ups. Consider a <u>compact</u> Riemannian three-manifold (M, g), and $p \in M$.

The ADM mass $m(\tilde{g})$ ([ADM, '60]) of such manifolds is defined as

$$m(\tilde{g}) := \lim_{r \to \infty} \oint_{S_r} \left(\partial_k \, \tilde{g}_{jk} - \partial_j \, \tilde{g}_{kk} \right) \nu^j d\sigma.$$

Theorem ([Schoen-Yau, '79])

If $R_{\tilde{g}} \geq 0$ then $m(\tilde{g}) \geq 0$. In case $m(\tilde{g}) = 0$, then (M, \tilde{g}) is <u>isometric</u> to the flat Euclidean space (\mathbb{R}^3, dx^2) .

Application: Conformal blow-ups. Consider a compact Riemannian three-manifold (M, g), and $p \in M$. Define now the conformal metric

$$\tilde{g} = G_p^4 g;$$
 G_p Green's function of L_g with pole p .

The ADM mass $m(\tilde{g})$ ([ADM, '60]) of such manifolds is defined as

$$m(\tilde{g}) := \lim_{r \to \infty} \oint_{S_r} \left(\partial_k \, \tilde{g}_{jk} - \partial_j \, \tilde{g}_{kk} \right) \nu^j d\sigma.$$

Theorem ([Schoen-Yau, '79])

If $R_{\tilde{g}} \geq 0$ then $m(\tilde{g}) \geq 0$. In case $m(\tilde{g}) = 0$, then (M, \tilde{g}) is <u>isometric</u> to the flat Euclidean space (\mathbb{R}^3, dx^2) .

Application: Conformal blow-ups. Consider a compact Riemannian three-manifold (M, g), and $p \in M$. Define now the conformal metric

 $\tilde{g} = G_p^4 g;$ G_p Green's function of L_g with pole p.

Then $(M \setminus \{p\}, \tilde{g})$ is asymptotically flat, and

$$m(\tilde{g}) = \lim_{x \to p} \left(G_p(x) - \frac{1}{d(x,p)} \right) = A.$$

Andrea Malchiodi (SNS)

Banff, May 7th 2019 7 / 16

Andrea Malchiodi (SNS)

Banff, May 7th 2019 8 / 16

900

《曰》 《問》 《注》 《注》 三注

We deal with 3-D manifolds with a non-integrable two-dimensional distribution (contact structure) ξ , annihilated by a contact 1-form θ .

200

《曰》 《問》 《臣》 《臣》 三臣

We deal with 3-D manifolds with a non-integrable two-dimensional distribution (contact structure) ξ , annihilated by a contact 1-form θ .

We also have a <u>CR structure</u> (complex rotation) $J: \xi \to \xi$ s.t. $J^2 = -1$.

We deal with 3-D manifolds with a non-integrable two-dimensional distribution (contact structure) ξ , annihilated by a contact 1-form θ .

We also have a <u>CR structure</u> (complex rotation) $J: \xi \to \xi$ s.t. $J^2 = -1$.

Given J as above, we have locally a vector field Z_1 such that

$$JZ_1 = iZ_1;$$
 $JZ_{\overline{1}} = -iZ_{\overline{1}}$ where $Z_{\overline{1}} = \overline{(Z_1)}.$

We deal with 3-D manifolds with a non-integrable two-dimensional distribution (contact structure) ξ , annihilated by a contact 1-form θ . We also have a <u>CR structure</u> (complex rotation) $J : \xi \to \xi$ s.t. $J^2 = -1$. Given J as above, we have locally a vector field Z_1 such that

$$JZ_1 = iZ_1;$$
 $JZ_{\overline{1}} = -iZ_{\overline{1}}$ where $Z_{\overline{1}} = \overline{(Z_1)}.$

Example 1: Heisenberg group $\mathbb{H}^1 = \{(z,t) \in \mathbb{C} \times \mathbb{R}\}.$

We deal with 3-D manifolds with a non-integrable two-dimensional distribution (<u>contact structure</u>) ξ , annihilated by a <u>contact 1-form</u> θ . We also have a <u>CR structure</u> (complex rotation) $J : \xi \to \xi$ s.t. $J^2 = -1$. Given J as above, we have locally a vector field Z_1 such that

$$JZ_1 = iZ_1;$$
 $JZ_{\overline{1}} = -iZ_{\overline{1}}$ where $Z_{\overline{1}} = \overline{(Z_1)}.$

Example 1: Heisenberg group $\mathbb{H}^1 = \{(z, t) \in \mathbb{C} \times \mathbb{R}\}$. Setting

$$\overset{\,\,{}_\circ}{Z}_1 = \frac{1}{\sqrt{2}} \left(\frac{\partial}{\partial z} + i \overline{z} \frac{\partial}{\partial t} \right); \qquad \qquad \overset{\,\,{}_\circ}{Z}_{\overline{1}} = \frac{1}{\sqrt{2}} \left(\frac{\partial}{\partial \overline{z}} - i z \frac{\partial}{\partial t} \right).$$

8 / 16

Banff, May 7th 2019

Andrea Malchiodi (SNS)

We deal with 3-D manifolds with a non-integrable two-dimensional distribution (contact structure) ξ , annihilated by a contact 1-form θ . We also have a <u>CR structure</u> (complex rotation) $J : \xi \to \xi$ s.t. $J^2 = -1$. Given J as above, we have locally a vector field Z_1 such that

$$JZ_1 = iZ_1;$$
 $JZ_{\overline{1}} = -iZ_{\overline{1}}$ where $Z_{\overline{1}} = \overline{(Z_1)}.$

Example 1: Heisenberg group $\mathbb{H}^1 = \{(z,t) \in \mathbb{C} \times \mathbb{R}\}$. Setting $\mathring{Z}_1 = \frac{1}{\sqrt{2}} \left(\frac{\partial}{\partial z} + i\overline{z} \frac{\partial}{\partial t} \right);$ $\mathring{Z}_{\overline{1}} = \frac{1}{\sqrt{2}} \left(\frac{\partial}{\partial \overline{z}} - iz \frac{\partial}{\partial t} \right).$

Example 2: boundaries of complex domains.

Andrea Malchiodi (SNS)

Banff, May 7th 2019 8 / 16

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ つ ・

We deal with 3-D manifolds with a non-integrable two-dimensional distribution (contact structure) ξ , annihilated by a contact 1-form θ . We also have a <u>CR structure</u> (complex rotation) $J : \xi \to \xi$ s.t. $J^2 = -1$. Given J as above, we have locally a vector field Z_1 such that

$$JZ_1 = iZ_1;$$
 $JZ_{\overline{1}} = -iZ_{\overline{1}}$ where $Z_{\overline{1}} = \overline{(Z_1)}.$

Example 1: Heisenberg group $\mathbb{H}^1 = \{(z,t) \in \mathbb{C} \times \mathbb{R}\}$. Setting $\mathring{Z}_1 = \frac{1}{\sqrt{2}} \left(\frac{\partial}{\partial z} + i\overline{z} \frac{\partial}{\partial t} \right);$ $\mathring{Z}_{\overline{1}} = \frac{1}{\sqrt{2}} \left(\frac{\partial}{\partial \overline{z}} - iz \frac{\partial}{\partial t} \right).$

Example 2: boundaries of complex domains. Consider $\Omega \subset \mathbb{C}^2$ and J_2 the standard complex rotation in \mathbb{C}^2 .

Andrea Malchiodi (SNS)

Banff, May 7th 2019 8 / 16

We deal with 3-D manifolds with a non-integrable two-dimensional distribution (contact structure) ξ , annihilated by a contact 1-form θ . We also have a <u>CR structure</u> (complex rotation) $J : \xi \to \xi$ s.t. $J^2 = -1$. Given J as above, we have locally a vector field Z_1 such that

$$JZ_1 = iZ_1;$$
 $JZ_{\overline{1}} = -iZ_{\overline{1}}$ where $Z_{\overline{1}} = \overline{(Z_1)}.$

Example 1: Heisenberg group $\mathbb{H}^1 = \{(z,t) \in \mathbb{C} \times \mathbb{R}\}$. Setting $\mathring{Z}_1 = \frac{1}{\sqrt{2}} \left(\frac{\partial}{\partial z} + i\overline{z}\frac{\partial}{\partial t}\right); \qquad \qquad \mathring{Z}_{\overline{1}} = \frac{1}{\sqrt{2}} \left(\frac{\partial}{\partial \overline{z}} - iz\frac{\partial}{\partial t}\right).$

Example 2: boundaries of complex domains. Consider $\Omega \subset \mathbb{C}^2$ and J_2 the standard complex rotation in \mathbb{C}^2 . Given $p \in \partial \Omega$ one can consider the subset ξ_p of $T_p \partial \Omega$ which is invariant by J_2 .

Andrea Malchiodi (SNS)

Banff, May 7th 2019 8 / 16

We deal with 3-D manifolds with a non-integrable two-dimensional distribution (contact structure) ξ , annihilated by a contact 1-form θ . We also have a <u>CR structure</u> (complex rotation) $J : \xi \to \xi$ s.t. $J^2 = -1$. Given J as above, we have locally a vector field Z_1 such that

$$JZ_1 = iZ_1;$$
 $JZ_{\overline{1}} = -iZ_{\overline{1}}$ where $Z_{\overline{1}} = \overline{(Z_1)}.$

Example 1: Heisenberg group $\mathbb{H}^1 = \{(z,t) \in \mathbb{C} \times \mathbb{R}\}$. Setting $\mathring{Z}_1 = \frac{1}{\sqrt{2}} \left(\frac{\partial}{\partial z} + i\overline{z}\frac{\partial}{\partial t}\right); \qquad \qquad \mathring{Z}_{\overline{1}} = \frac{1}{\sqrt{2}} \left(\frac{\partial}{\partial \overline{z}} - iz\frac{\partial}{\partial t}\right).$

Example 2: boundaries of complex domains. Consider $\Omega \subset \mathbb{C}^2$ and J_2 the standard complex rotation in \mathbb{C}^2 . Given $p \in \partial \Omega$ one can consider the subset ξ_p of $T_p \partial \Omega$ which is invariant by J_2 . We take ξ_p as contact distribution, and $J|_{\xi_p}$ as the CR structure $J_{\mathcal{A}}$.

Andrea Malchiodi (SNS)

Banff, May 7th 2019 8 / 16

Andrea Malchiodi (SNS)

▲ □ ▶ ▲ □ ▶ ▲ ■ ▶ ▲ ■ ▶ ▲ ■ ▶ ● ○ ○
 Banff, May 7th 2019 9 / 16

In 1983 Webster introduced *scalar curvature* W, to study the biholomorphy problem, which behaves conformally like the scalar curvature.

Sac

(日) (四) (王) (王) (王)

In 1983 Webster introduced *scalar curvature* W, to study the biholomorphy problem, which behaves conformally like the scalar curvature.

Changing conformally the contact form, if $\hat{\theta} = u^2 \theta$, then $W_{\hat{\theta}}$ is given by

 $-4\Delta_b u + W_\theta u = W_{\hat{\theta}} u^3.$

In 1983 Webster introduced *scalar curvature* W, to study the biholomorphy problem, which behaves conformally like the scalar curvature.

Changing conformally the contact form, if $\hat{\theta} = u^2 \theta$, then $W_{\hat{\theta}}$ is given by

$$-4\Delta_b u + W_\theta u = W_{\hat{\theta}} u^3.$$

Here Δ_b is the sub-laplacian on M: roughly, the laplacian in the contact directions

Sac

Changing conformally the contact form, if $\hat{\theta} = u^2 \theta$, then $W_{\hat{\theta}}$ is given by

$$-4\Delta_b u + W_\theta u = W_{\hat{\theta}} u^3.$$

Here Δ_b is the *sub-laplacian* on M: roughly, the *laplacian in the contact* directions (use Hörmander's theory (commutators) to recover regularity).

Sac

Changing conformally the contact form, if $\hat{\theta} = u^2 \theta$, then $W_{\hat{\theta}}$ is given by

$$-4\Delta_b u + W_\theta u = W_{\hat{\theta}} u^3.$$

Here Δ_b is the *sub-laplacian* on M: roughly, the *laplacian in the contact* directions (use Hörmander's theory (commutators) to recover regularity).

As before, we can define a *Sobolev-Webster quotient*, a *Webster class*, and try to uniformize W as we did for the scalar curvature.

Banff, May 7th 2019

200

9 / 16

Changing conformally the contact form, if $\hat{\theta} = u^2 \theta$, then $W_{\hat{\theta}}$ is given by

$$-4\Delta_b u + W_\theta u = W_{\hat{\theta}} u^3.$$

Here Δ_b is the *sub-laplacian* on M: roughly, the *laplacian in the contact* directions (use Hörmander's theory (commutators) to recover regularity).

As before, we can define a Sobolev-Webster quotient, a Webster class, and try to uniformize W as we did for the scalar curvature. For $n \ge 5$ Jerison and Lee (1989) proved the counterparts of Trudinger and Aubin's results.

200

《曰》 《問》 《臣》 《臣》 三臣

Changing conformally the contact form, if $\hat{\theta} = u^2 \theta$, then $W_{\hat{\theta}}$ is given by

$$-4\Delta_b u + W_\theta u = W_{\hat{\theta}} u^3.$$

Here Δ_b is the *sub-laplacian* on M: roughly, the *laplacian in the contact* directions (use Hörmander's theory (commutators) to recover regularity).

As before, we can define a Sobolev-Webster quotient, a Webster class, and try to uniformize W as we did for the scalar curvature. For $n \ge 5$ Jerison and Lee (1989) proved the counterparts of Trudinger and Aubin's results. Non-minimal solutions were found in [Gamara (et al.), '01] for n = 3.

San

(日) (四) (王) (王) (王)

Andrea Malchiodi (SNS)

In 3D the Green's function still appears.

DQC

<ロ> (四) (四) (王) (王) (王) (王)

In 3D the Green's function still appears. In suitable coordinates at $p \in M$

$$G_p \simeq \frac{1}{\rho^2} + A,$$

where $\rho^4(z,t) = |z|^4 + t^2$, $(z,t) \in \mathbb{H}^1$ is the homogeneous distance.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

In 3D the Green's function still appears. In suitable coordinates at $p \in M$

$$G_p \simeq \frac{1}{\rho^2} + A,$$

where $\rho^4(z,t) = |z|^4 + t^2$, $(z,t) \in \mathbb{H}^1$ is the homogeneous distance. Blowing-up the contact form θ using G_p , we obtain an asymptotically (Heisenberg) flat manifold and define its <u>mass</u>, proportional to A.

In 3D the Green's function still appears. In suitable coordinates at $p \in M$

$$G_p \simeq \frac{1}{\rho^2} + A,$$

where $\rho^4(z,t) = |z|^4 + t^2$, $(z,t) \in \mathbb{H}^1$ is the homogeneous distance. Blowing-up the contact form θ using G_p , we obtain an asymptotically (Heisenberg) flat manifold and define its <u>mass</u>, proportional to A.

However, one crucial difference between dimension three and higher is the *embeddability* of abstract CR manifolds ([Chen-Shaw, '01]).

・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・ うへつ

In 3D the Green's function still appears. In suitable coordinates at $p \in M$

$$G_p \simeq \frac{1}{\rho^2} + A,$$

where $\rho^4(z,t) = |z|^4 + t^2$, $(z,t) \in \mathbb{H}^1$ is the homogeneous distance. Blowing-up the contact form θ using G_p , we obtain an asymptotically (Heisenberg) flat manifold and define its <u>mass</u>, proportional to A.

However, one crucial difference between dimension three and higher is the *embeddability* of abstract CR manifolds ([Chen-Shaw, '01]). There is a fourth-order (Paneitz) operator $P = \Delta_b^2 + l.o.t$. which plays a role here.

・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・ うへつ

In 3D the Green's function still appears. In suitable coordinates at $p \in M$

$$G_p \simeq \frac{1}{\rho^2} + A,$$

where $\rho^4(z,t) = |z|^4 + t^2$, $(z,t) \in \mathbb{H}^1$ is the homogeneous distance. Blowing-up the contact form θ using G_p , we obtain an asymptotically (Heisenberg) flat manifold and define its <u>mass</u>, proportional to A.

However, one crucial difference between dimension three and higher is the *embeddability* of abstract CR manifolds ([Chen-Shaw, '01]). There is a fourth-order (Paneitz) operator $P = \Delta_b^2 + l.o.t$. which plays a role here.

イロト イヨト イヨト イヨト 一日 - のへの

10 / 16

Banff, May 7th 2019

Theorem ([Chanillo-Chiu-Yang, '12])

Andrea Malchiodi (SNS)

In 3D the Green's function still appears. In suitable coordinates at $p \in M$

$$G_p \simeq \frac{1}{\rho^2} + A,$$

where $\rho^4(z,t) = |z|^4 + t^2$, $(z,t) \in \mathbb{H}^1$ is the homogeneous distance. Blowing-up the contact form θ using G_p , we obtain an asymptotically (Heisenberg) flat manifold and define its <u>mass</u>, proportional to A.

However, one crucial difference between dimension three and higher is the *embeddability* of abstract CR manifolds ([Chen-Shaw, '01]). There is a fourth-order (Paneitz) operator $P = \Delta_b^2 + l.o.t$. which plays a role here.

Theorem ([Chanillo-Chiu-Yang, '12]) Let M^3 be a compact CR manifold.

Andrea Malchiodi (SNS)

Banff, May 7th 2019 10 / 16

In 3D the Green's function still appears. In suitable coordinates at $p \in M$

$$G_p \simeq \frac{1}{\rho^2} + A,$$

where $\rho^4(z,t) = |z|^4 + t^2$, $(z,t) \in \mathbb{H}^1$ is the homogeneous distance. Blowing-up the contact form θ using G_p , we obtain an asymptotically (Heisenberg) flat manifold and define its <u>mass</u>, proportional to A.

However, one crucial difference between dimension three and higher is the *embeddability* of abstract CR manifolds ([Chen-Shaw, '01]). There is a fourth-order (Paneitz) operator $P = \Delta_b^2 + l.o.t$. which plays a role here.

Theorem ([Chanillo-Chiu-Yang, '12]) Let M^3 be a compact CR manifold. If $P \ge 0$ and W > 0, then M embeds into some \mathbb{C}^N .

A positive mass theorem

Andrea Malchiodi (SNS)

▲ □ ▶ ▲ □ ▶ ▲ ■ ▶ ▲ ■ ▶ ▲ ■ かへで
Banff, May 7th 2019 11 / 16

A positive mass theorem

Theorem 1 ([Cheng-M.-Yang, '17])

▲ □ ▶ ▲ □ ▶ ▲ ■ ▶ ▲ ■ ▶ ▲ ■ ♪ ○ ○
Banff, May 7th 2019 11 / 16

Theorem 1 ([Cheng-M.-Yang, '17]) Let (M^3, J, θ) be a compact CR manifold.

Theorem 1 ([Cheng-M.-Yang, '17])

Let (M^3, J, θ) be a compact CR manifold. Suppose the Webster class is positive, and that the Paneitz operator P is non-negative.

Theorem 1 ([Cheng-M.-Yang, '17])

Let (M^3, J, θ) be a compact CR manifold. Suppose the Webster class is positive, and that the Paneitz operator P is non-negative. Let $p \in M$ and let $\tilde{\theta}$ be a blown-up of contact form at p.

Theorem 1 ([Cheng-M.-Yang, '17])

Let (M^3, J, θ) be a compact CR manifold. Suppose the Webster class is positive, and that the Paneitz operator P is non-negative. Let $p \in M$ and let $\tilde{\theta}$ be a blown-up of contact form at p. Then

(a) the CR mass m of $(M, J, \tilde{\theta})$ is non negative;

Theorem 1 ([Cheng-M.-Yang, '17])

Let (M^3, J, θ) be a compact CR manifold. Suppose the Webster class is positive, and that the Paneitz operator P is non-negative. Let $p \in M$ and let $\tilde{\theta}$ be a blown-up of contact form at p. Then

(a) the CR mass m of $(M, J, \tilde{\theta})$ is non negative;

(b) if m = 0, (M, J, θ) is conformally equivalent to a standard $S^3 (\simeq \mathbb{H}^1)$.

Theorem 1 ([Cheng-M.-Yang, '17])

Let (M^3, J, θ) be a compact CR manifold. Suppose the Webster class is positive, and that the Paneitz operator P is non-negative. Let $p \in M$ and let $\tilde{\theta}$ be a blown-up of contact form at p. Then

(a) the CR mass m of $(M, J, \tilde{\theta})$ is non negative;

(b) if m = 0, (M, J, θ) is conformally equivalent to a standard $S^3 (\simeq \mathbb{H}^1)$.

• The proof uses a tricky integration by parts

Theorem 1 ([Cheng-M.-Yang, '17])

Let (M^3, J, θ) be a compact CR manifold. Suppose the Webster class is positive, and that the Paneitz operator P is non-negative. Let $p \in M$ and let $\tilde{\theta}$ be a blown-up of contact form at p. Then

(a) the CR mass m of $(M, J, \tilde{\theta})$ is non negative;

(b) if m = 0, (M, J, θ) is conformally equivalent to a standard $S^3 (\simeq \mathbb{H}^1)$.

• The proof uses a tricky integration by parts: the main idea was to bring-in the Paneitz operator to write the mass as sum of squares.

イロト イヨト イヨト イヨト 一日 - のへの

Theorem 1 ([Cheng-M.-Yang, '17])

Let (M^3, J, θ) be a compact CR manifold. Suppose the Webster class is positive, and that the Paneitz operator P is non-negative. Let $p \in M$ and let $\tilde{\theta}$ be a blown-up of contact form at p. Then

(a) the CR mass m of $(M, J, \tilde{\theta})$ is non negative;

(b) if m = 0, (M, J, θ) is conformally equivalent to a standard $S^3 (\simeq \mathbb{H}^1)$.

• The proof uses a tricky integration by parts: the main idea was to bring-in the Paneitz operator to write the mass as sum of squares.

• Positivity of the mass implies that the Sobolev-Webster quotient of the manifold is lower than that of the sphere, and minimizers exist.

イロト イヨト イヨト イヨト 一日 - のへの

Andrea Malchiodi (SNS)

▲ □ ▶ ▲ □ ▶ ▲ ■ ▶ ▲ ■ ▶ ▲ ■ ▶ ▲ ■ か Q ○
 Banff, May 7th 2019 12 / 16

Consider S^3 in \mathbb{C}^2 . Its standard CR structure $J_{(0)}$ is given by

$$J_{(0)}Z_1^{S^3} = iZ_1^{S^3}; \qquad Z_1^{S^3} = \bar{z}^2 \frac{\partial}{\partial z^1} - \bar{z}^1 \frac{\partial}{\partial z^2}.$$

Andrea Malchiodi (SNS)

Banff, May 7th 2019 12 / 16

200

Consider S^3 in \mathbb{C}^2 . Its standard CR structure $J_{(0)}$ is given by

$$J_{(0)}Z_1^{S^3} = iZ_1^{S^3}; \qquad Z_1^{S^3} = \bar{z}^2 \frac{\partial}{\partial z^1} - \bar{z}^1 \frac{\partial}{\partial z^2}.$$

It turns out that most perturbations of the standard structure are non embeddable ([Burns-Epstein, '90]).

200

Consider S^3 in \mathbb{C}^2 . Its standard CR structure $J_{(0)}$ is given by

$$J_{(0)}Z_1^{S^3} = iZ_1^{S^3}; \qquad Z_1^{S^3} = \bar{z}^2 \frac{\partial}{\partial z^1} - \bar{z}^1 \frac{\partial}{\partial z^2}.$$

It turns out that most perturbations of the standard structure are non embeddable ([Burns-Epstein, '90]).

Interesting case are Rossi spheres S_s^3 , from [H.Rossi, '65]

◆□ → ◆□ → ◆三 → ◆三 → ○へ⊙

Consider S^3 in \mathbb{C}^2 . Its standard CR structure $J_{(0)}$ is given by

$$J_{(0)}Z_1^{S^3} = iZ_1^{S^3}; \qquad Z_1^{S^3} = \bar{z}^2 \frac{\partial}{\partial z^1} - \bar{z}^1 \frac{\partial}{\partial z^2}.$$

It turns out that most perturbations of the standard structure are non embeddable ([Burns-Epstein, '90]).

Interesting case are Rossi spheres S_s^3 , from [H.Rossi, '65]: these are homogeneous, of positive Webster class, have the same contact structure as the standard S^3 but a distorted complex rotation $J_{(s)}$ for $s \in (-\varepsilon, \varepsilon)$

$$J_{(s)}(Z_1^{S^3} + s\bar{Z}_1^{S^3}) = i\left(Z_1^{S^3} + s\bar{Z}_1^{S^3}\right).$$

イロト イヨト イヨト イヨト 一日 - のへの

Consider S^3 in \mathbb{C}^2 . Its standard CR structure $J_{(0)}$ is given by

$$J_{(0)}Z_1^{S^3} = iZ_1^{S^3}; \qquad Z_1^{S^3} = \bar{z}^2 \frac{\partial}{\partial z^1} - \bar{z}^1 \frac{\partial}{\partial z^2}.$$

It turns out that most perturbations of the standard structure are non embeddable ([Burns-Epstein, '90]).

Interesting case are Rossi spheres S_s^3 , from [H.Rossi, '65]: these are homogeneous, of positive Webster class, have the same contact structure as the standard S^3 but a distorted complex rotation $J_{(s)}$ for $s \in (-\varepsilon, \varepsilon)$

$$J_{(s)}(Z_1^{S^3} + s\bar{Z}_1^{S^3}) = i\left(Z_1^{S^3} + s\bar{Z}_1^{S^3}\right).$$

In these cases the Paneitz operator cannot be positive-definite.

Banff, May 7th 2019 12 / 16

・ロト ・回ト ・ヨト ・ヨト ・ ヨー うへの

Consider S^3 in \mathbb{C}^2 . Its standard CR structure $J_{(0)}$ is given by

$$J_{(0)}Z_1^{S^3} = iZ_1^{S^3}; \qquad Z_1^{S^3} = \bar{z}^2 \frac{\partial}{\partial z^1} - \bar{z}^1 \frac{\partial}{\partial z^2}.$$

It turns out that most perturbations of the standard structure are non embeddable ([Burns-Epstein, '90]).

Interesting case are Rossi spheres S_s^3 , from [H.Rossi, '65]: these are homogeneous, of positive Webster class, have the same contact structure as the standard S^3 but a distorted complex rotation $J_{(s)}$ for $s \in (-\varepsilon, \varepsilon)$

$$J_{(s)}(Z_1^{S^3} + s\bar{Z}_1^{S^3}) = i\left(Z_1^{S^3} + s\bar{Z}_1^{S^3}\right).$$

In these cases the Paneitz operator cannot be positive-definite.

Theorem 2 ([Cheng-M.-Yang, '19])

Andrea Malchiodi (SNS)

Banff, May 7th 2019 12 / 16

イロト イヨト イヨト イヨト 一日 - のへの

Consider S^3 in \mathbb{C}^2 . Its standard CR structure $J_{(0)}$ is given by

$$J_{(0)}Z_1^{S^3} = iZ_1^{S^3}; \qquad Z_1^{S^3} = \bar{z}^2 \frac{\partial}{\partial z^1} - \bar{z}^1 \frac{\partial}{\partial z^2}.$$

It turns out that most perturbations of the standard structure are non embeddable ([Burns-Epstein, '90]).

Interesting case are Rossi spheres S_s^3 , from [H.Rossi, '65]: these are homogeneous, of positive Webster class, have the same contact structure as the standard S^3 but a distorted complex rotation $J_{(s)}$ for $s \in (-\varepsilon, \varepsilon)$

$$J_{(s)}(Z_1^{S^3} + s\bar{Z}_1^{S^3}) = i\left(Z_1^{S^3} + s\bar{Z}_1^{S^3}\right).$$

In these cases the Paneitz operator cannot be positive-definite.

Theorem 2 ([Cheng-M.-Yang, '19]) For small $s \neq 0$, the CR mass of S_s^3 is negative $(m_s \simeq -18\pi s^2)$. Andrea Malchiodi (SNS)

Some ideas of the proof

Andrea Malchiodi (SNS)

▲ □ ▶ ▲ □ ▶ ▲ ■ ▶ ▲ ■ ▶ ▲ ■ かへで
Banff, May 7th 2019 13 / 16

As we saw, the mass is related to the next-order term in the expansion of the Green's function (Robin's function).

3

DQC

《曰》 《圖》 《臣》 《臣》

As we saw, the mass is related to the next-order term in the expansion of the Green's function (Robin's function). Determining it is in general a hard problem, since it is a global object.

-

Sar

《曰》 《圖》 《臣》 《臣》

Some ideas of the proof

As we saw, the mass is related to the next-order term in the expansion of the Green's function (Robin's function). Determining it is in general a hard problem, since it is a global object.

Fixing a pole $p \in S^3$, we find suitable s-coordinates (near p) to expand the Green's function as $G_{p,(s)} \simeq \frac{1}{\rho_{(s)}^2} + A_{(s)}$, with $A_{(s)}$ unknown.

San

As we saw, the mass is related to the next-order term in the expansion of the Green's function (Robin's function). Determining it is in general a hard problem, since it is a global object.

Fixing a pole $p \in S^3$, we find suitable s-coordinates (near p) to expand the Green's function as $G_{p,(s)} \simeq \frac{1}{\rho_{(s)}^2} + A_{(s)}$, with $A_{(s)}$ unknown.

On the other hand, it is possible to Taylor-expand in s the equation

$$-4\Delta_b^{(s)}G_{(s)} + W_{(s)}G_{(s)} = \delta_p$$

イロト イヨト イヨト イヨト 一日 - のへの

13 / 16

Banff, May 7th 2019

away from p, in the standard coordinates of \mathbb{C}^2 .

Andrea Malchiodi (SNS)

As we saw, the mass is related to the next-order term in the expansion of the Green's function (Robin's function). Determining it is in general a hard problem, since it is a global object.

Fixing a pole $p \in S^3$, we find suitable s-coordinates (near p) to expand the Green's function as $G_{p,(s)} \simeq \frac{1}{\rho_{(s)}^2} + A_{(s)}$, with $A_{(s)}$ unknown.

On the other hand, it is possible to Taylor-expand in s the equation

$$-4\Delta_b^{(s)}G_{(s)} + W_{(s)}G_{(s)} = \delta_p$$

away from p, in the standard coordinates of \mathbb{C}^2 .

One then needs to verify that the two expansions match, obtaining then the asymptotic behaviour for $s \to 0$ of $A_{(s)}$, proportional to the mass. \Box

・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Andrea Malchiodi (SNS)

▲ □ ▶ ▲ □ ▶ ▲ ■ ▶ ▲ ■ ▶ ▲ ■ ▶ ▲ ■ か Q ○
 Banff, May 7th 2019 14 / 16

Theorem 3 ([Cheng-M.-Yang, '19])

▲ □ ▶ ▲ ● ▶ ▲ ■ ▶ ▲ ■ ▶ ▲ ■ か Q ○
Banff, May 7th 2019 14 / 16

Theorem 3 ([Cheng-M.-Yang, '19])

For small $s \neq 0$ the infimum of the Sobolev-Webster quotient of Rossi spheres is not attained (and is equal to that of the standard S^3).

Theorem 3 ([Cheng-M.-Yang, '19])

For small $s \neq 0$ the infimum of the Sobolev-Webster quotient of Rossi spheres is not attained (and is equal to that of the standard S^3).

- If a function has low Sobolev-Webster quotient on a Rossi sphere S_s^3 it has low Sobolev-Webster quotient also on the standard sphere $S^3 = S_0^3$.

イロト イヨト イヨト イヨト 三日 - のくで

Theorem 3 ([Cheng-M.-Yang, '19])

For small $s \neq 0$ the infimum of the Sobolev-Webster quotient of Rossi spheres is not attained (and is equal to that of the standard S^3).

- If a function has low Sobolev-Webster quotient on a Rossi sphere S_s^3 it has low Sobolev-Webster quotient also on the standard sphere $S^3 = S_0^3$. Minima for the Webster quotient on the standard S^3 were classifed in [Jerison-Lee, '88] as (CR counterparts of) Aubin-Talenti's functions.

イロト イヨト イヨト イヨト 一日 - のへの

Theorem 3 ([Cheng-M.-Yang, '19])

For small $s \neq 0$ the infimum of the Sobolev-Webster quotient of Rossi spheres is not attained (and is equal to that of the standard S^3).

- If a function has low Sobolev-Webster quotient on a Rossi sphere S_s^3 it has low Sobolev-Webster quotient also on the standard sphere $S^3 = S_0^3$. Minima for the Webster quotient on the standard S^3 were classifed in [Jerison-Lee, '88] as (CR counterparts of) Aubin-Talenti's functions.

- For $|s| \neq 0$ small, the Webster quotient of the functions U_{λ}^{CR} has a profile of this kind (need to use Theorem 2 for λ large)

San

《曰》 《圖》 《臣》 《臣》 三臣

Theorem 3 ([Cheng-M.-Yang, '19])

For small $s \neq 0$ the infimum of the Sobolev-Webster quotient of Rossi spheres is not attained (and is equal to that of the standard S^3).

- If a function has low Sobolev-Webster quotient on a Rossi sphere S_s^3 it has low Sobolev-Webster quotient also on the standard sphere $S^3 = S_0^3$. Minima for the Webster quotient on the standard S^3 were classifed in [Jerison-Lee, '88] as (CR counterparts of) Aubin-Talenti's functions.

- For $|s| \neq 0$ small, the Webster quotient of the functions U_{λ}^{CR} has a profile of this kind (need to use Theorem 2 for λ large)

Remark. The CR Sobolev quotient of S_s^3 , a <u>closed</u> manifold, behaves like that of a domain in \mathbb{R}^n !

Andrea Malchiodi (SNS)

Banff, May 7th 2019 14 / 16

Andrea Malchiodi (SNS)

▲ □ ▶ ▲ □ ▶ ▲ ■ ▶ ▲ ■ ▶ ▲ ■ かへで
Banff, May 7th 2019 15 / 16

Another problem recently settled is compactness of solutions to Yamabe's equation ([Druet, '04], [Li-Zhang, '05-'06], [Brendle-Marques, '08], [Khuri-Marques-Schoen, '09]).

Another problem recently settled is compactness of solutions to Yamabe's equation ([Druet, '04], [Li-Zhang, '05-'06], [Brendle-Marques, '08], [Khuri-Marques-Schoen, '09]). Compactness holds if and only if $n \leq 24$.

Another problem recently settled is compactness of solutions to Yamabe's equation ([Druet, '04], [Li-Zhang, '05-'06], [Brendle-Marques, '08], [Khuri-Marques-Schoen, '09]). Compactness holds if and only if $n \leq 24$.

Compactness for the CR case is entirely open.

イロト イヨト イヨト イヨト 三日 - のくで

Another problem recently settled is compactness of solutions to Yamabe's equation ([Druet, '04], [Li-Zhang, '05-'06], [Brendle-Marques, '08], [Khuri-Marques-Schoen, '09]). Compactness holds if and only if $n \leq 24$.

Compactness for the CR case is entirely open. One reason is that profiles of blow-ups are not classified.

イロト イヨト イヨト イヨト 三日 - のくで

Another problem recently settled is compactness of solutions to Yamabe's equation ([Druet, '04], [Li-Zhang, '05-'06], [Brendle-Marques, '08], [Khuri-Marques-Schoen, '09]). Compactness holds if and only if $n \leq 24$.

Compactness for the CR case is entirely open. One reason is that profiles of blow-ups are not classified. This concerns entire positive solutions to

$$-\Delta_b u = u^{\frac{Q+2}{Q-2}} \quad \text{in } \mathbb{H}^n; \qquad Q = 2n+2.$$

Sac

Another problem recently settled is compactness of solutions to Yamabe's equation ([Druet, '04], [Li-Zhang, '05-'06], [Brendle-Marques, '08], [Khuri-Marques-Schoen, '09]). Compactness holds if and only if $n \leq 24$.

Compactness for the CR case is entirely open. One reason is that profiles of blow-ups are not classified. This concerns entire positive solutions to

$$-\Delta_b u = u^{\frac{Q+2}{Q-2}} \quad \text{in } \mathbb{H}^n; \qquad Q = 2n+2.$$

Assuming finite volume, it is done in [Jerison-Lee, '88].

Sac

Another problem recently settled is compactness of solutions to Yamabe's equation ([Druet, '04], [Li-Zhang, '05-'06], [Brendle-Marques, '08], [Khuri-Marques-Schoen, '09]). Compactness holds if and only if $n \leq 24$.

Compactness for the CR case is entirely open. One reason is that profiles of blow-ups are not classified. This concerns entire positive solutions to

$$-\Delta_b u = u^{\frac{Q+2}{Q-2}} \quad \text{in } \mathbb{H}^n; \qquad Q = 2n+2.$$

Assuming finite volume, it is done in [Jerison-Lee, '88]. However we may not have this assumption, and moving planes do not work.

イロト イヨト イヨト イヨト 三日 - のくで

Another problem recently settled is compactness of solutions to Yamabe's equation ([Druet, '04], [Li-Zhang, '05-'06], [Brendle-Marques, '08], [Khuri-Marques-Schoen, '09]). Compactness holds if and only if $n \leq 24$.

Compactness for the CR case is entirely open. One reason is that profiles of blow-ups are not classified. This concerns entire positive solutions to

$$-\Delta_b u = u^{\frac{Q+2}{Q-2}} \quad \text{in } \mathbb{H}^n; \qquad Q = 2n+2.$$

Assuming finite volume, it is done in [Jerison-Lee, '88]. However we may not have this assumption, and moving planes do not work.

A related problem concerns the classification of

$$-\Delta_b u = u^p$$
 in \mathbb{H}^n ; $p < \frac{Q+2}{Q-2}$.

イロト イヨト イヨト イヨト 三日 - のくで

Another problem recently settled is compactness of solutions to Yamabe's equation ([Druet, '04], [Li-Zhang, '05-'06], [Brendle-Marques, '08], [Khuri-Marques-Schoen, '09]). Compactness holds if and only if $n \leq 24$.

Compactness for the CR case is entirely open. One reason is that profiles of blow-ups are not classified. This concerns entire positive solutions to

$$-\Delta_b u = u^{\frac{Q+2}{Q-2}} \quad \text{in } \mathbb{H}^n; \qquad Q = 2n+2.$$

Assuming finite volume, it is done in [Jerison-Lee, '88]. However we may not have this assumption, and moving planes do not work.

A related problem concerns the classification of

$$-\Delta_b u = u^p$$
 in \mathbb{H}^n ; $p < \frac{Q+2}{Q-2}$.

In \mathbb{R}^n it was shown in [Gidas-Spruck, '81] that $u \equiv 0$.

Andrea Malchiodi (SNS)

Banff, May 7th 2019 15 / 16

・ロト 王田 ア エヨ ア エヨ ト ろくる

Another problem recently settled is compactness of solutions to Yamabe's equation ([Druet, '04], [Li-Zhang, '05-'06], [Brendle-Marques, '08], [Khuri-Marques-Schoen, '09]). Compactness holds if and only if $n \leq 24$.

Compactness for the CR case is entirely open. One reason is that profiles of blow-ups are not classified. This concerns entire positive solutions to

$$-\Delta_b u = u^{\frac{Q+2}{Q-2}} \quad \text{in } \mathbb{H}^n; \qquad Q = 2n+2.$$

Assuming finite volume, it is done in [Jerison-Lee, '88]. However we may not have this assumption, and moving planes do not work.

A related problem concerns the classification of

$$-\Delta_b u = u^p$$
 in \mathbb{H}^n ; $p < \frac{Q+2}{Q-2}$.

In \mathbb{R}^n it was shown in [Gidas-Spruck, '81] that $u \equiv 0$. In \mathbb{H}^n , there are partial results in [Birindelli-Capuzzo Dolcetta-Cutri, 97], for $p < \frac{Q}{Q=2}$.

Andrea Malchiodi (SNS)

Banff, May 7th 2019 15 / 16

Thanks for your attention

Andrea Malchiodi (SNS)

Banff, May 7th 2019 16 / 16

E

900

《口》 《圖》 《注》 《注》