On the Sobolev quotient in CR geometry

Joint work with J.H.Cheng and P.Yang

Andrea Malchiodi (SNS)

Banff, May 7th 2019

The Yamabe problem

The Yamabe problem

The Yamabe problem consists in finding conformal metrics with constant scalar curvature on a compact manifold (M, g).

The Yamabe problem

The Yamabe problem consists in finding conformal metrics with constant scalar curvature on a compact manifold (M, g). If R_{g} is the background one, setting $\tilde{g}(x)=\lambda(x) g(x)=u(x)^{\frac{4}{n-2}} g(x), u(x)$ one has to solve
$(Y) \quad-c_{n} \Delta u+R_{g}=\bar{R} u^{\frac{n+2}{n-2}} ; \quad c_{n}=4 \frac{n-1}{n-2}, \quad \bar{R} \in \mathbb{R}$.

The Yamabe problem

The Yamabe problem consists in finding conformal metrics with constant scalar curvature on a compact manifold (M, g). If R_{g} is the background one, setting $\tilde{g}(x)=\lambda(x) g(x)=u(x)^{\frac{4}{n-2}} g(x), u(x)$ one has to solve (Y) $\quad-c_{n} \Delta u+R_{g}=\bar{R} u^{\frac{n+2}{n-2}} ; \quad c_{n}=4 \frac{n-1}{n-2}, \quad \bar{R} \in \mathbb{R}$.

Considering \bar{R} as a Lagrange multiplier, one can try to find solutions by minimizing the Sobolev-Yamabe quotient

$$
Q_{S Y}(u)=\frac{\int_{M}\left(c_{n}|\nabla u|^{2}+R_{g} u^{2}\right) d V}{\left(\int_{M}|u|^{2^{*}} d V\right)^{\frac{2}{2^{*}}}} ; \quad 2^{*}=\frac{2 n}{n-2}
$$

The Yamabe problem

The Yamabe problem consists in finding conformal metrics with constant scalar curvature on a compact manifold (M, g). If R_{g} is the background one, setting $\tilde{g}(x)=\lambda(x) g(x)=u(x)^{\frac{4}{n-2}} g(x), u(x)$ one has to solve $(Y) \quad-c_{n} \Delta u+R_{g}=\bar{R} u^{\frac{n+2}{n-2}} ; \quad c_{n}=4 \frac{n-1}{n-2}, \quad \bar{R} \in \mathbb{R}$.

Considering \bar{R} as a Lagrange multiplier, one can try to find solutions by minimizing the Sobolev-Yamabe quotient

$$
Q_{S Y}(u)=\frac{\int_{M}\left(c_{n}|\nabla u|^{2}+R_{g} u^{2}\right) d V}{\left(\int_{M}|u|^{2^{*}} d V\right)^{\frac{2}{2^{*}}}} ; \quad 2^{*}=\frac{2 n}{n-2}
$$

The Sobolev-Yamabe constant is defined as

$$
Y(M,[g])=\inf _{u \neq 0} Q_{S Y}(u)
$$

The Sobolev quotient in $\mathbb{R}^{n}(n \geq 3)$

The Sobolev quotient in $\mathbb{R}^{n}(n \geq 3)$

Recall the Sobolev-Gagliardo-Nirenberg inequality in \mathbb{R}^{n}

$$
\|u\|_{L^{2^{*}}\left(\mathbb{R}^{n}\right)}^{2} \leq B_{n} \int_{\mathbb{R}^{n}}|\nabla u|^{2} d x ; \quad u \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)
$$

The Sobolev quotient in $\mathbb{R}^{n}(n \geq 3)$

Recall the Sobolev-Gagliardo-Nirenberg inequality in \mathbb{R}^{n}

$$
\|u\|_{L^{2^{*}\left(\mathbb{R}^{n}\right)}}^{2} \leq B_{n} \int_{\mathbb{R}^{n}}|\nabla u|^{2} d x ; \quad u \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)
$$

As for $Y(M,[g])$, define the Sobolev quotient $S_{n}=\inf _{u} \frac{\int_{\mathbb{R}^{n}} c_{n}|\nabla u|^{2} d x}{\|u\|_{L^{2}\left(\mathbb{R}^{n}\right)}^{2}}$.

The Sobolev quotient in $\mathbb{R}^{n}(n \geq 3)$

Recall the Sobolev-Gagliardo-Nirenberg inequality in \mathbb{R}^{n}

$$
\|u\|_{L^{2^{*}}\left(\mathbb{R}^{n}\right)}^{2} \leq B_{n} \int_{\mathbb{R}^{n}}|\nabla u|^{2} d x ; \quad u \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)
$$

As for $Y(M,[g])$, define the Sobolev quotient $S_{n}=\inf _{u} \frac{\int_{\mathbb{R}^{n} c} c_{n}|\nabla u|^{2} d x}{\|u\|_{L^{2}\left(\mathbb{R}^{n}\right)}^{2}}$.
Completing $C_{c}^{\infty}\left(\mathbb{R}^{n}\right), S_{n}$ is attained by ([Aubin, '76], [Talenti, '76])

$$
U_{p, \lambda}(x):=\frac{\lambda^{\frac{n-2}{2}}}{\left(1+\lambda^{2}|x-p|^{2}\right)^{\frac{n-2}{2}}} ; \quad p \in \mathbb{R}^{n}, \lambda>0
$$

The Sobolev quotient in $\mathbb{R}^{n}(n \geq 3)$

Recall the Sobolev-Gagliardo-Nirenberg inequality in \mathbb{R}^{n}

$$
\|u\|_{L^{2^{*}}\left(\mathbb{R}^{n}\right)}^{2} \leq B_{n} \int_{\mathbb{R}^{n}}|\nabla u|^{2} d x ; \quad u \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)
$$

As for $Y(M,[g])$, define the Sobolev quotient $S_{n}=\inf _{u} \frac{\int_{\mathbb{R}^{n} c} c_{n}|\nabla u|^{2} d x}{\|u\|_{L^{2}\left(\mathbb{R}^{n}\right)}^{2}}$.
Completing $C_{c}^{\infty}\left(\mathbb{R}^{n}\right), S_{n}$ is attained by ([Aubin, '76], [Talenti, '76])

$$
U_{p, \lambda}(x):=\frac{\lambda^{\frac{n-2}{2}}}{\left(1+\lambda^{2}|x-p|^{2}\right)^{\frac{n-2}{2}}} ; \quad p \in \mathbb{R}^{n}, \lambda>0
$$

- Since S^{n} is conformal to \mathbb{R}^{n}, one has that $Y\left(S^{n},\left[g_{S^{n}}\right]\right)=S_{n}$.

Brief history on the Yamabe problem

Brief history on the Yamabe problem

- In 1960 Yamabe attempted to solve (Y) by subcritical approximation.

Brief history on the Yamabe problem

- In 1960 Yamabe attempted to solve (Y) by subcritical approximation.
- In 1968 Trudinger proved that (Y) is solvable provided $Y(M,[g]) \leq \varepsilon_{n}$ for some $\varepsilon_{n}>0$.

Brief history on the Yamabe problem

- In 1960 Yamabe attempted to solve (Y) by subcritical approximation.
- In 1968 Trudinger proved that (Y) is solvable provided $Y(M,[g]) \leq \varepsilon_{n}$ for some $\varepsilon_{n}>0$. In particular for negative and zero Yamabe class.

Brief history on the Yamabe problem

- In 1960 Yamabe attempted to solve (Y) by subcritical approximation.
- In 1968 Trudinger proved that (Y) is solvable provided $Y(M,[g]) \leq \varepsilon_{n}$ for some $\varepsilon_{n}>0$. In particular for negative and zero Yamabe class.
- In 1976 Aubin proved that (Y) is solvable provided $Y(M,[g])<S_{n}$.

Brief history on the Yamabe problem

- In 1960 Yamabe attempted to solve (Y) by subcritical approximation.
- In 1968 Trudinger proved that (Y) is solvable provided $Y(M,[g]) \leq \varepsilon_{n}$ for some $\varepsilon_{n}>0$. In particular for negative and zero Yamabe class.
- In 1976 Aubin proved that (Y) is solvable provided $Y(M,[g])<S_{n}$. He also verified this inequality when $n \geq 6$ and (M, g) is not locally conformally flat, unless $(M, g) \simeq\left(S^{n}, g_{S^{n}}\right)$.

Brief history on the Yamabe problem

- In 1960 Yamabe attempted to solve (Y) by subcritical approximation.
- In 1968 Trudinger proved that (Y) is solvable provided $Y(M,[g]) \leq \varepsilon_{n}$ for some $\varepsilon_{n}>0$. In particular for negative and zero Yamabe class.
- In 1976 Aubin proved that (Y) is solvable provided $Y(M,[g])<S_{n}$. He also verified this inequality when $n \geq 6$ and (M, g) is not locally conformally flat, unless $(M, g) \simeq\left(S^{n}, g_{S^{n}}\right)$.
- In 1984 Schoen proved that $Y(M,[g])<S_{n}$ in all other cases, i.e. $n \leq 5$ or (M, g) locally conformally flat, unless $(M, g) \simeq\left(S^{n}, g_{S^{n}}\right)$.

On the inequality $Y(M,[g])<S_{n}$

On the inequality $Y(M,[g])<S_{n}$

The inequality is proved using Aubin-Talenti's functions.

On the inequality $Y(M,[g])<S_{n}$

The inequality is proved using Aubin-Talenti's functions. Given $p \in M$, consider a conformal metric $\tilde{g} \simeq U_{p, \lambda}^{\frac{4}{n-2}} g$ with λ large.

On the inequality $Y(M,[g])<S_{n}$

The inequality is proved using Aubin-Talenti's functions. Given $p \in M$, consider a conformal metric $\tilde{g} \simeq U_{p, \lambda}^{\frac{4}{n-2}} g$ with λ large. Since locally $(M, g) \simeq \mathbb{R}^{n}$ and since $U_{p, \lambda}$ is highly concentrated, $Q_{S Y}\left(U_{p, \lambda}\right) \simeq S_{n}$, with small correction terms due to the geometry of M.

On the inequality $Y(M,[g])<S_{n}$

The inequality is proved using Aubin-Talenti's functions. Given $p \in M$, consider a conformal metric $\tilde{g} \simeq U_{p, \lambda}^{\frac{4}{n-2}} g$ with λ large. Since locally $(M, g) \simeq \mathbb{R}^{n}$ and since $U_{p, \lambda}$ is highly concentrated, $Q_{S Y}\left(U_{p, \lambda}\right) \simeq S_{n}$, with small correction terms due to the geometry of M.

Since $U_{p, \lambda}$ decays like $\frac{1}{|x|^{n-2}}$ at infinity, it is more localized in large dimension.

On the inequality $Y(M,[g])<S_{n}$

The inequality is proved using Aubin-Talenti's functions. Given $p \in M$, consider a conformal metric $\tilde{g} \simeq U_{p, \lambda}^{\frac{4}{n-2}} g$ with λ large. Since locally $(M, g) \simeq \mathbb{R}^{n}$ and since $U_{p, \lambda}$ is highly concentrated, $Q_{S Y}\left(U_{p, \lambda}\right) \simeq S_{n}$, with small correction terms due to the geometry of M.

Since $U_{p, \lambda}$ decays like $\frac{1}{|x|^{n-2}}$ at infinity, it is more localized in large dimension. Aubin proved that for $n \geq 6$ the corrections are given by $-\frac{\left|W_{g}\right|^{2}(p)}{\lambda^{4}}$, a local quantity depending on the Weyl tensor.

On the inequality $Y(M,[g])<S_{n}$

The inequality is proved using Aubin-Talenti's functions. Given $p \in M$, consider a conformal metric $\tilde{g} \simeq U_{p, \lambda}^{\frac{4}{n-2}} g$ with λ large. Since locally $(M, g) \simeq \mathbb{R}^{n}$ and since $U_{p, \lambda}$ is highly concentrated, $Q_{S Y}\left(U_{p, \lambda}\right) \simeq S_{n}$, with small correction terms due to the geometry of M.

Since $U_{p, \lambda}$ decays like $\frac{1}{|x|^{n-2}}$ at infinity, it is more localized in large dimension. Aubin proved that for $n \geq 6$ the corrections are given by $-\frac{\left|W_{g}\right|^{2}(p)}{\lambda^{4}}$, a local quantity depending on the Weyl tensor.

For $n \leq 5$ the correction is of global nature.

On the inequality $Y(M,[g])<S_{n}$

The inequality is proved using Aubin-Talenti's functions. Given $p \in M$, consider a conformal metric $\tilde{g} \simeq U_{p, \lambda}^{\frac{4}{n-2}} g$ with λ large. Since locally $(M, g) \simeq \mathbb{R}^{n}$ and since $U_{p, \lambda}$ is highly concentrated, $Q_{S Y}\left(U_{p, \lambda}\right) \simeq S_{n}$, with small correction terms due to the geometry of M.

Since $U_{p, \lambda}$ decays like $\frac{1}{|x|^{n-2}}$ at infinity, it is more localized in large dimension. Aubin proved that for $n \geq 6$ the corrections are given by $-\frac{\left|W_{g}\right|^{2}(p)}{\lambda^{4}}$, a local quantity depending on the Weyl tensor.

For $n \leq 5$ the correction is of global nature. Heuristics:

On the inequality $Y(M,[g])<S_{n}$

The inequality is proved using Aubin-Talenti's functions. Given $p \in M$, consider a conformal metric $\tilde{g} \simeq U_{p, \lambda}^{\frac{4}{n-2}} g$ with λ large. Since locally $(M, g) \simeq \mathbb{R}^{n}$ and since $U_{p, \lambda}$ is highly concentrated, $Q_{S Y}\left(U_{p, \lambda}\right) \simeq S_{n}$, with small correction terms due to the geometry of M.

Since $U_{p, \lambda}$ decays like $\frac{1}{|x|^{n-2}}$ at infinity, it is more localized in large dimension. Aubin proved that for $n \geq 6$ the corrections are given by $-\frac{\left|W_{g}\right|^{2}(p)}{\lambda^{4}}$, a local quantity depending on the Weyl tensor.

For $n \leq 5$ the correction is of global nature. Heuristics: if $u \simeq U_{p, \lambda}$ then

$$
L_{g} u:=-c_{n} \Delta u+R_{g} u \simeq U_{p, \lambda}^{\frac{n+2}{n-2}} \simeq \frac{1}{\lambda} \delta_{p} .
$$

On the inequality $Y(M,[g])<S_{n}$

The inequality is proved using Aubin-Talenti's functions. Given $p \in M$, consider a conformal metric $\tilde{g} \simeq U_{p, \lambda}^{\frac{4}{n-2}} g$ with λ large. Since locally $(M, g) \simeq \mathbb{R}^{n}$ and since $U_{p, \lambda}$ is highly concentrated, $Q_{S Y}\left(U_{p, \lambda}\right) \simeq S_{n}$, with small correction terms due to the geometry of M.

Since $U_{p, \lambda}$ decays like $\frac{1}{|x|^{n-2}}$ at infinity, it is more localized in large dimension. Aubin proved that for $n \geq 6$ the corrections are given by $-\frac{\left|W_{g}\right|^{2}(p)}{\lambda^{4}}$, a local quantity depending on the Weyl tensor.

For $n \leq 5$ the correction is of global nature. Heuristics: if $u \simeq U_{p, \lambda}$ then

$$
L_{g} u:=-c_{n} \Delta u+R_{g} u \simeq U_{p, \lambda}^{\frac{n+2}{n-2}} \simeq \frac{1}{\lambda} \delta_{p} .
$$

At large scales an approximate solution looks like the Green's function G_{p} of the operator L_{g}.

On the inequality $Y(M,[g])<S_{n}$

The inequality is proved using Aubin-Talenti's functions. Given $p \in M$, consider a conformal metric $\tilde{g} \simeq U_{p, \lambda}^{\frac{4}{n-2}} g$ with λ large. Since locally $(M, g) \simeq \mathbb{R}^{n}$ and since $U_{p, \lambda}$ is highly concentrated, $Q_{S Y}\left(U_{p, \lambda}\right) \simeq S_{n}$, with small correction terms due to the geometry of M.

Since $U_{p, \lambda}$ decays like $\frac{1}{|x|^{n-2}}$ at infinity, it is more localized in large dimension. Aubin proved that for $n \geq 6$ the corrections are given by $-\frac{\left|W_{g}\right|^{2}(p)}{\lambda^{4}}$, a local quantity depending on the Weyl tensor.

For $n \leq 5$ the correction is of global nature. Heuristics: if $u \simeq U_{p, \lambda}$ then

$$
L_{g} u:=-c_{n} \Delta u+R_{g} u \simeq U_{p, \lambda}^{\frac{n+2}{n-2}} \simeq \frac{1}{\lambda} \delta_{p} .
$$

At large scales an approximate solution looks like the Green's function G_{p} of the operator L_{g}. If $G_{p} \simeq \frac{1}{|x|^{n-2}}+A$ at p, the correction is $-A / \lambda^{n-2}$.

A brief excursion in general relativity

A brief excursion in general relativity

To understand the value of A, general relativity comes into play.

A brief excursion in general relativity

To understand the value of A, general relativity comes into play.
A manifold $\left(N^{3}, \tilde{g}\right)$ is said to be asymptotically flat if it is a union of a compact set K (possibly with topology), and such that $N \backslash K$ is diffeomorphic to $\mathbb{R}^{3} \backslash B_{1}(0)$.

A brief excursion in general relativity

To understand the value of A, general relativity comes into play.
A manifold $\left(N^{3}, \tilde{g}\right)$ is said to be asymptotically flat if it is a union of a compact set K (possibly with topology), and such that $N \backslash K$ is diffeomorphic to $\mathbb{R}^{3} \backslash B_{1}(0)$. It is required that the metric satisfies

$$
\tilde{g}_{i j} \rightarrow \delta_{i j} \quad \text { at infinity } \quad \text { (with some rate). }
$$

A brief excursion in general relativity

To understand the value of A, general relativity comes into play.
A manifold $\left(N^{3}, \tilde{g}\right)$ is said to be asymptotically flat if it is a union of a compact set K (possibly with topology), and such that $N \backslash K$ is diffeomorphic to $\mathbb{R}^{3} \backslash B_{1}(0)$. It is required that the metric satisfies

$$
\tilde{g}_{i j} \rightarrow \delta_{i j} \quad \text { at infinity } \quad \text { (with some rate). }
$$

In general relativity these manifolds describe static gravitational systems.

The mass of an asymptotically flat manifold

The mass of an asymptotically flat manifold

The ADM mass $m(\tilde{g})$ ([ADM, '60]) of such manifolds is defined as

$$
m(\tilde{g}):=\lim _{r \rightarrow \infty} \oint_{S_{r}}\left(\partial_{k} \tilde{g}_{j k}-\partial_{j} \tilde{g}_{k k}\right) \nu^{j} d \sigma
$$

The mass of an asymptotically flat manifold

The ADM mass $m(\tilde{g})$ ([ADM, '60]) of such manifolds is defined as

$$
m(\tilde{g}):=\lim _{r \rightarrow \infty} \oint_{S_{r}}\left(\partial_{k} \tilde{g}_{j k}-\partial_{j} \tilde{g}_{k k}\right) \nu^{j} d \sigma
$$

Theorem ([Schoen-Yau, '79])

The mass of an asymptotically flat manifold

The ADM mass $m(\tilde{g})$ ([ADM, '60]) of such manifolds is defined as

$$
m(\tilde{g}):=\lim _{r \rightarrow \infty} \oint_{S_{r}}\left(\partial_{k} \tilde{g}_{j k}-\partial_{j} \tilde{g}_{k k}\right) \nu^{j} d \sigma
$$

Theorem ([Schoen-Yau, '79])
If $R_{\tilde{g}} \geq 0$ then $m(\tilde{g}) \geq 0$.

The mass of an asymptotically flat manifold

The ADM mass $m(\tilde{g})$ ([ADM, '60]) of such manifolds is defined as

$$
m(\tilde{g}):=\lim _{r \rightarrow \infty} \oint_{S_{r}}\left(\partial_{k} \tilde{g}_{j k}-\partial_{j} \tilde{g}_{k k}\right) \nu^{j} d \sigma
$$

Theorem ([Schoen-Yau, '79])
If $R_{\tilde{g}} \geq 0$ then $m(\tilde{g}) \geq 0$. In case $m(\tilde{g})=0$, then (M, \tilde{g}) is isometric to the flat Euclidean space $\left(\mathbb{R}^{3}, d x^{2}\right)$.

The mass of an asymptotically flat manifold

The $A D M$ mass $m(\tilde{g})$ ([ADM, '60]) of such manifolds is defined as

$$
m(\tilde{g}):=\lim _{r \rightarrow \infty} \oint_{S_{r}}\left(\partial_{k} \tilde{g}_{j k}-\partial_{j} \tilde{g}_{k k}\right) \nu^{j} d \sigma .
$$

Theorem ([Schoen-Yau, '79])
If $R_{\tilde{g}} \geq 0$ then $m(\tilde{g}) \geq 0$. In case $m(\tilde{g})=0$, then (M, \tilde{g}) is isometric to the flat Euclidean space $\left(\mathbb{R}^{3}, d x^{2}\right)$.

Application: Conformal blow-ups.

The mass of an asymptotically flat manifold

The $A D M$ mass $m(\tilde{g})$ ([ADM, '60]) of such manifolds is defined as

$$
m(\tilde{g}):=\lim _{r \rightarrow \infty} \oint_{S_{r}}\left(\partial_{k} \tilde{g}_{j k}-\partial_{j} \tilde{g}_{k k}\right) \nu^{j} d \sigma .
$$

Theorem ([Schoen-Yau, '79])
If $R_{\tilde{g}} \geq 0$ then $m(\tilde{g}) \geq 0$. In case $m(\tilde{g})=0$, then (M, \tilde{g}) is isometric to the flat Euclidean space $\left(\mathbb{R}^{3}, d x^{2}\right)$.

Application: Conformal blow-ups. Consider a compact Riemannian three-manifold (M, g), and $p \in M$.

The mass of an asymptotically flat manifold

The $A D M$ mass $m(\tilde{g})$ ([ADM, $\left.{ }^{\prime} 60\right]$) of such manifolds is defined as

$$
m(\tilde{g}):=\lim _{r \rightarrow \infty} \oint_{S_{r}}\left(\partial_{k} \tilde{g}_{j k}-\partial_{j} \tilde{g}_{k k}\right) \nu^{j} d \sigma .
$$

Theorem ([Schoen-Yau, '79])
If $R_{\tilde{g}} \geq 0$ then $m(\tilde{g}) \geq 0$. In case $m(\tilde{g})=0$, then (M, \tilde{g}) is isometric to the flat Euclidean space $\left(\mathbb{R}^{3}, d x^{2}\right)$.

Application: Conformal blow-ups. Consider a compact Riemannian three-manifold (M, g), and $p \in M$. Define now the conformal metric

$$
\tilde{g}=G_{p}^{4} g ; \quad G_{p} \text { Green's function of } L_{g} \text { with pole } p .
$$

The mass of an asymptotically flat manifold

The $A D M$ mass $m(\tilde{g})$ ([ADM, $\left.{ }^{\prime} 60\right]$) of such manifolds is defined as

$$
m(\tilde{g}):=\lim _{r \rightarrow \infty} \oint_{S_{r}}\left(\partial_{k} \tilde{g}_{j k}-\partial_{j} \tilde{g}_{k k}\right) \nu^{j} d \sigma .
$$

Theorem ([Schoen-Yau, '79])
If $R_{\tilde{g}} \geq 0$ then $m(\tilde{g}) \geq 0$. In case $m(\tilde{g})=0$, then (M, \tilde{g}) is isometric to the flat Euclidean space $\left(\mathbb{R}^{3}, d x^{2}\right)$.

Application: Conformal blow-ups. Consider a compact Riemannian three-manifold (M, g), and $p \in M$. Define now the conformal metric

$$
\tilde{g}=G_{p}^{4} g ; \quad G_{p} \text { Green's function of } L_{g} \text { with pole } p .
$$

Then $(M \backslash\{p\}, \tilde{g})$ is asymptotically flat, and

$$
m(\tilde{g})=\lim _{x \rightarrow p}\left(G_{p}(x)-\frac{1}{d(x, p)}\right)=A .
$$

CR manifolds (three dimensions)

CR manifolds (three dimensions)

We deal with 3-D manifolds with a non-integrable two-dimensional distribution (contact structure) ξ, annihilated by a contact 1-form θ.

CR manifolds (three dimensions)

We deal with 3-D manifolds with a non-integrable two-dimensional distribution (contact structure) ξ, annihilated by a contact 1-form θ.

We also have a CR structure (complex rotation) $J: \xi \rightarrow \xi$ s.t. $J^{2}=-1$.

CR manifolds (three dimensions)

We deal with 3-D manifolds with a non-integrable two-dimensional distribution (contact structure) ξ, annihilated by a contact 1-form θ.

We also have a CR structure (complex rotation) $J: \xi \rightarrow \xi$ s.t. $J^{2}=-1$.
Given J as above, we have locally a vector field Z_{1} such that

$$
J Z_{1}=i Z_{1} ; \quad J Z_{\overline{1}}=-i Z_{\overline{1}} \quad \text { where } \quad Z_{\overline{1}}=\overline{\left(Z_{1}\right)}
$$

CR manifolds (three dimensions)

We deal with 3-D manifolds with a non-integrable two-dimensional distribution (contact structure) ξ, annihilated by a contact 1-form θ.
We also have a CR structure (complex rotation) $J: \xi \rightarrow \xi$ s.t. $J^{2}=-1$.
Given J as above, we have locally a vector field Z_{1} such that

$$
J Z_{1}=i Z_{1} ; \quad J Z_{\overline{1}}=-i Z_{\overline{1}} \quad \text { where } \quad Z_{\overline{1}}=\overline{\left(Z_{1}\right)}
$$

Example 1: Heisenberg group $\mathbb{H}^{1}=\{(z, t) \in \mathbb{C} \times \mathbb{R}\}$.

CR manifolds (three dimensions)

We deal with 3-D manifolds with a non-integrable two-dimensional distribution (contact structure) ξ, annihilated by a contact 1-form θ.
We also have a CR structure (complex rotation) $J: \xi \rightarrow \xi$ s.t. $J^{2}=-1$.
Given J as above, we have locally a vector field Z_{1} such that

$$
J Z_{1}=i Z_{1} ; \quad J Z_{\overline{1}}=-i Z_{\overline{1}} \quad \text { where } \quad Z_{\overline{1}}=\overline{\left(Z_{1}\right)}
$$

Example 1: Heisenberg group $\mathbb{H}^{1}=\{(z, t) \in \mathbb{C} \times \mathbb{R}\}$. Setting

$$
\stackrel{\circ}{Z}_{1}=\frac{1}{\sqrt{2}}\left(\frac{\partial}{\partial z}+i \bar{z} \frac{\partial}{\partial t}\right) ; \quad \stackrel{\circ}{Z}_{\overline{1}}=\frac{1}{\sqrt{2}}\left(\frac{\partial}{\partial \bar{z}}-i z \frac{\partial}{\partial t}\right) .
$$

CR manifolds (three dimensions)

We deal with 3-D manifolds with a non-integrable two-dimensional distribution (contact structure) ξ, annihilated by a contact 1-form θ.
We also have a CR structure (complex rotation) $J: \xi \rightarrow \xi$ s.t. $J^{2}=-1$.
Given J as above, we have locally a vector field Z_{1} such that

$$
J Z_{1}=i Z_{1} ; \quad J Z_{\overline{1}}=-i Z_{\overline{1}} \quad \text { where } \quad Z_{\overline{1}}=\overline{\left(Z_{1}\right)}
$$

Example 1: Heisenberg group $\mathbb{H}^{1}=\{(z, t) \in \mathbb{C} \times \mathbb{R}\}$. Setting

$$
\stackrel{\circ}{Z}_{1}=\frac{1}{\sqrt{2}}\left(\frac{\partial}{\partial z}+i \bar{z} \frac{\partial}{\partial t}\right) ; \quad \stackrel{\circ}{Z}_{\overline{1}}=\frac{1}{\sqrt{2}}\left(\frac{\partial}{\partial \bar{z}}-i z \frac{\partial}{\partial t}\right) .
$$

Example 2: boundaries of complex domains.

CR manifolds (three dimensions)

We deal with 3 -D manifolds with a non-integrable two-dimensional distribution (contact structure) ξ, annihilated by a contact 1-form θ.
We also have a CR structure (complex rotation) $J: \xi \rightarrow \xi$ s.t. $J^{2}=-1$.
Given J as above, we have locally a vector field Z_{1} such that

$$
J Z_{1}=i Z_{1} ; \quad J Z_{\overline{1}}=-i Z_{\overline{1}} \quad \text { where } \quad Z_{\overline{1}}=\overline{\left(Z_{1}\right)}
$$

Example 1: Heisenberg group $\mathbb{H}^{1}=\{(z, t) \in \mathbb{C} \times \mathbb{R}\}$. Setting

$$
\stackrel{\circ}{Z}_{1}=\frac{1}{\sqrt{2}}\left(\frac{\partial}{\partial z}+i \bar{z} \frac{\partial}{\partial t}\right) ; \quad \stackrel{\circ}{Z}_{\overline{1}}=\frac{1}{\sqrt{2}}\left(\frac{\partial}{\partial \bar{z}}-i z \frac{\partial}{\partial t}\right) .
$$

Example 2: boundaries of complex domains. Consider $\Omega \subset \mathbb{C}^{2}$ and J_{2} the standard complex rotation in \mathbb{C}^{2}.

CR manifolds (three dimensions)

We deal with 3 -D manifolds with a non-integrable two-dimensional distribution (contact structure) ξ, annihilated by a contact 1-form θ.
We also have a CR structure (complex rotation) $J: \xi \rightarrow \xi$ s.t. $J^{2}=-1$.
Given J as above, we have locally a vector field Z_{1} such that

$$
J Z_{1}=i Z_{1} ; \quad J Z_{\overline{1}}=-i Z_{\overline{1}} \quad \text { where } \quad Z_{\overline{1}}=\overline{\left(Z_{1}\right)}
$$

Example 1: Heisenberg group $\mathbb{H}^{1}=\{(z, t) \in \mathbb{C} \times \mathbb{R}\}$. Setting

$$
\stackrel{\circ}{Z}_{1}=\frac{1}{\sqrt{2}}\left(\frac{\partial}{\partial z}+i \bar{z} \frac{\partial}{\partial t}\right) ; \quad \stackrel{\circ}{Z}_{\overline{1}}=\frac{1}{\sqrt{2}}\left(\frac{\partial}{\partial \bar{z}}-i z \frac{\partial}{\partial t}\right) .
$$

Example 2: boundaries of complex domains. Consider $\Omega \subset \mathbb{C}^{2}$ and J_{2} the standard complex rotation in \mathbb{C}^{2}. Given $p \in \partial \Omega$ one can consider the subset ξ_{p} of $T_{p} \partial \Omega$ which is invariant by J_{2}.

CR manifolds (three dimensions)

We deal with 3-D manifolds with a non-integrable two-dimensional distribution (contact structure) ξ, annihilated by a contact 1-form θ.
We also have a CR structure (complex rotation) $J: \xi \rightarrow \xi$ s.t. $J^{2}=-1$.
Given J as above, we have locally a vector field Z_{1} such that

$$
J Z_{1}=i Z_{1} ; \quad J Z_{\overline{1}}=-i Z_{\overline{1}} \quad \text { where } \quad Z_{\overline{1}}=\overline{\left(Z_{1}\right)}
$$

Example 1: Heisenberg group $\mathbb{H}^{1}=\{(z, t) \in \mathbb{C} \times \mathbb{R}\}$. Setting

$$
\stackrel{\circ}{Z}_{1}=\frac{1}{\sqrt{2}}\left(\frac{\partial}{\partial z}+i \bar{z} \frac{\partial}{\partial t}\right) ; \quad \quad \stackrel{\circ}{Z}_{\overline{1}}=\frac{1}{\sqrt{2}}\left(\frac{\partial}{\partial \bar{z}}-i z \frac{\partial}{\partial t}\right) .
$$

Example 2: boundaries of complex domains. Consider $\Omega \subset \mathbb{C}^{2}$ and J_{2} the standard complex rotation in \mathbb{C}^{2}. Given $p \in \partial \Omega$ one can consider the subset ξ_{p} of $T_{p} \partial \Omega$ which is invariant by J_{2}. We take ξ_{p} as contact distribution, and $\left.J\right|_{\xi_{p}}$ as the CR structure J_{j}

The Webster curvature of a CR three-manifold

The Webster curvature of a CR three-manifold

In 1983 Webster introduced scalar curvature W, to study the biholomorphy problem, which behaves conformally like the scalar curvature.

The Webster curvature of a CR three-manifold

In 1983 Webster introduced scalar curvature W, to study the biholomorphy problem, which behaves conformally like the scalar curvature.

Changing conformally the contact form, if $\hat{\theta}=u^{2} \theta$, then $W_{\hat{\theta}}$ is given by

$$
-4 \Delta_{b} u+W_{\theta} u=W_{\hat{\theta}} u^{3}
$$

The Webster curvature of a CR three-manifold

In 1983 Webster introduced scalar curvature W, to study the biholomorphy problem, which behaves conformally like the scalar curvature.

Changing conformally the contact form, if $\hat{\theta}=u^{2} \theta$, then $W_{\hat{\theta}}$ is given by

$$
-4 \Delta_{b} u+W_{\theta} u=W_{\hat{\theta}} u^{3}
$$

Here Δ_{b} is the sub-laplacian on M : roughly, the laplacian in the contact directions

The Webster curvature of a CR three-manifold

In 1983 Webster introduced scalar curvature W, to study the biholomorphy problem, which behaves conformally like the scalar curvature.

Changing conformally the contact form, if $\hat{\theta}=u^{2} \theta$, then $W_{\hat{\theta}}$ is given by

$$
-4 \Delta_{b} u+W_{\theta} u=W_{\hat{\theta}} u^{3}
$$

Here Δ_{b} is the sub-laplacian on M : roughly, the laplacian in the contact directions (use Hörmander's theory (commutators) to recover regularity).

The Webster curvature of a CR three-manifold

In 1983 Webster introduced scalar curvature W, to study the biholomorphy problem, which behaves conformally like the scalar curvature.

Changing conformally the contact form, if $\hat{\theta}=u^{2} \theta$, then $W_{\hat{\theta}}$ is given by

$$
-4 \Delta_{b} u+W_{\theta} u=W_{\hat{\theta}} u^{3}
$$

Here Δ_{b} is the sub-laplacian on M : roughly, the laplacian in the contact directions (use Hörmander's theory (commutators) to recover regularity).

As before, we can define a Sobolev-Webster quotient, a Webster class, and try to uniformize W as we did for the scalar curvature.

The Webster curvature of a CR three-manifold

In 1983 Webster introduced scalar curvature W, to study the biholomorphy problem, which behaves conformally like the scalar curvature.

Changing conformally the contact form, if $\hat{\theta}=u^{2} \theta$, then $W_{\hat{\theta}}$ is given by

$$
-4 \Delta_{b} u+W_{\theta} u=W_{\hat{\theta}} u^{3}
$$

Here Δ_{b} is the sub-laplacian on M : roughly, the laplacian in the contact directions (use Hörmander's theory (commutators) to recover regularity).

As before, we can define a Sobolev-Webster quotient, a Webster class, and try to uniformize W as we did for the scalar curvature. For $n \geq 5$ Jerison and Lee (1989) proved the counterparts of Trudinger and Aubin's results.

The Webster curvature of a CR three-manifold

In 1983 Webster introduced scalar curvature W, to study the biholomorphy problem, which behaves conformally like the scalar curvature.

Changing conformally the contact form, if $\hat{\theta}=u^{2} \theta$, then $W_{\hat{\theta}}$ is given by

$$
-4 \Delta_{b} u+W_{\theta} u=W_{\hat{\theta}} u^{3}
$$

Here Δ_{b} is the sub-laplacian on M : roughly, the laplacian in the contact directions (use Hörmander's theory (commutators) to recover regularity).

As before, we can define a Sobolev-Webster quotient, a Webster class, and try to uniformize W as we did for the scalar curvature. For $n \geq 5$ Jerison and Lee (1989) proved the counterparts of Trudinger and Aubin's results. Non-minimal solutions were found in [Gamara (et al.), '01] for $n=3$.

Green's function and mass in three dimensions (CR)

Green's function and mass in three dimensions (CR)

In 3D the Green's function still appears.

Green's function and mass in three dimensions (CR)

In 3D the Green's function still appears. In suitable coordinates at $p \in M$

$$
G_{p} \simeq \frac{1}{\rho^{2}}+A
$$

where $\rho^{4}(z, t)=|z|^{4}+t^{2},(z, t) \in \mathbb{H}^{1}$ is the homogeneous distance.

Green's function and mass in three dimensions (CR)

In 3D the Green's function still appears. In suitable coordinates at $p \in M$

$$
G_{p} \simeq \frac{1}{\rho^{2}}+A
$$

where $\rho^{4}(z, t)=|z|^{4}+t^{2},(z, t) \in \mathbb{H}^{1}$ is the homogeneous distance. Blowing-up the contact form θ using G_{p}, we obtain an asymptotically (Heisenberg) flat manifold and define its mass, proportional to A.

Green's function and mass in three dimensions (CR)

In 3D the Green's function still appears. In suitable coordinates at $p \in M$

$$
G_{p} \simeq \frac{1}{\rho^{2}}+A
$$

where $\rho^{4}(z, t)=|z|^{4}+t^{2},(z, t) \in \mathbb{H}^{1}$ is the homogeneous distance. Blowing-up the contact form θ using G_{p}, we obtain an asymptotically (Heisenberg) flat manifold and define its mass, proportional to A.

However, one crucial difference between dimension three and higher is the embeddability of abstract CR manifolds ([Chen-Shaw, '01]).

Green's function and mass in three dimensions (CR)

In 3D the Green's function still appears. In suitable coordinates at $p \in M$

$$
G_{p} \simeq \frac{1}{\rho^{2}}+A
$$

where $\rho^{4}(z, t)=|z|^{4}+t^{2},(z, t) \in \mathbb{H}^{1}$ is the homogeneous distance. Blowing-up the contact form θ using G_{p}, we obtain an asymptotically (Heisenberg) flat manifold and define its mass, proportional to A.

However, one crucial difference between dimension three and higher is the embeddability of abstract CR manifolds ([Chen-Shaw, '01]). There is a fourth-order (Paneitz) operator $P=\Delta_{b}^{2}+$ l.o.t. which plays a role here.

Green's function and mass in three dimensions (CR)

In 3D the Green's function still appears. In suitable coordinates at $p \in M$

$$
G_{p} \simeq \frac{1}{\rho^{2}}+A
$$

where $\rho^{4}(z, t)=|z|^{4}+t^{2},(z, t) \in \mathbb{H}^{1}$ is the homogeneous distance. Blowing-up the contact form θ using G_{p}, we obtain an asymptotically (Heisenberg) flat manifold and define its mass, proportional to A.

However, one crucial difference between dimension three and higher is the embeddability of abstract CR manifolds ([Chen-Shaw, '01]). There is a fourth-order (Paneitz) operator $P=\Delta_{b}^{2}+$ l.o.t. which plays a role here.

Theorem ([Chanillo-Chiu-Yang, '12])

Green's function and mass in three dimensions (CR)

In 3D the Green's function still appears. In suitable coordinates at $p \in M$

$$
G_{p} \simeq \frac{1}{\rho^{2}}+A
$$

where $\rho^{4}(z, t)=|z|^{4}+t^{2},(z, t) \in \mathbb{H}^{1}$ is the homogeneous distance. Blowing-up the contact form θ using G_{p}, we obtain an asymptotically (Heisenberg) flat manifold and define its mass, proportional to A.

However, one crucial difference between dimension three and higher is the embeddability of abstract CR manifolds ([Chen-Shaw, '01]). There is a fourth-order (Paneitz) operator $P=\Delta_{b}^{2}+$ l.o.t. which plays a role here.

Theorem ([Chanillo-Chiu-Yang, '12]) Let M^{3} be a compact CR manifold.

Green's function and mass in three dimensions (CR)

In 3D the Green's function still appears. In suitable coordinates at $p \in M$

$$
G_{p} \simeq \frac{1}{\rho^{2}}+A
$$

where $\rho^{4}(z, t)=|z|^{4}+t^{2},(z, t) \in \mathbb{H}^{1}$ is the homogeneous distance. Blowing-up the contact form θ using G_{p}, we obtain an asymptotically (Heisenberg) flat manifold and define its mass, proportional to A.

However, one crucial difference between dimension three and higher is the embeddability of abstract CR manifolds ([Chen-Shaw, '01]). There is a fourth-order (Paneitz) operator $P=\Delta_{b}^{2}+$ l.o.t. which plays a role here.

Theorem ([Chanillo-Chiu-Yang, '12]) Let M^{3} be a compact CR manifold. If $P \geq 0$ and $W>0$, then M embeds into some \mathbb{C}^{N}.

A positive mass theorem

A positive mass theorem

Theorem 1 ([Cheng-M.-Yang, '17])

A positive mass theorem

Theorem 1 (|Cheng-M.-Yang, '17|)

Let (M^{3}, J, θ) be a compact CR manifold.

A positive mass theorem

Theorem 1 (|Cheng-M.-Yang, '17])

Let (M^{3}, J, θ) be a compact CR manifold. Suppose the Webster class is positive, and that the Paneitz operator P is non-negative.

A positive mass theorem

Theorem 1 (|Cheng-M.-Yang, '17])

Let (M^{3}, J, θ) be a compact CR manifold. Suppose the Webster class is positive, and that the Paneitz operator P is non-negative. Let $p \in M$ and let $\tilde{\theta}$ be a blown-up of contact form at p.

A positive mass theorem

Theorem 1 (|Cheng-M.-Yang, '17])

Let $\left(M^{3}, J, \theta\right)$ be a compact CR manifold. Suppose the Webster class is positive, and that the Paneitz operator P is non-negative. Let $p \in M$ and let $\tilde{\theta}$ be a blown-up of contact form at p. Then
(a) the CR mass m of $(M, J, \tilde{\theta})$ is non negative;

A positive mass theorem

Theorem 1 ([Cheng-M.-Yang, '17])

Let $\left(M^{3}, J, \theta\right)$ be a compact CR manifold. Suppose the Webster class is positive, and that the Paneitz operator P is non-negative. Let $p \in M$ and let $\tilde{\theta}$ be a blown-up of contact form at p. Then
(a) the CR mass m of $(M, J, \tilde{\theta})$ is non negative;
(b) if $m=0,(M, J, \theta)$ is conformally equivalent to a standard $S^{3}\left(\simeq \mathbb{H}^{1}\right)$.

A positive mass theorem

Theorem 1 ([Cheng-M.-Yang, '17])

Let $\left(M^{3}, J, \theta\right)$ be a compact CR manifold. Suppose the Webster class is positive, and that the Paneitz operator P is non-negative. Let $p \in M$ and let $\tilde{\theta}$ be a blown-up of contact form at p. Then
(a) the CR mass m of $(M, J, \tilde{\theta})$ is non negative;
(b) if $m=0,(M, J, \theta)$ is conformally equivalent to a standard $S^{3}\left(\simeq \mathbb{H}^{1}\right)$.

- The proof uses a tricky integration by parts

A positive mass theorem

Theorem 1 ([Cheng-M.-Yang, '17])

Let $\left(M^{3}, J, \theta\right)$ be a compact CR manifold. Suppose the Webster class is positive, and that the Paneitz operator P is non-negative. Let $p \in M$ and let $\tilde{\theta}$ be a blown-up of contact form at p. Then
(a) the CR mass m of $(M, J, \tilde{\theta})$ is non negative;
(b) if $m=0,(M, J, \theta)$ is conformally equivalent to a standard $S^{3}\left(\simeq \mathbb{H}^{1}\right)$.

- The proof uses a tricky integration by parts: the main idea was to bring-in the Paneitz operator to write the mass as sum of squares.

A positive mass theorem

Theorem 1 ([Cheng-M.-Yang, '17])

Let $\left(M^{3}, J, \theta\right)$ be a compact CR manifold. Suppose the Webster class is positive, and that the Paneitz operator P is non-negative. Let $p \in M$ and let $\tilde{\theta}$ be a blown-up of contact form at p. Then
(a) the CR mass m of $(M, J, \tilde{\theta})$ is non negative;
(b) if $m=0,(M, J, \theta)$ is conformally equivalent to a standard $S^{3}\left(\simeq \mathbb{H}^{1}\right)$.

- The proof uses a tricky integration by parts: the main idea was to bring-in the Paneitz operator to write the mass as sum of squares.
- Positivity of the mass implies that the Sobolev-Webster quotient of the manifold is lower than that of the sphere, and minimizers exist.

On the positivity condition for the Paneitz operator

On the positivity condition for the Paneitz operator

Consider S^{3} in \mathbb{C}^{2}. Its standard $C R$ structure $J_{(0)}$ is given by

$$
J_{(0)} Z_{1}^{S^{3}}=i Z_{1}^{S^{3}} ; \quad Z_{1}^{S^{3}}=\bar{z}^{2} \frac{\partial}{\partial z^{1}}-\bar{z}^{1} \frac{\partial}{\partial z^{2}}
$$

On the positivity condition for the Paneitz operator

Consider S^{3} in \mathbb{C}^{2}. Its standard $C R$ structure $J_{(0)}$ is given by

$$
J_{(0)} Z_{1}^{S^{3}}=i Z_{1}^{S^{3}} ; \quad \quad Z_{1}^{S^{3}}=\bar{z}^{2} \frac{\partial}{\partial z^{1}}-\bar{z}^{1} \frac{\partial}{\partial z^{2}}
$$

It turns out that most perturbations of the standard structure are non embeddable ([Burns-Epstein, '90]).

On the positivity condition for the Paneitz operator

Consider S^{3} in \mathbb{C}^{2}. Its standard $C R$ structure $J_{(0)}$ is given by

$$
J_{(0)} Z_{1}^{S^{3}}=i Z_{1}^{S^{3}} ; \quad Z_{1}^{S^{3}}=\bar{z}^{2} \frac{\partial}{\partial z^{1}}-\bar{z}^{1} \frac{\partial}{\partial z^{2}}
$$

It turns out that most perturbations of the standard structure are non embeddable ([Burns-Epstein, '90]).

Interesting case are Rossi spheres S_{s}^{3}, from [H.Rossi, '65]

On the positivity condition for the Paneitz operator

Consider S^{3} in \mathbb{C}^{2}. Its standard $C R$ structure $J_{(0)}$ is given by

$$
J_{(0)} Z_{1}^{S^{3}}=i Z_{1}^{S^{3}} ; \quad \quad Z_{1}^{S^{3}}=\bar{z}^{2} \frac{\partial}{\partial z^{1}}-\bar{z}^{1} \frac{\partial}{\partial z^{2}}
$$

It turns out that most perturbations of the standard structure are non embeddable ([Burns-Epstein, '90]).

Interesting case are Rossi spheres S_{s}^{3}, from [H.Rossi, '65]: these are homogeneous, of positive Webster class, have the same contact structure as the standard S^{3} but a distorted complex rotation $J_{(s)}$ for $s \in(-\varepsilon, \varepsilon)$

$$
J_{(s)}\left(Z_{1}^{S^{3}}+s \bar{Z}_{1}^{S^{3}}\right)=i\left(Z_{1}^{S^{3}}+s \bar{Z}_{1}^{S^{3}}\right)
$$

On the positivity condition for the Paneitz operator

Consider S^{3} in \mathbb{C}^{2}. Its standard $C R$ structure $J_{(0)}$ is given by

$$
J_{(0)} Z_{1}^{S^{3}}=i Z_{1}^{S^{3}} ; \quad Z_{1}^{S^{3}}=\bar{z}^{2} \frac{\partial}{\partial z^{1}}-\bar{z}^{1} \frac{\partial}{\partial z^{2}}
$$

It turns out that most perturbations of the standard structure are non embeddable ([Burns-Epstein, '90]).

Interesting case are Rossi spheres S_{s}^{3}, from [H.Rossi, '65]: these are homogeneous, of positive Webster class, have the same contact structure as the standard S^{3} but a distorted complex rotation $J_{(s)}$ for $s \in(-\varepsilon, \varepsilon)$

$$
J_{(s)}\left(Z_{1}^{S^{3}}+s \bar{Z}_{1}^{S^{3}}\right)=i\left(Z_{1}^{S^{3}}+s \bar{Z}_{1}^{S^{3}}\right)
$$

In these cases the Paneitz operator cannot be positive-definite.

On the positivity condition for the Paneitz operator

Consider S^{3} in \mathbb{C}^{2}. Its standard $C R$ structure $J_{(0)}$ is given by

$$
J_{(0)} Z_{1}^{S^{3}}=i Z_{1}^{S^{3}} ; \quad Z_{1}^{S^{3}}=\bar{z}^{2} \frac{\partial}{\partial z^{1}}-\bar{z}^{1} \frac{\partial}{\partial z^{2}}
$$

It turns out that most perturbations of the standard structure are non embeddable ([Burns-Epstein, '90]).

Interesting case are Rossi spheres S_{s}^{3}, from [H.Rossi, '65]: these are homogeneous, of positive Webster class, have the same contact structure as the standard S^{3} but a distorted complex rotation $J_{(s)}$ for $s \in(-\varepsilon, \varepsilon)$

$$
J_{(s)}\left(Z_{1}^{S^{3}}+s \bar{Z}_{1}^{S^{3}}\right)=i\left(Z_{1}^{S^{3}}+s \bar{Z}_{1}^{S^{3}}\right)
$$

In these cases the Paneitz operator cannot be positive-definite.
Theorem 2 ([Cheng-M.-Yang, '19])

On the positivity condition for the Paneitz operator

Consider S^{3} in \mathbb{C}^{2}. Its standard $C R$ structure $J_{(0)}$ is given by

$$
J_{(0)} Z_{1}^{S^{3}}=i Z_{1}^{S^{3}} ; \quad Z_{1}^{S^{3}}=\bar{z}^{2} \frac{\partial}{\partial z^{1}}-\bar{z}^{1} \frac{\partial}{\partial z^{2}}
$$

It turns out that most perturbations of the standard structure are non embeddable ([Burns-Epstein, '90]).

Interesting case are Rossi spheres S_{s}^{3}, from [H.Rossi, '65]: these are homogeneous, of positive Webster class, have the same contact structure as the standard S^{3} but a distorted complex rotation $J_{(s)}$ for $s \in(-\varepsilon, \varepsilon)$

$$
J_{(s)}\left(Z_{1}^{S^{3}}+s \bar{Z}_{1}^{S^{3}}\right)=i\left(Z_{1}^{S^{3}}+s \bar{Z}_{1}^{S^{3}}\right)
$$

In these cases the Paneitz operator cannot be positive-definite.
Theorem 2 ([Cheng-M.-Yang, '19])
For small $s \neq 0$, the CR mass of S_{s}^{3} is negative $\left(m_{s} \simeq-18 \pi s^{2}\right)$.

Some ideas of the proof

Some ideas of the proof

As we saw, the mass is related to the next-order term in the expansion of the Green's function (Robin's function).

Some ideas of the proof

As we saw, the mass is related to the next-order term in the expansion of the Green's function (Robin's function). Determining it is in general a hard problem, since it is a global object.

Some ideas of the proof

As we saw, the mass is related to the next-order term in the expansion of the Green's function (Robin's function). Determining it is in general a hard problem, since it is a global object.

Fixing a pole $p \in S^{3}$, we find suitable s-coordinates (near p) to expand the Green's function as $G_{p,(s)} \simeq \frac{1}{\rho_{(s)}^{2}}+A_{(s)}$, with $A_{(s)}$ unknown.

Some ideas of the proof

As we saw, the mass is related to the next-order term in the expansion of the Green's function (Robin's function). Determining it is in general a hard problem, since it is a global object.

Fixing a pole $p \in S^{3}$, we find suitable s-coordinates (near p) to expand the Green's function as $G_{p,(s)} \simeq \frac{1}{\rho_{(s)}^{2}}+A_{(s)}$, with $A_{(s)}$ unknown.

On the other hand, it is possible to Taylor-expand in s the equation

$$
-4 \Delta_{b}^{(s)} G_{(s)}+W_{(s)} G_{(s)}=\delta_{p}
$$

away from p, in the standard coordinates of \mathbb{C}^{2}.

Some ideas of the proof

As we saw, the mass is related to the next-order term in the expansion of the Green's function (Robin's function). Determining it is in general a hard problem, since it is a global object.

Fixing a pole $p \in S^{3}$, we find suitable s-coordinates (near p) to expand the Green's function as $G_{p,(s)} \simeq \frac{1}{\rho_{(s)}^{2}}+A_{(s)}$, with $A_{(s)}$ unknown.

On the other hand, it is possible to Taylor-expand in s the equation

$$
-4 \Delta_{b}^{(s)} G_{(s)}+W_{(s)} G_{(s)}=\delta_{p}
$$

away from p, in the standard coordinates of \mathbb{C}^{2}.

One then needs to verify that the two expansions match, obtaining then the asymptotic behaviour for $s \rightarrow 0$ of $A_{(s)}$, proportional to the mass. \square

CR Sobolev quotient of Rossi spheres

CR Sobolev quotient of Rossi spheres

Theorem 3 ([Cheng-M.-Yang, '19])

CR Sobolev quotient of Rossi spheres

Theorem 3 ([Cheng-M.-Yang, '19])
For small $s \neq 0$ the infimum of the Sobolev-Webster quotient of Rossi spheres is not attained (and is equal to that of the standard S^{3}).

CR Sobolev quotient of Rossi spheres

Theorem 3 ([Cheng-M.-Yang, '19])

For small $s \neq 0$ the infimum of the Sobolev-Webster quotient of Rossi spheres is not attained (and is equal to that of the standard S^{3}).

- If a function has low Sobolev-Webster quotient on a Rossi sphere S_{s}^{3} it has low Sobolev-Webster quotient also on the standard sphere $S^{3}=S_{0}^{3}$.

CR Sobolev quotient of Rossi spheres

Theorem 3 ([Cheng-M.-Yang, '19])
For small $s \neq 0$ the infimum of the Sobolev-Webster quotient of Rossi spheres is not attained (and is equal to that of the standard S^{3}).

- If a function has low Sobolev-Webster quotient on a Rossi sphere S_{s}^{3} it has low Sobolev-Webster quotient also on the standard sphere $S^{3}=S_{0}^{3}$. Minima for the Webster quotient on the standard S^{3} were classifed in [Jerison-Lee, '88] as (CR counterparts of) Aubin-Talenti's functions.

CR Sobolev quotient of Rossi spheres

Theorem 3 ([Cheng-M.-Yang, '19])
For small $s \neq 0$ the infimum of the Sobolev-Webster quotient of Rossi spheres is not attained (and is equal to that of the standard S^{3}).

- If a function has low Sobolev-Webster quotient on a Rossi sphere S_{s}^{3} it has low Sobolev-Webster quotient also on the standard sphere $S^{3}=S_{0}^{3}$. Minima for the Webster quotient on the standard S^{3} were classifed in [Jerison-Lee, '88] as (CR counterparts of) Aubin-Talenti's functions.
- For $|s| \neq 0$ small, the Webster quotient of the functions $U_{\lambda}^{C R}$ has a profile of this kind (need to use Theorem 2 for λ large)

CR Sobolev quotient of Rossi spheres

Theorem 3 ([Cheng-M.-Yang, '19])
For small $s \neq 0$ the infimum of the Sobolev-Webster quotient of Rossi spheres is not attained (and is equal to that of the standard S^{3}).

- If a function has low Sobolev-Webster quotient on a Rossi sphere S_{s}^{3} it has low Sobolev-Webster quotient also on the standard sphere $S^{3}=S_{0}^{3}$. Minima for the Webster quotient on the standard S^{3} were classifed in [Jerison-Lee, '88] as (CR counterparts of) Aubin-Talenti's functions.
- For $|s| \neq 0$ small, the Webster quotient of the functions $U_{\lambda}^{C R}$ has a profile of this kind (need to use Theorem 2 for λ large)

Remark. The CR Sobolev quotient of S_{s}^{3}, a closed manifold, behaves like that of a domain in \mathbb{R}^{n} !

Some open problems

Some open problems

Another problem recently settled is compactness of solutions to Yamabe's equation ([Druet, '04], [Li-Zhang, '05-'06], [Brendle-Marques, '08], [Khuri-Marques-Schoen, '09]).

Some open problems

Another problem recently settled is compactness of solutions to Yamabe's equation ([Druet, '04], [Li-Zhang, '05-'06], [Brendle-Marques, '08], [Khuri-Marques-Schoen, '09]). Compactness holds if and only if $n \leq 24$.

Some open problems

Another problem recently settled is compactness of solutions to Yamabe's equation ([Druet, '04], [Li-Zhang, '05-'06], [Brendle-Marques, '08], [Khuri-Marques-Schoen, '09]). Compactness holds if and only if $n \leq 24$.

Compactness for the CR case is entirely open.

Some open problems

Another problem recently settled is compactness of solutions to Yamabe's equation ([Druet, '04], [Li-Zhang, '05-'06], [Brendle-Marques, '08], [Khuri-Marques-Schoen, '09]). Compactness holds if and only if $n \leq 24$.

Compactness for the CR case is entirely open. One reason is that profiles of blow-ups are not classified.

Some open problems

Another problem recently settled is compactness of solutions to Yamabe's equation ([Druet, '04], [Li-Zhang, '05-'06], [Brendle-Marques, '08], [Khuri-Marques-Schoen, '09]). Compactness holds if and only if $n \leq 24$.

Compactness for the CR case is entirely open. One reason is that profiles of blow-ups are not classified. This concerns entire positive solutions to

$$
-\Delta_{b} u=u^{\frac{Q+2}{Q-2}} \quad \text { in } \mathbb{H}^{n} ; \quad Q=2 n+2
$$

Some open problems

Another problem recently settled is compactness of solutions to Yamabe's equation ([Druet, '04], [Li-Zhang, '05-'06], [Brendle-Marques, '08], [Khuri-Marques-Schoen, '09]). Compactness holds if and only if $n \leq 24$.

Compactness for the CR case is entirely open. One reason is that profiles of blow-ups are not classified. This concerns entire positive solutions to

$$
-\Delta_{b} u=u^{\frac{Q+2}{Q-2}} \quad \text { in } \mathbb{H}^{n} ; \quad Q=2 n+2
$$

Assuming finite volume, it is done in [Jerison-Lee, '88].

Some open problems

Another problem recently settled is compactness of solutions to Yamabe's equation ([Druet, '04], [Li-Zhang, '05-'06], [Brendle-Marques, '08], [Khuri-Marques-Schoen, '09]). Compactness holds if and only if $n \leq 24$.

Compactness for the CR case is entirely open. One reason is that profiles of blow-ups are not classified. This concerns entire positive solutions to

$$
-\Delta_{b} u=u^{\frac{Q+2}{Q-2}} \quad \text { in } \mathbb{H}^{n} ; \quad Q=2 n+2
$$

Assuming finite volume, it is done in [Jerison-Lee, '88]. However we may not have this assumption, and moving planes do not work.

Some open problems

Another problem recently settled is compactness of solutions to Yamabe's equation ([Druet, '04], [Li-Zhang, '05-'06], [Brendle-Marques, '08], [Khuri-Marques-Schoen, '09]). Compactness holds if and only if $n \leq 24$.

Compactness for the CR case is entirely open. One reason is that profiles of blow-ups are not classified. This concerns entire positive solutions to

$$
-\Delta_{b} u=u^{\frac{Q+2}{Q-2}} \quad \text { in } \mathbb{H}^{n} ; \quad Q=2 n+2
$$

Assuming finite volume, it is done in [Jerison-Lee, '88]. However we may not have this assumption, and moving planes do not work.

A related problem concerns the classification of

$$
-\Delta_{b} u=u^{p} \quad \text { in } \mathbb{H}^{n} ; \quad p<\frac{Q+2}{Q-2}
$$

Some open problems

Another problem recently settled is compactness of solutions to Yamabe's equation ([Druet, '04], [Li-Zhang, '05-'06], [Brendle-Marques, '08], [Khuri-Marques-Schoen, '09]). Compactness holds if and only if $n \leq 24$.

Compactness for the CR case is entirely open. One reason is that profiles of blow-ups are not classified. This concerns entire positive solutions to

$$
-\Delta_{b} u=u^{\frac{Q+2}{Q-2}} \quad \text { in } \mathbb{H}^{n} ; \quad Q=2 n+2
$$

Assuming finite volume, it is done in [Jerison-Lee, '88]. However we may not have this assumption, and moving planes do not work.

A related problem concerns the classification of

$$
-\Delta_{b} u=u^{p} \quad \text { in } \mathbb{H}^{n} ; \quad p<\frac{Q+2}{Q-2}
$$

In \mathbb{R}^{n} it was shown in [Gidas-Spruck, '81] that $u \equiv 0$.

Some open problems

Another problem recently settled is compactness of solutions to Yamabe's equation ([Druet, '04], [Li-Zhang, '05-'06], [Brendle-Marques, '08], [Khuri-Marques-Schoen, '09]). Compactness holds if and only if $n \leq 24$.

Compactness for the CR case is entirely open. One reason is that profiles of blow-ups are not classified. This concerns entire positive solutions to

$$
-\Delta_{b} u=u^{\frac{Q+2}{Q-2}} \quad \text { in } \mathbb{H}^{n} ; \quad Q=2 n+2
$$

Assuming finite volume, it is done in [Jerison-Lee, '88]. However we may not have this assumption, and moving planes do not work.

A related problem concerns the classification of

$$
-\Delta_{b} u=u^{p} \quad \text { in } \mathbb{H}^{n} ; \quad p<\frac{Q+2}{Q-2}
$$

In \mathbb{R}^{n} it was shown in [Gidas-Spruck, '81] that $u \equiv 0$. In \mathbb{H}^{n}, there are partial results in [Birindelli-Capuzzo Dolcetta-Cutrì, 97], for $p<\frac{Q}{Q_{-}^{-2}}$.

Thanks for your attention

