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The Yamabe problem

The Yamabe problem consists in finding conformal metrics with constant
scalar curvature on a compact manifold (M, g). If Rg is the background
one, setting g̃(x) = λ(x)g(x) = u(x)

4
n−2 g(x), u(x) one has to solve

(Y ) −cn∆u+Rg = Ru
n+2
n−2 ; cn = 4

n− 1

n− 2
, R ∈ R.

Considering R as a Lagrange multiplier, one can try to find solutions by
minimizing the Sobolev-Yamabe quotient

QSY (u) =

∫
M

(
cn|∇u|2 +Rgu

2
)
dV(∫

M |u|2
∗dV

) 2
2∗

; 2∗ =
2n

n− 2
.

The Sobolev-Yamabe constant is defined as

Y (M, [g]) = inf
u6≡0

QSY (u).
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The Sobolev quotient in Rn (n ≥ 3)

Recall the Sobolev-Gagliardo-Nirenberg inequality in Rn

‖u‖2
L2∗ (Rn)

≤ Bn
∫
Rn

|∇u|2dx; u ∈ C∞c (Rn).

As for Y (M, [g]), define the Sobolev quotient Sn = infu

∫
Rn cn|∇u|

2dx

‖u‖2
L2∗ (Rn)

.

Completing C∞c (Rn), Sn is attained by ([Aubin, ’76], [Talenti, ’76])

Up,λ(x) :=
λ

n−2
2

(1 + λ2|x− p|2)
n−2
2

; p ∈ Rn, λ > 0.

• Since Sn is conformal to Rn, one has that Y (Sn, [gSn ]) = Sn.
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Brief history on the Yamabe problem

- In 1960 Yamabe attempted to solve (Y ) by subcritical approximation.

- In 1968 Trudinger proved that (Y ) is solvable provided Y (M, [g]) ≤ εn
for some εn > 0. In particular for negative and zero Yamabe class.

- In 1976 Aubin proved that (Y ) is solvable provided Y (M, [g]) < Sn.
He also verified this inequality when n ≥ 6 and (M, g) is not locally
conformally flat, unless (M, g) ' (Sn, gSn).

- In 1984 Schoen proved that Y (M, [g]) < Sn in all other cases, i.e. n ≤ 5
or (M, g) locally conformally flat, unless (M, g) ' (Sn, gSn).
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On the inequality Y (M, [g]) < Sn

The inequality is proved using Aubin-Talenti’s functions. Given p ∈M ,

consider a conformal metric g̃ ' U
4

n−2

p,λ g with λ large. Since locally
(M, g) ' Rn and since Up,λ is highly concentrated, QSY (Up,λ) ' Sn,
with small correction terms due to the geometry of M .

Since Up,λ decays like 1
|x|n−2 at infinity, it is more localized in large dimen-

sion. Aubin proved that for n ≥ 6 the corrections are given by − |Wg |2(p)
λ4

,
a local quantity depending on the Weyl tensor.

For n ≤ 5 the correction is of global nature. Heuristics: if u ' Up,λ then

Lgu := −cn∆u+Rgu ' U
n+2
n−2

p,λ '
1

λ
δp.

At large scales an approximate solution looks like the Green’s function
Gp of the operator Lg. If Gp ' 1

|x|n−2 +A at p, the correction is −A/λn−2.
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A brief excursion in general relativity

To understand the value of A, general relativity comes into play.

A manifold (N3, g̃) is said to be asymptotically flat if it is a union of
a compact set K (possibly with topology), and such that N \ K is
diffeomorphic to R3 \B1(0). It is required that the metric satisfies

g̃ij → δij at infinity (with some rate).

N

N \K

In general relativity these manifolds describe static gravitational systems.
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In general relativity these manifolds describe static gravitational systems.
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The mass of an asymptotically flat manifold

The ADM mass m(g̃) ([ADM, ’60]) of such manifolds is defined as

m(g̃) := lim
r→∞

∮
Sr

(∂k g̃jk − ∂j g̃kk) νjdσ.

Theorem ([Schoen-Yau, ’79])

If Rg̃ ≥ 0 then m(g̃) ≥ 0. In case m(g̃) = 0, then (M, g̃) is isometric to
the flat Euclidean space (R3, dx2).

Application: Conformal blow-ups. Consider a compact Riemannian
three-manifold (M, g), and p ∈M . Define now the conformal metric

g̃ = G4
p g; Gp Green’s function of Lg with pole p.

Then (M \ {p}, g̃) is asymptotically flat, and

m(g̃) = lim
x→p

(
Gp(x)− 1

d(x, p)

)
= A.
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CR manifolds (three dimensions)

We deal with 3-D manifolds with a non-integrable two-dimensional di-
stribution (contact structure) ξ, annihilated by a contact 1-form θ.

We also have a CR structure (complex rotation) J : ξ → ξ s.t. J2 = −1.

Given J as above, we have locally a vector field Z1 such that

JZ1 = iZ1; JZ1 = −iZ1 where Z1 = (Z1).

Example 1: Heisenberg group H1 = {(z, t) ∈ C× R}. Setting
◦
Z1=

1√
2

(
∂

∂z
+ iz

∂

∂t

)
;

◦
Z1=

1√
2

(
∂

∂z
− iz ∂

∂t

)
.

Example 2: boundaries of complex domains. Consider Ω ⊂ C2

and J2 the standard complex rotation in C2. Given p ∈ ∂Ω one can
consider the subset ξp of Tp∂Ω which is invariant by J2. We take ξp as
contact distribution, and J |ξp as the CR structure J .
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The Webster curvature of a CR three-manifold

In 1983 Webster introduced scalar curvature W , to study the biholomor-
phy problem, which behaves conformally like the scalar curvature.

Changing conformally the contact form, if θ̂ = u2θ, then Wθ̂ is given by

−4∆bu+Wθu = Wθ̂u
3.

Here ∆b is the sub-laplacian on M : roughly, the laplacian in the contact
directions (use Hörmander’s theory (commutators) to recover regularity).

As before, we can define a Sobolev-Webster quotient, a Webster class, and
try to uniformizeW as we did for the scalar curvature. For n ≥ 5 Jerison
and Lee (1989) proved the counterparts of Trudinger and Aubin’s results.
Non-minimal solutions were found in [Gamara (et al.), ’01] for n = 3.
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Green’s function and mass in three dimensions (CR)

In 3D the Green’s function still appears. In suitable coordinates at p ∈M

Gp '
1

ρ2
+A,

where ρ4(z, t) = |z|4 + t2, (z, t) ∈ H1 is the homogeneous distance.
Blowing-up the contact form θ using Gp, we obtain an asymptotically
(Heisenberg) flat manifold and define its mass, proportional to A.

However, one crucial difference between dimension three and higher is
the embeddability of abstract CR manifolds ([Chen-Shaw, ’01]). There is
a fourth-order (Paneitz) operator P = ∆2

b + l.o.t. which plays a role here.

Theorem ([Chanillo-Chiu-Yang, ’12]) Let M3 be a compact CR
manifold. If P ≥ 0 and W > 0, then M embeds into some CN .
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A positive mass theorem

Theorem 1 ([Cheng-M.-Yang, ’17])

Let (M3, J, θ) be a compact CR manifold. Suppose the Webster class is
positive, and that the Paneitz operator P is non-negative. Let p ∈ M
and let θ̃ be a blown-up of contact form at p. Then

(a) the CR mass m of (M,J, θ̃) is non negative;

(b) if m = 0, (M,J, θ) is conformally equivalent to a standard S3(' H1).

• The proof uses a tricky integration by parts: the main idea was to
bring-in the Paneitz operator to write the mass as sum of squares.

• Positivity of the mass implies that the Sobolev-Webster quotient of the
manifold is lower than that of the sphere, and minimizers exist.
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On the positivity condition for the Paneitz operator

Consider S3 in C2. Its standard CR structure J(0) is given by

J(0)Z
S3

1 = iZS
3

1 ; ZS
3

1 = z̄2
∂

∂z1
− z̄1 ∂

∂z2
.

It turns out that most perturbations of the standard structure are non
embeddable ([Burns-Epstein, ’90]).

Interesting case are Rossi spheres S3
s , from [H.Rossi, ’65]: these are

homogeneous, of positive Webster class, have the same contact structure
as the standard S3 but a distorted complex rotation J(s) for s ∈ (−ε, ε)

J(s)(Z
S3

1 + sZ̄S
3

1 ) = i
(
ZS

3

1 + sZ̄S
3

1

)
.

In these cases the Paneitz operator cannot be positive-definite.

Theorem 2 ([Cheng-M.-Yang, ’19])

For small s 6= 0, the CR mass of S3
s is negative (ms ' −18πs2).
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Some ideas of the proof

As we saw, the mass is related to the next-order term in the expansion
of the Green’s function (Robin’s function). Determining it is in general
a hard problem, since it is a global object.

Fixing a pole p ∈ S3, we find suitable s-coordinates (near p) to expand
the Green’s function as Gp,(s) ' 1

ρ2
(s)

+A(s), with A(s) unknown.

On the other hand, it is possible to Taylor-expand in s the equation

−4∆
(s)
b G(s) +W(s)G(s) = δp

away from p, in the standard coordinates of C2.

One then needs to verify that the two expansions match, obtaining then
the asymptotic behaviour for s→ 0 of A(s), proportional to the mass.
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CR Sobolev quotient of Rossi spheres

Theorem 3 ([Cheng-M.-Yang, ’19])
For small s 6= 0 the infimum of the Sobolev-Webster quotient of Rossi
spheres is not attained (and is equal to that of the standard S3).

- If a function has low Sobolev-Webster quotient on a Rossi sphere S3
s it

has low Sobolev-Webster quotient also on the standard sphere S3 = S3
0 .

Minima for the Webster quotient on the standard S3 were classifed in
[Jerison-Lee, ’88] as (CR counterparts of) Aubin-Talenti’s functions.

- For |s| 6= 0 small, the Webster quotient of the functions UCRλ has a
profile of this kind (need to use Theorem 2 for λ large)

0

Q
(s)
SW (UCR

λ )

λ

Remark. The CR Sobolev quotient of S3
s , a closed manifold, behaves

like that of a domain in Rn!
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Some open problems

Another problem recently settled is compactness of solutions to Yama-
be’s equation ([Druet, ’04], [Li-Zhang, ’05-’06], [Brendle-Marques, ’08],
[Khuri-Marques-Schoen, ’09]). Compactness holds if and only if n ≤ 24.

Compactness for the CR case is entirely open. One reason is that profiles
of blow-ups are not classified. This concerns entire positive solutions to

−∆bu = u
Q+2
Q−2 in Hn; Q = 2n+ 2.

Assuming finite volume, it is done in [Jerison-Lee, ’88]. However we may
not have this assumption, and moving planes do not work.

A related problem concerns the classification of

−∆bu = up in Hn; p <
Q+ 2

Q− 2
.

In Rn it was shown in [Gidas-Spruck, ’81] that u ≡ 0. In Hn, there are
partial results in [Birindelli-Capuzzo Dolcetta-Cutrì, 97], for p < Q

Q−2 .
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