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Blow up for the Gelfand problem

We will study blowing up solutions for the Gelfand problem:{
−∆u = εV (x)eu in Ω
u = 0 on ∂Ω

(G)

Ω ⊂ R2 is a smooth bounded domain;

ε > 0 is small;

0 < V1 ≤ V (x) ≤ V2, V smooth.



Known results: the case of bounded solutions

Let us consider the “easy case”

Bounded solutions

For 0 < ε ≤ ε1 there is a unique bounded solution uε. Moreover
uε → 0 uniformly in Ω as ε→ 0. These results are consequence of
the implicit function theorem.

Then let us consider the richer and more interesting case of
blow-up solutions.



Known results: the blow-up case

Blow-up phenomena for problem (G) are very well-known:

Brezis-Merle (’91); Li-Shafrir (’94); Ma-Wei (’01); Chen-Lin (’02)

Let {uε}ε→0 be a non-compact family of solutions to (G) with

ε

∫
Ω
V (x)euεdx ≤ C . Then,

(Concentration at N
points)

εV (x)euε ⇀
ε→0

8π
N∑
i=1

δξi

for some ξ1, . . . , ξN ∈ Ω
with ξi 6= ξj for i 6= j ; Ω

ξ1

ξ2 ξ3



Single-peak solutions

Next let us focus on the case N = 1, the so-called single-peak
solutions. Basically many of the results of this talk extend to the
case N > 1 but for sake of simplicity we prefer avoid hard
notations. Let us write explicitly the definition of single peak
solution,

Definition of single-peak solution

We say that uε is a single-peak solution if it solves{
−∆u = εV (x)eu in Ω
u = 0 on ∂Ω

,

and

||uε||∞ ≤ C in Ω \ {ξ}
there exists ξε → ξ such that uε(ξε)→ +∞ as ε→ 0



Known results: single-peak solutions

(Limiting profile)∥∥uε(x)− PUδ(ε),ξ(ε)(x)
∥∥
H1

0 (Ω)
→ 0 as δ(ε)→ 0, where

P : H1(Ω)→ H1
0 (Ω) is the standard projection i.e.{

−∆PU = −∆U in Ω
PU = 0 on ∂Ω

;

and

Uδ,ξ(x) = U

(
x − ξ
δ

)
with U(x) = log

8

(1 + |x |2)2

which satisfies  −∆U = eU in R2∫
R2

eU < +∞ ;



Blow up for single-peak solutions

(Location of the peak) ξ(ε)→ ξ where ξ is a critical point of

F(ξ) = R(ξ) +
1

4π
logV (ξ) (R is the Robin function)

Let us recall the definition of the Robin function. Denoting by G (x , y)
the Green function of −∆ with zero Dirichlet boundary conditions, we
have the decomposition

G (x , y) =
1

2π
log |x − y |+ H(x , y).

The Robin function is defined as

R(x) = H(x , x).



Existence of single-peak solutions

As a counterpart, blowing-up solutions have been constructed:

Esposito-Grossi-Pistoia (’04); Del Pino-Kowalczyk-Musso (’04)

Let ξ0 be a stable critical point of the function

F(ξ) = R(ξ) +
1

4π
logV (ξ).

Then, there exists a family of solutions uε to (G) which blows up
at ξ0 so that

uε(x) = PU

(
x − ξ(ε)

δ(ε)

)
+ φε(x), φε →

ε→0
0 in H1

0 (Ω).

with δ(ε)→ 0 and ξ(ε)→ ξ0.
It can be proved that single peak solutions always exist



Examples and remark

Give some examples where the previous theorem applies,

The case V ≡ 1

In this case F(ξ) = R(ξ) + C and we construct solutions which
concentrate at stable critical points of the Robin function. Of
course the geometry of the domain plays a crucial role.

The case V 6≡ 1

This case is more flexible and allows to choose V such that the
stability condition is verified. For example we can choose V such
that, in B(0, ε)

F(ξ) = R(ξ) +
1

4π
logV (ξ) ≡ ξ2

1 + ξ2
2 ⇔ V (ξ) = e4π(ξ2

1+ξ2
2−R(ξ))

⇒ 0 is a nondegenerate critical point of F
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Constructing the solutions

Recall the construction of the solution in Esposito-Grossi-Pistoia.

We write u(x) = PUδ,ξ(x) + φδ,ξ(x), with φ→ 0 found via a
Lyapunov-Schmidt construction.

General facts

GENERAL IDEA ABOUT THE LJAPOUNOV-SCHMIDT
REDUCTION: Basically we have to find 3 objects:

The function φ ∈ H1
0 (Ω) such that φ→ 0 in H1

0 (Ω)

The point ξ ∈ Ω

The positive number δ

UNFORTUNATELY (very) hard computations are involved!
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Uniqueness of the solutions

The previous method allow us to find a solution for any critical
point of the function

F(ξ) = R(ξ) +
1

4π
logV (ξ)

with uε(x) = PUξ(ε)(x) + φξ(ε)(x), φξ(ε) small in H1
0 (Ω) and

ξ(ε)→ ξ where ξ is a critical point of F .
What about the multiplicity?
How many solutions blow up at a given critical point ξ0 ∈ Ω of F?

We have uniqueness, if ξ0 is non-degenerate:

Gladiali-Grossi,‘04 (case V ≡ 1 and Ω symmetric),
Bartolucci-Jevnikar-Lee-Yang ‘18 (the general case)

Assume ξ0 is a nondegenerate critical point of the function F(ξ).
Then, there is a unique family of solutions to (G) blowing up at ξ0
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Remarks on the uniqueness

In the previous example we chose

F(ξ) = R(ξ) +
1

4π
logV (ξ) ≡ ξ2

1 + ξ2
2

By the Bartolucci-Jevnikar-Lee-Yang’s result this solution is
locally unique around 0.

What does it happen if we choose V such that

F(ξ) = R(ξ) +
1

4π
logV (ξ) ≡ ξ3

1 − ξ1ξ
2
2

(note that here 0 is a stable saddle point for F).
We will show that in this case uniqueness fails! This means that
the nondegeneracy assumption of Bartolucci-Jevnikar-Lee-Yang is
sharp.
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We will consider the case when ξ0 is a degenerate critical point of F
and we look for multiple blowing-up solutions to (G).
We are inspired by Grossi (’02) and Grossi-Neves (’13) who find local
multiplicity respectively for{
−ε2∆u + V (x)u = up in RN

u > 0 in RN ;

 −ε
2∆u + u = up in Ω

u > 0 in Ω
∂νu = 0 on ∂Ω

.

Here the concentration occurs at some critical point ξ0 of V (x) (or the
mean curvature in the case of the Neumann problem).
The idea to get more solutions concentrating at the same point is to
make expansions at the second order. In this setting a crucial one is

ξε = ξ0 + h(ε)τ

Ω

ξ′ρ ξ0

u′

ξ′′ρ

u′′



We will consider the case when ξ0 is a degenerate critical point of F
and we look for multiple blowing-up solutions to (G).
We are inspired by Grossi (’02) and Grossi-Neves (’13) who find local
multiplicity respectively for{
−ε2∆u + V (x)u = up in RN

u > 0 in RN ;

 −ε
2∆u + u = up in Ω

u > 0 in Ω
∂νu = 0 on ∂Ω

.

Here the concentration occurs at some critical point ξ0 of V (x) (or the
mean curvature in the case of the Neumann problem).
The idea to get more solutions concentrating at the same point is to
make expansions at the second order. In this setting a crucial one is

ξε = ξ0 + h(ε)τ

Ω

ξ′ρ ξ0

u′

ξ′′ρ

u′′



Multiplicity of blowing-up solutions

Question

In which way could we find more solutions concentrating at a

critical point of the function F(ξ) = R(ξ) +
1

4π
logV (ξ)?

Again we look for solutions as

uε(x) = PUξ(ε)(x) + φξ(ε)(x)

but in this case we set

ξ = ξ0 + h(ε)τ

where ξ0 is a critical point of R(ξ) +
1

4π
logV (ξ) and h is a

suitable function (to find!) such that h(ε)→ 0 as ε→ 0.
So if we find more values of τ we get more solutions concentrating
at ξ0.
More precisely our result is..
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Theorem (Battaglia, Grossi, Pistoia, Arxiv)

Recall that F(ξ) = R(ξ) +
1

4π
logV (ξ), ξ0 verifies ∇F(ξ0) = 0

and

assume V is such that:

∇F(ξ0) = (0, 0), D2F(ξ0) ≡ 0 (fully degeneracy)

The polynomial L(τ) =
4π2

3

2∑
i,j,k=1

(
∂3
τiτjτk
F(0)

)
τiτjτk has ξ = 0 as

its only critical point.

Then if the equation

∇L =
V (ξ0)

8
e8π(ξ0,ξ0)

[
64π2

(
Hx1y1 (ξ0, ξ0) + Hx2y2 (ξ0, ξ0)

)
∇xH(ξ0, ξ0)−

π∇(∆ logV )(ξ0)
]

= η

has two solutions τ1 6= τ2 then, there exist two distinct solutions u1,ε and
u2,ε such that

u1,ε = PUξ0+h(ε)τ1,ε
(x) + φ1,ε(x), u2,ε = PUξ0+h(ε)τ2,ε

(x) + φ2,ε(x),

where h(ε) ∼ ε
√

log
1

ε
, τ1,ε → τ1 τ2,ε → τ2
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Idea of the proof

We will look for solutions in the form

uε = PUξ0+h(ε)τε + ε2
(
Ŵ + W̃

)
+ φ

Note that, if we do not consider the functions Ŵ and W̃ then the
remainder term φ interacts with the leading term of the expansion
(Esposito-Grossi-Pistoia case).

The other terms are needed to improve our expansion:

−∆Ŵ − 8δ2

(δ2 + |x − ξ0|2)2 Ŵ =

(
8πD2H(ξ0, ξ0) + D2 logV (ξ0), x − ξ0, x − ξ0

)
(δ2 + |x − ξ0|2)2

−∆W̃ = 8
M(x)− 1− (∇M(x), x − ξ0)− 1

2

(
D2M(x), x − ξ0, x − ξ0

)
|x − ξ0|4

Ŵ is singular at 0 while W̃ is regular, as −∆W̃ ∈ Lp(Ω) for p > 1. with

M(x) = e
8π(H(x,ξ0)−H(ξ0,ξ0))+log V (x)

V (ξ0) .
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Ŵ + W̃

)
+ φ

Note that, if we do not consider the functions Ŵ and W̃ then the
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Comments on the proof

What about the proof?

There are not relevant differences to find the function φ. The
linearization technique and the fixed point argument are very
similar.

The equation which allow to find τ (instead of ξ) is not so
simple like in the previous case. It worth to note that for some
suitable V (x) we have different solutions τ . In this way we
get the multiplicity results.



An example in the ball

Take Ω = B1, ξ0 = (0, 0) and V such that F(ξ) = ξ3
1 − ξ1ξ

2
2 .

Since ∇H(0, 0) = 0, we get ∇(∆ logV )(0, 0) = (4, 0). Therefore the
“terrible” equation ∇L = η, namely

∇

4π2

3

2∑
i,j,k=1

(
∂3
τiτjτk
F(0)

)
τiτjτk

 =

(Hx1y1 (ξ0, ξ0) + Hx2y2 (ξ0, ξ0))∇xH(ξ0, ξ0)− 1

64π2
∇(∆ logV )(ξ0)

becomes {
3τ 2

1 − τ 2
2 + 4 = 0

τ1τ2 = 0
.

We get τ1 = (0, 2) τ2 = (0,−2), corresponding to two solutions of
Gelfand problem. They write as, for i = 1, 2,

uε ∼ PU
ξ0+ε
√

log 1
ε τi

+ ε2
(
Ŵ + W̃

)
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Some extensions

We can generalize the argument to the case

∇F(0) ≡ 0, D2F(0) ≡ 0, D3F(0) ≡ 0, . . . DNF(0) ≡ 0;

DN+1F(0) is non-degenerate.

In this case, we get |τε| ∼ ε
2
N

(
log

1

ε

) 1
N

and we have to solves the

N × N system
∇P(τ) = η.

If N ≥ 3 we may find up to N solutions, depending on deg(∇P).
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An intereseting extension

To get actual multiplicity we need to solve the equation

∇P(τ) = η.

and so we need η 6= 0.

If N ≥ 3, then F(ξ) = H(ξ, ξ) +
1

4π
logV (ξ) vanishes up to the

third order, therefore

η = −32π2(∆H(ξ0, ξ0))∇H(ξ0, ξ0)− 4π∇(∆H(ξ0, ξ0))(ξ0).

If Ω is simply connected, then −∆H(ξ, ξ) =
2

π
e−4πH(ξ,ξ) for any

ξ, hence η = 0 and the argument fails.

On the other hand, if Ω is not simply connected, then H does not
satisfy the above equation (w.l.o.g. in ξ = 0), hence η 6= 0.

We do not know if the obstruction is real or just technical.
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Some extensions

We can extend the previous result:

Battaglia, Grossi, Pistoia (Arxiv)

Assume Ω is not simply connected and V is such that

D iF(ξ0) ≡ 0 for all i = 1, . . . ,N;

DN+1F(ξ0) is not degenerate;

η = π3
(
∂2
x1y1

H(ξ0, ξ0) + ∂2
x2y2

H(ξ0, ξ0)
)
∇xH(ξ0, ξ0)+

4π2∇x

(
∂2
x1y1

H + ∂2
x2y2

H
)

(ξ0, ξ0) 6= 0.

Then, there exist at least | deg(∇P)| distinct solutions to (G)
blowing up at 0.
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