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Canonical Riemannian metrics

“It is geometers dream to find a canonical metric gbest on a given smooth
manifold M so that all topology of M will be captured by geometry.” [M. Gromov]

(Mn, g) smooth Riemannian manifold, dim(Mn) = n ≥ 2, ∂M = ∅.

g metric  Riemann (Riemg ), Ricci (Ricg ) and scalar curvature (Rg )

In coordinates:

Riemg =
(
Riem

)
ijkl

trace−→ Ricg =
(
Ric
)
ik

= g jl
(
Riem

)
ijkl

trace−→ Rg = g ik
(
Ric
)
ik

Constant curvature: Riemg = λ g ©∧ g Space forms

Constant Ricci curvature: Ricg = λ g Einstein metrics

Constant scalar curvature: Rg = λ Yamabe metrics

* G. Catino, P. Mastrolia, A potential generalization of some canonical Riemannian metrics , Ann. Glob.
Anal. Geom., to appear.
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Einstein metrics I: variational point of view

Canonical metrics as critical points of curvature functionals. Let M closed,

S(g) = Volg (M)−
n−2
n

∫
M

Rg dVg Einstein-Hilbert functional

g is critical for S(g) ⇐⇒ g is Einstein, i.e. Ricg = λ g , λ ∈ R.

If n = 3, then Einstein metrics have constant curvature.

If n = 4, it is well known that there are topological obstructions to the
existence of an Einstein metric (e.g. Hitchin-Thorpe: χ(M) ≥ 3

2 |τ(M)|).

If n > 4, still unknown.

On the other hand, the constrained problem in a conformal class (Yamabe
problem) is unobstructed. More precisely the Yamabe invariant

Y(M, [g ]) = inf
g̃∈[g ]

S(g̃) = 4(n−1)
n−2 inf

u∈W 1,2(M)

∫
M
|∇u|2 dVg + n−2

4(n−1)
∫
M
R u2 dVg(∫

M
|u|2n/(n−2) dVg

)(n−2)/n
is always attained in every conformal class [g ].
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Einstein metrics II: the Weyl tensor

Let (Mn, g) be an Einstein manifold, i.e. Ricg = λ g , for some λ ∈ R [Besse]. In
particular, by tracing, the scalar curvature is constant Rg = n λ. By the
decomposition of the curvature tensor

Riemg =
Rg

2n(n − 1)

(
g ©∧ g

)
+ Weylg

So, all the geometric information of an Einstein manifold are contained in the
Weyl tensor. In particular, if Weylg = 0, then (Mn, g) is a space form.

Some well known facts:

In dimension n = 3 Weylg = 0, so every Einstein manifold is a space form.

The Weyl tensor is totally trace free, i.e. g ikWijkl = 0.

Tracing the second Bianchi identity for Riemg : ∇tRijkl +∇lRijtk +∇kRijlt = 0
and using the decomposition, we get that the Weyl tensor has zero
divergence, i.e. ∇tWijkt = 0 (harmonic Weyl curvature).

With some work, one can show that the Weyl tensor satisfies the second
Bianchi Identity

∇tWijkl +∇lWijtk +∇kWijlt = 0
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Einstein metrics III: Bochner-Weitzenböch formula

Proposition (Derdzinski, ’83)

Let (M4, g) be a four dimensional Einstein manifold. Then

∆Wijkl = 1
2RgWijkl − 4WipkqWpjql −WklpqWpqij .

In particular,

1
2∆|Weylg |2 = |∇Weylg |2 + 1

2Rg |Weylg |2 − 3WijklWijpqWklpq .

More in general, the last formula holds on four-manifolds with harmonic Weyl
curvature.

Proof: Taking the divergence of the second Bianchi identity for Weylg and
commuting, we get

0 = ∇t∇tWijkl +∇t∇lWijtk +∇t∇kWijlt

= ∆Wijkl +∇l∇tWijtk +∇k∇tWijlt + Riemg ∗Weylg

= ∆Wijkl + Riemg ∗Weylg

Since Riemg = (Rg/24)(g ©∧ g) + Weylg and Weylg is trace free
···

=⇒ �
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Einstein metrics III: Bochner-Weitzenböch formula

Proposition (Derdzinski, ’83)
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Einstein metrics IV: some applications

Now let (M4, g) be a closed Einstein manifolds with positive (constant) scalar
curvature Rg > 0. We have

1
2∆|Weylg |2 = |∇Weylg |2 + 1

2Rg |Weylg |2 − 3WijklWijpqWklpq .

By maximum principle, if ‖Weylg‖∞ ≤ c Rg , for some sufficiently small c , then
Weyl = 0. Thus, (M4, g) is isometric to a quotient of the round sphere S4. In
fact, one can get the same conclusion with an integral pinching assumption.
Namely, we have

Theorem (Singer, Hebey-Vaugon, Gursky, ’90s)

Every four dimensional closed Einstein manifold (M4, g) satisfying∫
M

|Weylg |2 <
1

20

∫
M

R2
g

is isometric to a quotient of the round sphere S4.

Element of the proof: Bochner-Weitzenböch formula, Obata Theorem and
Yamabe-Sobolev inequality. Optimal constant: 1/6 [Gursky-Lebrun].
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Bochner type formula of high order

Generally speaking, we would like to understand more properties on the Weyl
tensor of Einstein manifolds (in dimension four). We start from the following
simple observation: if a smooth function u satisfies a semilinear equation
∆u = f (u) on a four dimensional Einstein manifold, then the classical Bochner
formula becomes

1
2∆|∇u|2 = |∇2u|2 +

(
1
4Rg + f ′(u)

)
|∇u|2 .

Thus, under suitable assumptions, one can deduce Liouville type results for this
class of PDEs. To this aim we computed a Bochner-Weitzenböch formula for
the covariant derivatives of the Weyl tensor, obtaining:

Theorem 1 (C.-Mastrolia)

Let (M4, g) be a four dimensional Einstein manifold. Then,

1
2∆|∇Weylg |2 = |∇2Weylg |2 + 13

12Rg |∇Weylg |2 − 10WijklWijpq,tWklpq,t .

* G. Catino and P. Mastrolia, Bochner type formulas for the Weyl tensor on four dimensional Einstein
manifolds, Int. Math. Res. Not., to appear.
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Einstein metrics V: applications

We observe that this formula

1
2∆|∇Weylg |2 = |∇2Weylg |2 + 13

12Rg |∇Weylg |2 − 10WijklWijpq,tWklpq,t

extends to the covariant derivative level Derdzinski identity

1
2∆|Weylg |2 = |∇Weylg |2 + 1

2Rg |Weylg |2 − 3WijklWijpqWklpq .

By standard commutation rules, it is quite easy to derive “rough” Bochner type
identity for the covariant derivative of Weyl, and, with some work, even a formula
for the k-th covariant derivative ∇kW .
The proof of the theorem, instead, relies heavily on the algebraic structure of
curvature operators in dimension four. In fact, on an oriented Riemannian
manifold of dimension four (M4, g), Λ2 decomposes as the sum of two subbundles
Λ2 = Λ+ ⊗ Λ−, which are the eigenspaces of the Hodge operator ? : Λ2 → Λ2

corresponding respectively to the eigenvalue ±1. Since the Weyl tensor acts on
Λ2, we have the decomposition

Weylg = W+
g + W−g

where the self-dual and anti-self-dual W± are trace-free endomorphisms of Λ±.
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Einstein metrics VI: applications

As a consequence, we can show the following:

Corollary 1 (C.-Mastrolia)

Let (M4, g) be a closed four dimensional Einstein manifold. Then∫
|∇2W±g |2 − 5

3

∫
|∆W±g |2 + 1

4Rg

∫
|∇W±g |2 = 0 ,

∫
|∇2W±g |2 + 23

12Rg

∫
|∇W±g |2 = 5

12

∫
|W±g |2

(
6|W±g |2 − R2

g

)
.

Corollary 2 (C.-Mastrolia)

Let (M4, g) be a four dimensional Einstein manifold with positive scalar curvature.
If ∫

|∇2Wg |2 ≤ 1
12Rg

∫
|∇Wg |2 ,

then (M4, g) is isometric to either S4, CP2 or quotients of S2 × S2.
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Harmonic Weyl curvature

SF ⊂ E ⊂ Y
∩
HW

Let M4 be a closed manifold. A Riemannian metric g on M4 has harmonic Weyl
curvature if

δW = ∇tWijkt = 0

Einstein metrics have harmonic Weyl curvature.

There are topological obstructions to the existence of harmonic Weyl metrics
(e.g. Bourguignon: either Einstein or τ(M) = 0).

As we have seen, Derdzinski proved that the Bochner-Weitzenböch formula
holds

1
2∆|Wg |2 = |∇Wg |2 + 1

2Rg |Wg |2 − 3WijklWijpqWklpq .

Actually this formula characterizes harmonic Weyl metrics on closed four
manifolds. This follows from the integral identity [Chang-Gursky-Yang]∫

M

(
|∇Wg |2 − 4|δWg |2 + 1

2Rg |Wg |2 − 3WijklWijpqWklpq

)
dVg = 0

which holds on every compact four manifolds.
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A new variational problem

From a variational point of view it seems natural to consider the quadratic
scaling-invariant Riemannian functional

D(g) := Volg (M)
1
2

∫
M

|δgWg |2g dVg

Obviously harmonic Weyl metrics are critical points (absolute minima) of D(g).
In the same spirit of the Yamabe problem, we define the conformal invariant

D(M, [g ]) := inf
g̃∈[g ]

D(g̃)

Questions:

1. What are the geometric properties of critical metrics in the conformal class
for the functional g 7→ D(g)?

2. Is the existence of minimizers guaranteed in every conformal class?

* G. Catino, P. Mastrolia, D. D. Monticelli and F. Punzo, Four dimensional closed manifolds admit a weak
harmonic Weyl metric, submitted.

Giovanni Catino (Politecnico di Milano) Some canonical metrics on four manifolds Banff 2019 11 / 19



A new variational problem

From a variational point of view it seems natural to consider the quadratic
scaling-invariant Riemannian functional

D(g) := Volg (M)
1
2

∫
M

|δgWg |2g dVg

Obviously harmonic Weyl metrics are critical points (absolute minima) of D(g).
In the same spirit of the Yamabe problem, we define the conformal invariant

D(M, [g ]) := inf
g̃∈[g ]

D(g̃)

Questions:

1. What are the geometric properties of critical metrics in the conformal class
for the functional g 7→ D(g)?

2. Is the existence of minimizers guaranteed in every conformal class?

* G. Catino, P. Mastrolia, D. D. Monticelli and F. Punzo, Four dimensional closed manifolds admit a weak
harmonic Weyl metric, submitted.

Giovanni Catino (Politecnico di Milano) Some canonical metrics on four manifolds Banff 2019 11 / 19



A new variational problem

From a variational point of view it seems natural to consider the quadratic
scaling-invariant Riemannian functional

D(g) := Volg (M)
1
2

∫
M

|δgWg |2g dVg

Obviously harmonic Weyl metrics are critical points (absolute minima) of D(g).
In the same spirit of the Yamabe problem, we define the conformal invariant

D(M, [g ]) := inf
g̃∈[g ]

D(g̃)

Questions:

1. What are the geometric properties of critical metrics in the conformal class
for the functional g 7→ D(g)?

2. Is the existence of minimizers guaranteed in every conformal class?

* G. Catino, P. Mastrolia, D. D. Monticelli and F. Punzo, Four dimensional closed manifolds admit a weak
harmonic Weyl metric, submitted.

Giovanni Catino (Politecnico di Milano) Some canonical metrics on four manifolds Banff 2019 11 / 19



A new variational problem

From a variational point of view it seems natural to consider the quadratic
scaling-invariant Riemannian functional

D(g) := Volg (M)
1
2

∫
M

|δgWg |2g dVg

Obviously harmonic Weyl metrics are critical points (absolute minima) of D(g).
In the same spirit of the Yamabe problem, we define the conformal invariant

D(M, [g ]) := inf
g̃∈[g ]

D(g̃)

Questions:

1. What are the geometric properties of critical metrics in the conformal class
for the functional g 7→ D(g)?

2. Is the existence of minimizers guaranteed in every conformal class?

* G. Catino, P. Mastrolia, D. D. Monticelli and F. Punzo, Four dimensional closed manifolds admit a weak
harmonic Weyl metric, submitted.

Giovanni Catino (Politecnico di Milano) Some canonical metrics on four manifolds Banff 2019 11 / 19



A new variational problem

From a variational point of view it seems natural to consider the quadratic
scaling-invariant Riemannian functional

D(g) := Volg (M)
1
2

∫
M

|δgWg |2g dVg

Obviously harmonic Weyl metrics are critical points (absolute minima) of D(g).
In the same spirit of the Yamabe problem, we define the conformal invariant

D(M, [g ]) := inf
g̃∈[g ]

D(g̃)

Questions:

1. What are the geometric properties of critical metrics in the conformal class
for the functional g 7→ D(g)?

2. Is the existence of minimizers guaranteed in every conformal class?

* G. Catino, P. Mastrolia, D. D. Monticelli and F. Punzo, Four dimensional closed manifolds admit a weak
harmonic Weyl metric, submitted.

Giovanni Catino (Politecnico di Milano) Some canonical metrics on four manifolds Banff 2019 11 / 19



A new variational problem

From a variational point of view it seems natural to consider the quadratic
scaling-invariant Riemannian functional

D(g) := Volg (M)
1
2

∫
M

|δgWg |2g dVg

Obviously harmonic Weyl metrics are critical points (absolute minima) of D(g).
In the same spirit of the Yamabe problem, we define the conformal invariant

D(M, [g ]) := inf
g̃∈[g ]

D(g̃)

Questions:

1. What are the geometric properties of critical metrics in the conformal class
for the functional g 7→ D(g)?

2. Is the existence of minimizers guaranteed in every conformal class?

* G. Catino, P. Mastrolia, D. D. Monticelli and F. Punzo, Four dimensional closed manifolds admit a weak
harmonic Weyl metric, submitted.

Giovanni Catino (Politecnico di Milano) Some canonical metrics on four manifolds Banff 2019 11 / 19



A new variational problem

From a variational point of view it seems natural to consider the quadratic
scaling-invariant Riemannian functional

D(g) := Volg (M)
1
2

∫
M

|δgWg |2g dVg

Obviously harmonic Weyl metrics are critical points (absolute minima) of D(g).
In the same spirit of the Yamabe problem, we define the conformal invariant

D(M, [g ]) := inf
g̃∈[g ]

D(g̃)

Questions:

1. What are the geometric properties of critical metrics in the conformal class
for the functional g 7→ D(g)?

2. Is the existence of minimizers guaranteed in every conformal class?

* G. Catino, P. Mastrolia, D. D. Monticelli and F. Punzo, Four dimensional closed manifolds admit a weak
harmonic Weyl metric, submitted.

Giovanni Catino (Politecnico di Milano) Some canonical metrics on four manifolds Banff 2019 11 / 19



A new variational problem

From a variational point of view it seems natural to consider the quadratic
scaling-invariant Riemannian functional

D(g) := Volg (M)
1
2

∫
M

|δgWg |2g dVg

Obviously harmonic Weyl metrics are critical points (absolute minima) of D(g).
In the same spirit of the Yamabe problem, we define the conformal invariant

D(M, [g ]) := inf
g̃∈[g ]

D(g̃)

Questions:

1. What are the geometric properties of critical metrics in the conformal class
for the functional g 7→ D(g)?

2. Is the existence of minimizers guaranteed in every conformal class?

* G. Catino, P. Mastrolia, D. D. Monticelli and F. Punzo, Four dimensional closed manifolds admit a weak
harmonic Weyl metric, submitted.

Giovanni Catino (Politecnico di Milano) Some canonical metrics on four manifolds Banff 2019 11 / 19



Weak harmonic Weyl metrics

We have the following characterization of critical metrics in the conformal class
for the functional

D(g) := Volg (M)
1
2

∫
M

|δgWg |2g dVg

Proposition (C.-Mastrolia-Monticelli-Punzo)

A metric is critical in the conformal class for the functional g 7→ D(g) if and only
if it satisfies the Weitzenböck formula

1

2
∆|W |2 = |∇W |2+

1

2
R|W |2−3WijklWijpqWklpq−8|δW |2+

4

Vol(M)

∫
M

|δW |2 dV

In this case we say that g is a weak harmonic Weyl metric.

By Derdzinski formula, harmonic Weyl implies weak harmonic Weyl.

SF ⊂ E ⊂ Y
∩
HW ⊂ WHW
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1

2
∆|W |2 = |∇W |2+

1

2
R|W |2−3WijklWijpqWklpq−8|δW |2+

4

Vol(M)

∫
M

|δW |2 dV

In this case we say that g is a weak harmonic Weyl metric.

By Derdzinski formula, harmonic Weyl implies weak harmonic Weyl.

SF ⊂ E ⊂ Y
∩
HW ⊂ WHW

Giovanni Catino (Politecnico di Milano) Some canonical metrics on four manifolds Banff 2019 12 / 19



Weak harmonic Weyl metrics

We have the following characterization of critical metrics in the conformal class
for the functional

D(g) := Volg (M)
1
2

∫
M

|δgWg |2g dVg

Proposition (C.-Mastrolia-Monticelli-Punzo)

A metric is critical in the conformal class for the functional g 7→ D(g) if and only
if it satisfies the Weitzenböck formula
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Existence of WHW metrics

Theorem 2 (C.-Mastrolia-Monticelli-Punzo)

On every closed four-dimensional manifold there exists a weak harmonic Weyl
metric.

Aubin proved that every closed Riemannian manifold admits a constant
negative scalar curvature metric. Besides this one, Theorem 2 is the only
existence result of a canonical metric, which generalizes the Einstein
condition, on every four-dimensional Riemannian manifold, without any
topological obstructions.

The metric in Theorem 2 is constructed as follows: first, thanks to a result of
Aubin, on every four-dimensional manifold M4 we can choose a reference
metric g0 with |Wg0 |g0 > 0. Then, we prove that on (M4, g0) the infimum
D(M, [g0]) is attained by a conformal metric g ∈ [g0], which is a weak
harmonic Weyl metric. Moreover, we show that every critical point in the
conformal class [g0] is necessarily a minimum point.
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Sketch of the proof I

In order to prove this theorem, we endow a closed four-manifolds M4 with the
metric g0 constructed by Aubin and we consider the functional

D(v) := D(v−2g0)

=

(∫
M

v−4dV

) 1
2
∫
M

(1

4
|W |2|∇v |2 + |δW |2v2 − (v)2s WsijkWpijk,p

)
dV ,

where all the geometric quantities are referred to g0 and the function v belongs to
the convex cone

H(M) :=

{
u ∈ H1(M) : u > 0 a.e. and

∫
M

u−4 dV <∞
}
.

We define
D := inf

u∈H(M)
D(u) .

We note that the condition |W | > 0 is crucial, as it implies the uniform ellipticity
of the problem.
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where all the geometric quantities are referred to g0 and the function v belongs to
the convex cone

H(M) :=

{
u ∈ H1(M) : u > 0 a.e. and

∫
M

u−4 dV <∞
}
.

We define
D := inf

u∈H(M)
D(u) .

We note that the condition |W | > 0 is crucial, as it implies the uniform ellipticity
of the problem.
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Sketch of the proof II

One has

D(v) =

(∫
M

v−4dV

) 1
2
∫
M

(
a|∇v |2 + c v2

)
dV =

(∫
M

v−4dV

) 1
2
∫
M

v Lv dV

with a ∈ C∞(M), a > 0, c ∈ C∞(M) and the uniformly elliptic self-adjoint
operator L is given by

Lv := − div (a∇v) + c v .

Since, by definition, D(v) ≥ 0, we get

λ1 := inf
u∈H1(M), u 6≡0

∫
M

(
a|∇u|2 + c u2

)
dV∫

M
u2 dV

≥ 0.

By standard elliptic theory, there exists a smooth, positive, first eigenfunction ϕ1

of L solution of Lϕ1 = λ1ϕ1 .
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Sketch of the proof III

We have the following (strong) maximum principle.

Lemma 1

Let λ1 > 0. If u ∈ H1(M) satisfies Lu ≥ 0 in the weak sense, then either u = 0
a.e. on M or essinfM u > 0.

Moreover, by Jensen, we can show a two-sided estimate on D = infu∈H(M) D(u) in
terms of λ1

Lemma 2
We have

Vol(M)
3
2 λ1 ≤ D ≤

∫
M
ϕ2
1 dV(∫

M
ϕ−41 dV

) 1
2

λ1 .

In particular D = 0 if and only if λ1 = 0 and, if D > 0, then the maximum
principle in Lemma 1 holds.
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Sketch of the proof IV

A variational argument shows that u 7→ D(u) admits a minimum point v in
H(M). Consequently, v is a (weak) solution of the Euler-Lagrange equation

−1

4
div(|W |2∇v) +

(
|δW |2 + div(WsijkWpijk,p)

)
v = D(v)

(∫
M

v−4dV

)−3/2
1

v5
,

which is a uniformly elliptic semilinear equation with singular nonlinearity. Here,
again, all the geometric quantities are referred to g0. Moreover, v is unique up to
scaling. Hence, by standard elliptic regularity theory, v ∈ C∞(M) and

D(M, [g0]) = min
0<u∈C∞(M)

D(u) = min
u∈H(M)

D(u) = D .

Therefore
g := v−2g0

is a weak harmonic Weyl metric on M4. �

Conclusion: if we choose a reference metric g0 with |Wg0 |g0 > 0, then we can
find a conformal metric g = v−2g0, v ∈ C∞(M), minimizing the functional D(g).
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Degenerate case

What happens in the degenerate case, i.e. if |Wg0 |g0 = 0 somewhere in M?
We can show that uniqueness (up to scaling) of smooth (C 2) solutions to the
equation still holds, unless g0 is locally conformally flat, i.e. Wg0 ≡ 0. Moreover
we have the following non-existence results:

If |Wg0 |g0 ≡ 0 on some open set Ω ⊂ M, then we can show that a smooth
metric g = v−2g0 is critical if and only if it is locally conformally flat, i.e.
Wg ≡ 0 on M (and thus Wg0 ≡ 0).
In addition, if |Wg0 |g0(p) = 0 at some point p ∈ M and

|Wg0 |g0(x)

distg0(x , p)
→ 0 as distg0(x , p)→ 0,

then, a smooth metric g = v−2g0 is critical if and only if it has harmonic
Weyl, i.e. δgWg ≡ 0 on M. As we have seen, there are topological
obstructions to the existence of such a metric.

The remaining case, i.e. |Wg0 |g0(p) = 0 at some point p ∈ M and

lim sup
distg0 (x,p)→0

|Wg0 |g0(x)

distg0(x , p)
> 0

is open.
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Thank you.
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