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Risks data and models
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(b) Competing risks

(a) Semi-competing risks

Figure 1: Semi-competing and competing risks data, Source: Haneuse and Lee
(2016)

Three states:
initial=discharged, non-terminal=illness and terminal=death
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@ Single endpoint risk: Cox PH model (Cox, 1972)

@ Multiple competing risks: Martin J. Crowder (2001). Classical
competing risks

@ Examples: recurrence, cancer cell metastasis and death
occur after surgery

@ Shortcoming: only the first onset or terminal endpoint is
considered as an event, and any subsequent observed
events are combined as the same event or unobserved
competing risks are censored.

@ Semi-competing risks data
e Coupla approach (Fine et al. 2001) and Regression
approach et al. (2007)
@ Semi-competing risks model (Shu et al. (2007), Lee et
al. (2015,2016))
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lliness-death model

Let 71 and T be the two survival times to the non-terminal event
and terminal event, respectively. The shared frailty illness-death
model by Shu et al. (2007) is defined as below:

)\1(1‘1) = WAol(tl)eZTﬁl, t1 > 0,
)\2(t2) = ’y)\og(tz)eZTﬁz, tr > O,

)\3(1‘2‘1‘1) = 7/\03(1‘2)GZT’B3, th > t; >0,

where + is the shared frailty.
Goal: To estimate the transition intensities
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Measurement error and cluster feature

@ Measurement error

e Carroll et al. (2006)
@ Buonaccorsi (2010)

@ Cluster feature (shared frailty)
subjects may come from different locations or have some
different features

@ Measurement errors have not been studied for shared frailty
semi-competing risks model
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competing risks cluster data with

measurement errors

(N

m: the number of independent clusters
n;: the number of subjects within jth cluster.
Tij1: the time to the nonterminal event for jth subject in ith
cluster
Tjj2: the time to the terminal event for jth subject in ith
cluster.
Zjj: p-dimensional covariate vector, mutually independent
both within and among clusters. ZJ is the observed Zj; with
meansurement errors
Cjj: noninformative right censoring time

o sj1 = min(Ty1, Tz, Cj), djn = I(sjn = Tijn),

("] Sjj2 = min( T,'jg, C,'J'), 5,:,'2 = I(S,j2 = T,'J' )
Observed data with measurement error:

{(s,-jl,s,-jz,é,-jl,é,-jg,z-j),j = 1, ...y Npy | = 1, m}
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Frallty semi- competmg model for cluster data

@ Three states: initial, non-terminal and terminal, corresponding

to k=1,2,3.
.,
A (t1; Zij,win) = winhor(t1)e% 7, tj1 > 0, (1)
T
Xo(ti2; Zijy win) = winow(tj2)e%s P2, tjn > 0, (2)

i
As(tialtijn; Zj, wiz) = wizhos(tialtjn)e“d . tp >ty (3)

@ Shared frailty in ith cluster at state k: wj ~ I'(1/6k,1/60k)
@ Markov transition )\03(1‘,‘]2“,]‘1) = A03(t,'j2)
@ Baseline transition times: Weibull distributions

Aok(t) = armet™ ™t Mow(t) = wt™, k=1,2,3.
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Let w,z— = (Wik, - wmk), k=1,2,3, w’ = (

T T .7
wy ,wy ,wqg ) and

©-
-
I
/N

051,052,053,’)/1,’}/2,’)/3,,61 7/62 763 ) and 0T — (01702)93)‘
For i = 1,..., m, denote

nj

n;
Di1 = 25/1'1, Dj» = Z(l — 0jj1)0ij2, Diz = Z dij10jj2-
=1

Jj=1 Jj=1
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Log likelihood functlon wnthout measurement error

The log-likelihood for the whole sample is

(¢,0,w) = > InLi(¢,0,wir,wir,wj3)
i—1
= h(01,w1) + h(02,w2) + h(03,w3) + h(¢p,w),

where

m
1
Hk,wk E [(9 + Dy — ) Inwj, — 9 —In r(—)—e—m@k

— [\ k Ok K
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where
ZZ{ (1 —dj2) ['n(Am(Sijl)) + ZUTBJ
i=1 j=1
+05652 [IN(Nou(52)) + InQOas(s32)) + Z] (51 + )]
+(1 = dy1)d52 ['n(/\oz(Sijz)) + Z;fﬁz] — r(sij1 sij2; Z,-J-)}.
where

T T

r(sij1, sij2, Zjj) = w,-1/\01(s,-j1)ezij Py wiz/\oz(sﬁz)ez,-j 2
;

wiz [Nos(si2) — Nos(si1)] €% .
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Measurement error model

@ Denote
T _(yT T
° Zij = (Xij ) Vij :
Xij is a subvector of error-prone covariates, Wj; be the

surrogate measurement of Xj;
5T _ (wT vTY AT — (3T BT
° Zij = (VV,J ) Vij ) B = (Bioes Bry)-
@ Additive measurement error (Carroll et al. 2006): For
simplicity, let Xj; be univariate variable,

Wi =Xj+ej, j=1,---,ni, i=1,--- ,m,

where the errors {¢} is a simple random sample from
N(0,03) and o3 is assumed a known positive constant.
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Corrected log-likelihood function

Let no(t) = Ee™i = %t The h(¢,w) is corrected as

b, ZZ{ (1~ 652)lIn(or(s50) + 27 Ba]

i=1 j=1
+81652[In(Mo1(s51)) + In(Aos(si2)) + Zif (B1 + B3)]

+(1 = 851)8i2In(No2(s2)) + Zif B2] — #(sin, sija, Zy)},
where

H(sij1 si2, Z)
— A:[- _ A~ T
=Tl 1(51x)wi1/\01 (Sijl)ezu B1 + o 1(/82x)wi2/\02(5ij2)ezu B>
N 7T
115 H(B3x)wis [Nos(sij2) — Aoz (sj1)] €7 2.
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Corrected maximum likelihood estimators (CMLE)

The corrected log-likelihood

le(p,0,w) = h(61,w1) + h(02,w2) + h(63,w3) + l2(P,w). (4)

Given the shared frailties {wjx,i = 1,--- ,m; k = 1,2,3}, find the
corrected MLE of 0 and ¢

MLE of 0 given wy

ék = argmax (0, wk), k = 1,2, 3, (5)
Ok
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Corrected maximum likelihood estimators (CMLE)

The corrected log-likelihood

le(p,0,w) = h(61,w1) + h(02,w2) + h(63,w3) + l2(P,w). (4)

Given the shared frailties {wjx,i = 1,--- ,m; k = 1,2,3}, find the
corrected MLE of 0 and ¢

MLE of 0 given wy

ék = argmax (0, wk), k = 1,2, 3, (5)
Ok

o

CMLE of ¢ given w

qg = argmax I2( ¢, w). (6)
o]
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Bayes estimators

The posterior distribution of wjy is

T(wikl ek, Vi B, Ok) ox wig Mkt ewikBi (7)

1 27
= B, — Y5k eZi B
Ok Ok Uo(ﬁkx EZ: ik
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EM algorlthm E-step

Euch(Orwi) = > { (01!( + Dix — 1> (¥(Aik) — In(Bix))

i—1
A 1 1
_ ST o (R I
Bik O " <9k> Ok ngk} ©)

where 1(x) = & In (I(x)) = £3.

E,leo(¢p,w ZZ{ 0ij1(1 = dij2 [ln()\OI(Sijl)) +Z-JT51}

i=1 j=1

+d5105 [INOox(511)) + In(Nos(si2)) + 2 (B + B5)]

+(1 — 5111)5’12 ['n()\OQ(S;jz)) + 2UT62:| — r*(s,-jl, Sjj2, 2’1)}7 (10)

where r* (S,'jl7 S,'j2, Z,J) = Ew?(s,-jl, S,'j2, Z,J)
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EM algorithm: M-step

Step 1. Given initial values of {wj}, obtain the initial estimates of 8
and ¢ by (5) and (6).

Step 2. Calculate Ay and Bj, renew the estimate Oy by (8).

Step 3. Renew the estimates @ and ¢ by maximizing (9) and (10).

Step 4. Repeat Steps 2-3 till the distance between consecutive
iterative estimates is smaller than 10~
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" 8 8 3

true parameter values:

(01,62,63) = (0.5,0.5,1), (a1, 2, x3) = (0.8,1.1,0.9),
(71772)'73) = (0'0570'0170'01)v p1 = (17 1)T1 B2 = (17 l)T
and 33 = (1,-1)".

{xiji} and {v;;} are independent simple random samples from
N(0,1)

Messure errors {¢;;} is a simple random sample from N(0, o2)

03 =0,0.1,0.25,0.5

m =10

ni=n =---=n,=>50, 100
500 replicates
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Sample data generation

@ Generate a sample {wix, i =1,---,m,} from ['(1/0x,1/6y)
for each k=1,2,3.

@ Generate covariate samples {x;} and {v;;} from N(0,1), and
denote Z,-J-T: (xij,vij), j=1,---,m, i=1,--- mIf
measurement error is present, we further generate a sample of
e;j from N(0,03) and calculate w;; = x;; + £ to obtain
Z;j = (wy, vg)7

@ Generate the non-terminal event time Tj;; satisfying (1)and
the terminal event time Tjj satisfying (2).

< Consider two fixed censoring times: Cj; = 365 and Cj; = 0.
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Sample data generation

Table 1: Four combinations

Relation st Sij2 01 djj2

T,'jl < T,'J'2 < C,J T,'j T,'j 1 1
lel < C,'J' < T,'jg T,j C,"
Tip < min(Cy, Tyn) | Ty Ty
CU < Tij2 < Tijl C,“ C,"

O O =

0
1
0
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Three estimation procedures

@« MBEM: maximum likelihood and Bayes estimation with EM
algorithm

« CMBEM: corrected maximum likelihood and Bayes estimation
with EM algorithm

@ BMCMC: Bayes estimation with MCMC algorithm (Lee et al.
(2016))
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Simulation results

Table 1: Results for data with no measurement error

Method Bia Brv Box Bav Baa B3v
Noncensored and n = 500

BIAS 0.013 0.008 0.018 0.011 0.025 -0.059

MBEM. MSE 0.006 0.005 0.010 0.009 0.007 0.009

BIAS -0.049 -0.052 0.021 0.033 -0.033 -0.034

BMOMC MSE 0.019 0.020 0.031 0.029 0.027 0.021

Noncensored and n = 1000

MBEM BIAS 0.010 0.008 0.004 0.003 0.003 -0.046

MSE 0.003 0.003 0.004 0.004 0.004 0.005

BIAS -0.047 -0.048 0.037 0.032 -0.018 -0.043

BMOMG MSE 0.016 0.015 0.021 0.021 0.018 0.015
censored and n = 500

MBEM BIAS 0.015 0.016 0.021 0.026 0.016 -0.066

MSE 0.006 0.006 0.011 0.010 0.012 0.014

BIAS -0.082 -0.065 0.001 0.014 -0.076 0.066

BMCMC —~rsp 0022 0.020 0.024 0.025 0039  0.020
censored and n = 1000

MBEM BIAS 0.008 0.008 0.015 0.012 0.008 -0.059

MSE 0.003 0.003 0.005 0.006 0.007 0.008

BMCMC BIAS -0.071 -0.067 0.013 0.017 -0.089 0.071

MSE 0.016 0.016 0.019 0.017 0.033 0.023
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Simulation results

non-censored, n=500 non-censored, n=1000

waEn
BIICHC.

censored, n=500 censored, n=1000

waEM
BlicHC.

Figure 2: Ap1(t) for data with no measurement error
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Simulation results
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i)
e
oote

oorz
oorz

oo
00m

censored, n=1000

Figure 3: Ap2(t) for data with no measurement error
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non-censored, n=1000

Conclusion and Discussion

censored, n=500

censored, n=1000

— T
- weem
BlICHC.

Figure 4: Ao3(t) for data with no measurement error



Introduction Model and Estimation Method EM algorithm Simulation Study Analyzing MGUS Data Conclusion and Discussion
0000 000000000 oo 00000000 ®000CVVVVOOO000000 0000

Simulation results

Table 2: Estimation for noncensored data with measurement error (n=>500)

Method Bz Brv Box Bav B3 Bav
o9 =0.1

BIAS 0026 0021 0017 0016 002 -0.058

CMBEM —~ep—0.007  0.007 0010 0.011 0008 0.009

Vpm _BIAS -0.003 0005 0004 0005 0.009 -0055

MSE 0.006 0005 0010 0.008 0.007 0.008

BIAS -0.052 -0.041 0.044 0051 -0.048 -0.028

BMOMC —ep—3018 0020 0.020  0.032 _0.028  0.021
oo =0.25

BIAS 0010 0019 0031 002 0038 -0.063

CMBEM —rer—0008 0007 0.013 0011 0012 0.010

VBEy BIAS 0072 0017 0086 0014 -0.076_-0.037

MSE 0010 0006 0018 0010 0.013 0.007

BIAS 0051 -0.048 0.012 0.048 -0.039 -0.020

BMCMC —1ep 0021 0.021 0029 0033 0.028  0.021
o9 =0.5

BIAS 0044 0031 0068 0042 0084 007

CMBEM —{rep—0.015 0.000 0032 0018 0.030 0.014

vpEy _BIAS 0257 -0072 0281 -0.100 -0.287 0013

MSE 0071 0011 0087 0.020 0.088 0.006

oaione _BIAS 0051 005200250023 _0.035_0.0%

MSE 0.019 0.022 0.024 0.026 0.029 0.025




Introduction Model and Estimation Method EM algorithm

0000 000000000

Simulation results

Table 3: Estimation for noncensored data with measurement error (n=1000)

oo

Simulation Study Analyzing MGUS Data

000000000 e@00CHVVOOOOO000000

Method Bz Brv Box Bav B3z B3v
o9 =0.1

BIAS 0007 0007 0008 0008 0005 -0.043

CMBEM —1or—0.003  0.008 0.005 0005 0.003 0.004

vpm _BTAS 0009 0001 0015 0001 -0.013 -0042

MSE 0003 0.003 0.005 0004 0.003 0.005

BIAS -0.035 -0.037 0033 0.023 -0.013 -0.046

BMCMC —~rsp 0013 0012 0019 0018 0017 0014
oo =0.25

BIAS 0012 0007 00l 0012 0017 -0.0%

CMBEM —1sp 0004 0.003 0006 0.006 0.004 0.006

e _BIAS 0077 0023 0090 0033 0093 -0.0%

MSE 0008 0003 0.012 0006 0012 0.004

BIAS -0.048 -0.043 0021 0.023 -0.03 -0.027

BMCMC —rep 0015 0.016 0018 0020 0020 0015
oo =0.5

BIAS 0024 0013 0033 0022 0031 -0.056

CMBEM. —rer 5007 0.004  0.013 0008 0.010 0.007

ey BIAS 0263 0084 0294 -0.114 0301 0021

MSE 0071 0010 0090 0017 0.093 0.004

, BIAS 0055 -0.053 0018 0016 -0.016 -0.048

BMOMC —ep—0014 0.015 0018 0021 0014 0.016

Conclusion and Discussion
0000
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Simulation results

Table 4: Estimation for censored data with measurement error (n=500)

Method Bz Biv Box Bav B3 Bav
o9 =0.1

BIAS 0016 0018 0023 0027 0024 -0.070

CMBEM —ep 0006 0.007 0011 0.011 0013 0.015

by BIAS 0002 00160006 0012 0000 -0.068

MSE  0.006  0.006 0010 001 0.012 0.015

BIAS -0.060 -0.060 0.007 0.021 -0.106 0.062

BMCMC —rsF0.021  0.019  0.025  0.027  0.052  0.031
oo =0.25

BIAS 0018 0022 0028 0030 0036 -0.068

CMBEM —rep—0.007  0.006 0013 0012 0018 0.015

by BIAS 0071 0009 0076 0030 -0.077 -0.055

MSE 0010 0.006 0015 0.0l 0018 0.013

BIAS -0.082 -0.074 0.018 0.030 -0.092 0.070

BMCMC —rem—0.022 0.021 0027 002 0.042 0.031
o9 =0.5

BIAS 0047 0029 0080 0050 0125 -0.096

CMBEM —epr 0017 0.010 0038 0.021 0.065 0.022

vy BIAS 02560074 0381 0095 -0.287 -0.038

MSE 0070 0011 0.087 0019 0.091 0.0l

BIAS -0.074 -0.073 0.012 0.026 -0.109 0.080

BMCMC —rep 0021 0020 0024 0027 0043 0.031

Conclusion and Discussion
0000
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Simulation results

Table 5: Results for censored data with measurement error (n=1000)
Method Bra Brv Box Bav B3 B3v
oo =0.1

BIAS 0.007 0.006 0.011 0.008 0.013 -0.057

CMBEM —fsF—0.008 0.003 0005 0005 0.007 0.008

by BIAS 0008 0003 -0.005_ 0006 -0.000 -0.052

MSE 0.003 0003 0004 0.005 0.006 0.008

BIAS -0.077 -0.065 0005 0.022 -0.093 0.070

BMOMC e 0016 0014 0018 0.018 0.035 0023
o0 =035

BIAS 0010 0007 0022 0017 0016 -0.060

CMBEM —rer—5.004  0.003 0.006 0.005 0.008 0.000

ey BIAS 0077 0021 -0.087 -0.080 -0.089 -0.046

MSE  0.009 0003 0012 0006 0013 0.006

BIAS 0072 -0.063 0.0l 0.017 -0.090 0.064

BMCMC <0015 0.04 0016 0016 0030 0.020
oo =0.5

BIAS 0023 0017 002 0016 0062 0071

CMBEM —iep—0.006  0.004 0010 0007 0.021 0.011

ey _BIAS 0267 0074 028 -0.104 -0295 -0.025

MSE  0.073 0008 0085 0.015 0091 0.005

ovionie PIAS 0080 0072 00110021009 0,079

MSE 0.017 0.017 0.018 0.016 0.034 0.024
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Simulation results

sigma=0. sigma=0.25 sigma=05
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000
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Figure 5: Ap1(t) for noncensored data with measurement error and
n =500
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Simulation results

sigma-0.1 sigma-025 sigma-05.

sal)

Figure 6: Ap2(t) for noncensored data with measurement error and
n =500
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Simulation results

sigma=0. sigma=0.25 sigma=05

)
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Figure 7: Ao3(t) for noncensored data with measurement error and
n =500
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Simulation results

sigma-0.1
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sigma-025

sigma-05.

Fl

Figure 8: Ap1(t) for noncensored data with measurement error and

n = 1000
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Simulation results

sigma-0.1 sigma-025 sigma-05.

sal)

Figure 9: Ap2(t) for noncensored data with measurement error and
n = 1000
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Simulation results

sigma-0.1 sigma-025 sigma-05.

o)

Figure 10: Ao3(t) for noncensored data with measurement error and
n = 1000
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Simulation results

sigma=025

it
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Figure 11: Ao1(t) for censored data with measurement error and n = 500
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Simulation results

sigma-0.1 sigma=025 sigma=05.
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"

Figure 12: Ago(t) for censored data with measurement error and n = 500
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Simulation results
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Figure 13: Ao3(t) for censored data with measurement error and n = 500
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Simulation results

sigma=025

it
i

Figure 14: Ag1(t) for censored data with measurement error and n = 1000



Introduction Model and Estimation Method EM algorithm Simulation Study Analyzing MGUS Data Conclusion and Discussion
0000 000000000 oo 000000000000 CVVVVOOOOOS000 0000

Simulation results

sigma-0.1 sigma=025 sigma=05.
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Figure 15: A\g(t) for censored data with measurement error and n = 1000
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Simulation results

sigma-0.1 sigma=025 sigma=05.
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Figure 16: Ag3(t) for censored data with measurement error and n = 1000
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Simulation results

@ For small variation in measurement error (e.g. o9 = 0.1), both
CMBEM and MBEM perform very well with very small
absolute biases and MSEs no matter the data is censored or
not, while BMCMC is relatively worse. For example, from
Table 3, the relative efficiencies of BMCMC to CMBEM and
BMCMC to MBEM for B2, are both 3.8, and for (32, are 3.6
and 4.5.
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Simulation results

@ For small variation in measurement error (e.g. o9 = 0.1), both
CMBEM and MBEM perform very well with very small
absolute biases and MSEs no matter the data is censored or
not, while BMCMC is relatively worse. For example, from
Table 3, the relative efficiencies of BMCMC to CMBEM and
BMCMC to MBEM for B2, are both 3.8, and for (32, are 3.6
and 4.5.

@ As the error variance increases, CMBEM becomes more
efficient in estimating Bix, k = 1,2,3. However, MBEM
gradually shows the lost of efficiency. For example, from Table
2, the relative efficiencies of MBEM to CMBEM are 4.73,
2.72 and 2.93. Furthermore, the absolute biases of the
estimators ka by MBEM are much larger than those by
CMBEM. Regarding to the performance of the estimators for
By, Tables 2-5 show that CMBEM still remain small absolute
biases and MSEs, sometimes even smaller than MBEM.
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Simulation results

@ BMCMC seems not very sensitive to the increase of the error
variance. Notice that no matter the error variance is small or
large, most of the results by CMBEM are better than those by
BMCMC.
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Simulation results

@ BMCMC seems not very sensitive to the increase of the error
variance. Notice that no matter the error variance is small or
large, most of the results by CMBEM are better than those by
BMCMC.

@ With the increase of sample size, the estimators by CMBEM
becomes more effective, but those by MBEM and BMCMC do
not improve as much.

o Figures 4-7 show that CMBEM performs more competitively
than MBEM and BMCMC in most simulation settings.
Among the three estimated baseline hazard functions, all
three procedures perform the best for Ao1(t), followed by
Xog(t) and X03(t). It is also notice that, as the sample size
increases, both Aoz (t) and Ao3(t) are significantly improved by
CMBEM and comparable to BMCMC, while MBEM is not
robust, typically when o9 = 0.5.
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MGUS Data

)

)

MGUS: monoclonal gammopathy of undertermined
significance data (Kyle et al. 2018), available in R survival
package

1384 observations with 10 variables

Three clusters: homoglobin low, normal, high

Covariate with measurement error: the size of the monoclonal
serum spike ( mspike)

Accurately observed covariate: age

Non-terminal event: plasma cell malignancy (PCM)

Terminal event: death
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Results for MGUS Data

Table 2: The covariate effects estimated for MGUS

Method B1x B1v Box Bav Bax B3y

CMBEM Estimate 0.8921 0.0139 0.0321 0.0544 0.0323 0.0541

SE 0.1716 0.0066 0.0545 0.0042 0.0546 0.0043
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Results for MGUS Data
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Figure 17: The baseline hazard estimated for MGUS
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Results for MGUS Data

@ age is significant for all three baseline hazards, while mspike is
significant only for the hazard from healthy to PCM

@ the risks from PCM to death and direct to death are about
the same, while the PCM risk is much smaller than the
previous two transitions within 15 years.
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Conclusion

a shared frailty semi-competing model with measurement
errors in covariates for cluster data

propose a corrected maximum likelihood estimation for the
covariate effects and Bayes estimation for the shared frailties
EM algorithm is utilized for numerical optimization.
simulation study shows that the proposed method works

better than the Bayes estimation with MCMC algorithm in
Lee et al. (2016).
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Discussion

@ Interval censored semi-competing risks data?



Introduction Model and Estimation Method EM algorithm Simulation Study Analyzing MGUS Data Conclusion and Discussion
0000 000000000 oo 000000000000 CLDDVOOOO00000 Oe00

Discussion

@ |Interval censored semi-competing risks data?

« Different baseline hazard functions or frailty distributions?



Introduction Model and Estimation Method EM algorithm Simulation Study Analyzing MGUS Data Conclusion and Discussion
0000 000000000 oo 000000000000 CLDDVOOOO00000 Oe00

Discussion

@ |Interval censored semi-competing risks data?
« Different baseline hazard functions or frailty distributions?

@ Theoretically properties?
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