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Risks data and models

Figure 1: Semi-competing and competing risks data, Source: Haneuse and Lee
(2016)

Three states:
initial=discharged, non-terminal=illness and terminal=death



Introduction Model and Estimation Method EM algorithm Simulation Study Analyzing MGUS Data Conclusion and Discussion

Risks data and models

* Single endpoint risk: Cox PH model (Cox, 1972)

* Multiple competing risks: Martin J. Crowder (2001). Classical
competing risks

Examples: recurrence, cancer cell metastasis and death
occur after surgery
Shortcoming: only the first onset or terminal endpoint is
considered as an event, and any subsequent observed
events are combined as the same event or unobserved
competing risks are censored.

* Semi-competing risks data

Coupla approach (Fine et al. 2001) and Regression
approach et al. (2007)
Semi-competing risks model (Shu et al. (2007), Lee et
al. (2015,2016))
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Illness-death model

Let T1 and T2 be the two survival times to the non-terminal event
and terminal event, respectively. The shared frailty illness-death
model by Shu et al. (2007) is defined as below:

λ1(t1) = γλ01(t1)eZ
Tβ1 , t1 > 0,

λ2(t2) = γλ02(t2)eZ
Tβ2 , t2 > 0,

λ3(t2|t1) = γλ03(t2)eZ
Tβ3 , t2 > t1 > 0,

where γ is the shared frailty.
Goal: To estimate the transition intensities
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Measurement error and cluster feature

* Measurement error

Carroll et al. (2006)
Buonaccorsi (2010)

* Cluster feature (shared frailty)
subjects may come from different locations or have some
different features

* Measurement errors have not been studied for shared frailty
semi-competing risks model
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Semi-competing risks cluster data with
measurement errors

* m: the number of independent clusters

* ni : the number of subjects within ith cluster.

* Tij1: the time to the nonterminal event for jth subject in ith
cluster

* Tij2: the time to the terminal event for jth subject in ith
cluster.

* Zij : p-dimensional covariate vector, mutually independent

both within and among clusters. Ẑij is the observed Zij with
meansurement errors

* Cij : noninformative right censoring time

sij1 = min(Tij1,Tij2,Cij), δij1 = I (sij1 = Tij1),
sij2 = min(Tij2,Cij), δij2 = I (sij2 = Tij2).

* Observed data with measurement error:

{(sij1, sij2, δij1, δij2, Ẑij), j = 1, ..., ni ; i = 1, ...m}
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Frailty semi-competing model for cluster data

* Three states: initial, non-terminal and terminal, corresponding
to k = 1, 2, 3.

λ1(tij1;Zij , ωi1) = ωi1λ01(tij1)eZ
T
ij β1 , tij1 > 0, (1)

λ2(tij2;Zij , ωi2) = ωi2λ01(tij2)eZ
T
ij β2 , tij2 > 0, (2)

λ3(tij2|tij1;Zij , ωi3) = ωi3λ03(tij2|tij1)eZ
T
ij β3 , tij2 > tij1 (3)

* Shared frailty in ith cluster at state k : ωik ∼ Γ(1/θk , 1/θk)

* Markov transition λ03(tij2|tij1) = λ03(tij2)

* Baseline transition times: Weibull distributions

λ0k(t) = αkγkt
αk−1, Λ0k(t) = γkt

αk , k = 1, 2, 3.
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Notations

Let ωT
k = (ω1k , · · · , ωmk), k = 1, 2, 3, ωT =

(
ωT

1 , ω
T
2 , ω

T
3

)
and

φT =
(
α1, α2, α3, γ1, γ2, γ3, β

T
1 , β

T
2 , β

T
3

)
and θT = (θ1, θ2, θ3).

For i = 1, ...,m, denote

Di1 =

ni∑
j=1

δij1, Di2 =

ni∑
j=1

(1− δij1)δij2, Di3 =

ni∑
j=1

δij1δij2.
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Log-likelihood function without measurement error

The log-likelihood for the whole sample is

l(φ,θ,ω) =
m∑
i=1

ln Li (φ,θ, ωi1, ωi2, ωi3)

= l1(θ1, ω1) + l1(θ2, ω2) + l1(θ3, ω3) + l2(φ,ω),

where

l1(θk , ωk) =
m∑
i=1

[(
1

θk
+ Dik − 1

)
lnωik −

ωik

θk
− ln Γ(

1

θk
)− 1

θk
ln θk

]
,
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where

l2(φ,ω) =
m∑
i=1

ni∑
j=1

{
δij1(1− δij2)

[
ln(λ01(sij1)) + ZT

ij β1

]
+δij1δij2

[
ln(λ01(sij1)) + ln(λ03(sij2)) + ZT

ij (β1 + β3)
]

+(1− δij1)δij2

[
ln(λ02(sij2)) + ZT

ij β2

]
− r(sij1, sij2,Zij)

}
.

where

r(sij1, sij2,Zij) = ωi1Λ01(sij1)eZ
T
ij β1 + ωi2Λ02(sij2)eZ

T
ij β2 +

ωi3 [Λ03(sij2)− Λ03(sij1)] eZ
T
ij β3 .
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Measurement error model

* Denote

ZT
ij = (XT

ij ,V
T
ij ),

Xij is a subvector of error-prone covariates, Wij be the
surrogate measurement of Xij

ẐT
ij = (W T

ij ,V
T
ij ), βTk = (βTkx , β

T
kv ).

* Additive measurement error (Carroll et al. 2006): For
simplicity, let Xij be univariate variable,

Wij = Xij + εij , j = 1, · · · , ni , i = 1, · · · ,m,

where the errors {εij} is a simple random sample from
N(0, σ2

0) and σ2
0 is assumed a known positive constant.
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Corrected log-likelihood function

Let η0(t) = Eetεij = eσ
2
0t

2
. The l2(φ,ω) is corrected as

lc2(φ,ω) =
m∑
i=1

ni∑
j=1

{
δij1(1− δij2)[ln(λ01(sij1)) + ẐT

ij β1]

+δij1δij2[ln(λ01(sij1)) + ln(λ03(sij2)) + ẐT
ij (β1 + β3)]

+(1− δij1)δij2[ln(λ02(sij2)) + ẐT
ij β2]− r̂(sij1, sij2, Ẑij)

}
,

where

r̂(sij1, sij2, Ẑij)

= η−1
0 (β1x)ωi1Λ01(sij1)eẐ

T
ij β1 + η−1

0 (β2x)ωi2Λ02(sij2)eẐ
T
ij β2

+η−1
0 (β3x)ωi3 [Λ03(sij2)− Λ03(sij1)] eẐ

T
ij β3 .



Introduction Model and Estimation Method EM algorithm Simulation Study Analyzing MGUS Data Conclusion and Discussion

Corrected maximum likelihood estimators (CMLE)

The corrected log-likelihood

lc(φ,θ,ω) = l1(θ1, ω1) + l1(θ2, ω2) + l1(θ3, ω3) + lc2(φ,ω). (4)

Given the shared frailties {ωik , i = 1, · · · ,m; k = 1, 2, 3}, find the
corrected MLE of θk and φ

MLE of θk given ωk

θ̂k = argmax
θk

l1(θk , ωk), k = 1, 2, 3, (5)

CMLE of φ given ω

φ̂ = argmax
φ

lc2(φ,ω). (6)



Introduction Model and Estimation Method EM algorithm Simulation Study Analyzing MGUS Data Conclusion and Discussion

Corrected maximum likelihood estimators (CMLE)

The corrected log-likelihood

lc(φ,θ,ω) = l1(θ1, ω1) + l1(θ2, ω2) + l1(θ3, ω3) + lc2(φ,ω). (4)

Given the shared frailties {ωik , i = 1, · · · ,m; k = 1, 2, 3}, find the
corrected MLE of θk and φ

MLE of θk given ωk

θ̂k = argmax
θk

l1(θk , ωk), k = 1, 2, 3, (5)

CMLE of φ given ω

φ̂ = argmax
φ

lc2(φ,ω). (6)



Introduction Model and Estimation Method EM algorithm Simulation Study Analyzing MGUS Data Conclusion and Discussion

Bayes estimators

The posterior distribution of ωik is

π(ωik |αk , γk , βk , θk) ∝ ωik
Aik−1e−ωikBik , (7)

where

Aik =
1

θk
+ Dik , Bik =

1

θk
+

1

η0(βkx)

ni∑
j=1

γks
αk
ijk e

ẐT
ij βk .

Bayes estimators of the shared frailties

ω̂ik = E (ωik |αk , γk , βk , θk) =
Aik

Bik
, i = 1, · · · ,m, k = 1, 2, 3. (8)
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EM algorithm: E-step

Eωk
l1(θk , ωk) =

m∑
i=1

{(
1

θk
+ Dik − 1

)
(ψ(Aik)− ln(Bik))

− Aik

Bikθk
− ln Γ

(
1

θk

)
− 1

θk
ln θk

}
, (9)

where ψ(x) = d
dx ln (Γ(x)) = Γ′(x)

Γ(x) .

Eω lc2(φ,ω) =
m∑
i=1

ni∑
j=1

{
δij1(1− δij2)

[
ln(λ01(sij1)) + ẐT

ij β1

]
+δij1δij2

[
ln(λ01(sij1)) + ln(λ03(sij2)) + ẐT

ij (β1 + β3)
]

+(1− δij1)δij2
[
ln(λ02(sij2)) + ẐT

ij β2

]
− r∗(sij1, sij2, Ẑij)

}
, (10)

where r∗(sij1, sij2, Ẑij) = Eω r̂(sij1, sij2, Ẑij).
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EM algorithm: M-step

Step 1. Given initial values of {ωik}, obtain the initial estimates of θ
and φ by (5) and (6).

Step 2. Calculate Aik and Bik , renew the estimate ω̂ik by (8).

Step 3. Renew the estimates θ and φ by maximizing (9) and (10).

Step 4. Repeat Steps 2-3 till the distance between consecutive
iterative estimates is smaller than 10−4.
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Simulation Setting

* true parameter values:
(θ1, θ2, θ3) = (0.5, 0.5, 1), (α1, α2, α3) = (0.8, 1.1, 0.9),
(γ1, γ2, γ3) = (0.05, 0.01, 0.01), β1 = (1, 1)T , β2 = (1, 1)T

and β3 = (1,−1)T .

* {xij} and {vij} are independent simple random samples from
N(0, 1)

* Messure errors {εij} is a simple random sample from N(0, σ2
0)

* σ2
0 = 0, 0.1, 0.25, 0.5

* m = 10

* n1 = n2 = · · · = nm = 50, 100

* 500 replicates
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Sample data generation

* Generate a sample {ωik , i = 1, · · · ,m, } from Γ(1/θk , 1/θk)
for each k = 1, 2, 3.

* Generate covariate samples {xij} and {vij} from N(0, 1), and
denote ZT

ij = (xij , vij), j = 1, · · · , n1, i = 1, · · · ,m. If
measurement error is present, we further generate a sample of
εij from N(0, σ2

0) and calculate wij = xij + εij to obtain

Ẑij = (wij , vij)
T .

* Generate the non-terminal event time Tij1 satisfying (1)and
the terminal event time Tij2 satisfying (2).

* Consider two fixed censoring times: Cij = 365 and Cij =∞.
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Sample data generation

Table 1: Four combinations

Relation sij1 sij2 δij1 δij2
Tij1 < Tij2 ≤ Cij Tij1 Tij2 1 1
Tij1 ≤ Cij < Tij2 Tij1 Cij 1 0

Tij2 ≤ min(Cij ,Tij1) Tij2 Tij2 0 1
Cij < Tij2 ≤ Tij1 Cij Cij 0 0
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Three estimation procedures

* MBEM: maximum likelihood and Bayes estimation with EM
algorithm

* CMBEM: corrected maximum likelihood and Bayes estimation
with EM algorithm

* BMCMC: Bayes estimation with MCMC algorithm (Lee et al.
(2016))
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Simulation results



Introduction Model and Estimation Method EM algorithm Simulation Study Analyzing MGUS Data Conclusion and Discussion

Simulation results

Figure 2: λ01(t) for data with no measurement error
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Simulation results

Figure 3: λ02(t) for data with no measurement error
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Simulation results

Figure 4: λ03(t) for data with no measurement error
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Simulation results
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Simulation results

Figure 5: λ01(t) for noncensored data with measurement error and
n = 500
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Simulation results

Figure 6: λ02(t) for noncensored data with measurement error and
n = 500
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Simulation results

Figure 7: λ03(t) for noncensored data with measurement error and
n = 500
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Simulation results

Figure 8: λ01(t) for noncensored data with measurement error and
n = 1000
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Simulation results

Figure 9: λ02(t) for noncensored data with measurement error and
n = 1000
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Simulation results

Figure 10: λ03(t) for noncensored data with measurement error and
n = 1000
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Simulation results

Figure 11: λ01(t) for censored data with measurement error and n = 500



Introduction Model and Estimation Method EM algorithm Simulation Study Analyzing MGUS Data Conclusion and Discussion

Simulation results

Figure 12: λ02(t) for censored data with measurement error and n = 500
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Simulation results

Figure 13: λ03(t) for censored data with measurement error and n = 500
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Simulation results

Figure 14: λ01(t) for censored data with measurement error and n = 1000
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Simulation results

Figure 15: λ02(t) for censored data with measurement error and n = 1000
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Simulation results

Figure 16: λ03(t) for censored data with measurement error and n = 1000
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Simulation results

For small variation in measurement error (e.g. σ0 = 0.1), both
CMBEM and MBEM perform very well with very small
absolute biases and MSEs no matter the data is censored or
not, while BMCMC is relatively worse. For example, from
Table 3, the relative efficiencies of BMCMC to CMBEM and
BMCMC to MBEM for β̂2x are both 3.8, and for β̂2v are 3.6
and 4.5.

As the error variance increases, CMBEM becomes more
efficient in estimating βkx , k = 1, 2, 3. However, MBEM
gradually shows the lost of efficiency. For example, from Table
2, the relative efficiencies of MBEM to CMBEM are 4.73,
2.72 and 2.93. Furthermore, the absolute biases of the
estimators β̂kx by MBEM are much larger than those by
CMBEM. Regarding to the performance of the estimators for
βkv , Tables 2-5 show that CMBEM still remain small absolute
biases and MSEs, sometimes even smaller than MBEM.
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Simulation results

BMCMC seems not very sensitive to the increase of the error
variance. Notice that no matter the error variance is small or
large, most of the results by CMBEM are better than those by
BMCMC.

With the increase of sample size, the estimators by CMBEM
becomes more effective, but those by MBEM and BMCMC do
not improve as much.

Figures 4-7 show that CMBEM performs more competitively
than MBEM and BMCMC in most simulation settings.
Among the three estimated baseline hazard functions, all
three procedures perform the best for λ̂01(t), followed by
λ̂02(t) and λ̂03(t). It is also notice that, as the sample size
increases, both λ̂02(t) and λ̂03(t) are significantly improved by
CMBEM and comparable to BMCMC, while MBEM is not
robust, typically when σ0 = 0.5.
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MGUS Data

* MGUS: monoclonal gammopathy of undertermined
significance data (Kyle et al. 2018), available in R survival
package

* 1384 observations with 10 variables

* Three clusters: homoglobin low, normal, high

* Covariate with measurement error: the size of the monoclonal
serum spike ( mspike)

* Accurately observed covariate: age

* Non-terminal event: plasma cell malignancy (PCM)

* Terminal event: death
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Results for MGUS Data

Table 2: The covariate effects estimated for MGUS

Method β̂1x β̂1v β̂2x β̂2v β̂3x β̂3v

CMBEM
Estimate 0.8921 0.0139 0.0321 0.0544 0.0323 0.0541

SE 0.1716 0.0066 0.0545 0.0042 0.0546 0.0043
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Results for MGUS Data

Figure 17: The baseline hazard estimated for MGUS
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Results for MGUS Data

* age is significant for all three baseline hazards, while mspike is
significant only for the hazard from healthy to PCM

* the risks from PCM to death and direct to death are about
the same, while the PCM risk is much smaller than the
previous two transitions within 15 years.
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Conclusion

* a shared frailty semi-competing model with measurement
errors in covariates for cluster data

* propose a corrected maximum likelihood estimation for the
covariate effects and Bayes estimation for the shared frailties

* EM algorithm is utilized for numerical optimization.

* simulation study shows that the proposed method works
better than the Bayes estimation with MCMC algorithm in
Lee et al. (2016).
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Discussion

* Interval censored semi-competing risks data?

* Different baseline hazard functions or frailty distributions?

* Theoretically properties?
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Thank you !
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