Estimating parameters of a frailty semi-competing model with measurement errors in covariates

Lianfen Qian

Jointly authored with Caiya Zhang and Xiaolu Gu Zhejiang University City College

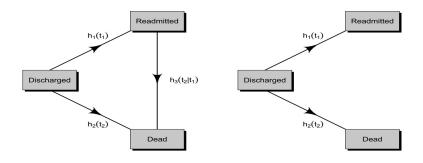
> Florida Atlantic University February, 2019

1 Introduction

2 Model and Estimation Method

3 EM algorithm

4 Simulation Study


5 Analyzing MGUS Data

Conclusion and Discussion

 Introduction
 Model and Estimation Method
 EM algorithm
 Simulation Study Analyzing MGUS Data
 Conclusion and Discussion

 •••••
 •••••
 ••••
 ••••
 •••••
 ••••
 ••••

Risks data and models

(b) Competing risks

Figure 1: Semi-competing and competing risks data, Source: Haneuse and Lee (2016)

Three states: initial=discharged, non-terminal=illness and terminal=death

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Risks data and models

- Single endpoint risk: Cox PH model (Cox, 1972)
- Multiple competing risks: Martin J. Crowder (2001). Classical competing risks
 - Examples: recurrence, cancer cell metastasis and death occur after surgery
 - Shortcoming: only the first onset or terminal endpoint is considered as an event, and any subsequent observed events are combined as the same event or unobserved competing risks are censored.
- Semi-competing risks data
 - Coupla approach (Fine et al. 2001) and Regression approach et al. (2007)
 - Semi-competing risks model (Shu et al. (2007), Lee et al. (2015,2016))

Illness-death model

Let T_1 and T_2 be the two survival times to the non-terminal event and terminal event, respectively. The shared frailty illness-death model by Shu et al. (2007) is defined as below:

$$\lambda_1(t_1) = \gamma \lambda_{01}(t_1) e^{Z^T \beta_1}, \ t_1 > 0,$$

$$\lambda_2(t_2) = \gamma \lambda_{02}(t_2) e^{Z^T \beta_2}, \quad t_2 > 0,$$

$$\lambda_3(t_2|t_1) = \gamma \lambda_{03}(t_2) e^{Z^T \beta_3}, \ t_2 > t_1 > 0,$$

where γ is the shared frailty. Goal: To estimate the transition intensities

Measurement error and cluster feature

Measurement error

- Carroll et al. (2006)
- Buonaccorsi (2010)
- Cluster feature (shared frailty) subjects may come from different locations or have some different features
- Measurement errors have not been studied for shared frailty semi-competing risks model

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Introduction	Model and Estimation Method	EM algorithm	Simulation Study Analyzing MGUS Data	Conclusion and Discussion
0000	00000000	00	000000000000000000000000000000000000000	0000

1 Introduction

2 Model and Estimation Method

3 EM algorithm

4 Simulation Study

5 Analyzing MGUS Data

Conclusion and Discussion

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへで

Semi-competing risks cluster data with measurement errors

- *m*: the number of independent clusters
- *r_i*: the number of subjects within *i*th cluster.
- *T_{ij1}*: the time to the nonterminal event for *j*th subject in *i*th cluster
- *T_{ij2}*: the time to the terminal event for *j*th subject in *i*th cluster.
- Z_{ij} : *p*-dimensional covariate vector, mutually independent both within and among clusters. \hat{Z}_{ij} is the observed Z_{ij} with meansurement errors
- C_{ij}: noninformative right censoring time
 - $s_{ij1} = min(T_{ij1}, T_{ij2}, C_{ij}), \ \delta_{ij1} = I(s_{ij1} = T_{ij1}),$

•
$$s_{ij2} = min(T_{ij2}, C_{ij}), \ \delta_{ij2} = I(s_{ij2} = T_{ij2}).$$

Observed data with measurement error:

$$\{(s_{ij1}, s_{ij2}, \delta_{ij1}, \delta_{ij2}, \widehat{Z}_{ij}), j = 1, \dots, n_i; i = 1, \dots, m\}$$

Frailty semi-competing model for cluster data

 Three states: initial, non-terminal and terminal, corresponding to k = 1, 2, 3.

$$\lambda_1(t_{ij1}; Z_{ij}, \omega_{i1}) = \omega_{i1}\lambda_{01}(t_{ij1})e^{Z_{ij}^T\beta_1}, \ t_{ij1} > 0,$$
 (1)

$$\lambda_2(t_{ij2}; Z_{ij}, \omega_{i2}) = \omega_{i2}\lambda_{01}(t_{ij2})e^{Z_{ij}^T\beta_2}, \quad t_{ij2} > 0, \qquad (2)$$

$$\lambda_{3}(t_{ij2}|t_{ij1}; Z_{ij}, \omega_{i3}) = \omega_{i3}\lambda_{03}(t_{ij2}|t_{ij1})e^{Z_{ij}^{T}\beta_{3}}, \quad t_{ij2} > t_{ij1} \quad (3)$$

- ullet Shared frailty in *i*th cluster at state $k:\;\omega_{ik}\sim \mathsf{\Gamma}(1/ heta_k,1/ heta_k)$
- Markov transition $\lambda_{03}(t_{ij2}|t_{ij1}) = \lambda_{03}(t_{ij2})$
- Baseline transition times: Weibull distributions

$$\lambda_{0k}(t) = \alpha_k \gamma_k t^{\alpha_k - 1}, \quad \Lambda_{0k}(t) = \gamma_k t^{\alpha_k}, \quad k = 1, 2, 3.$$

Introduction	Model and Estimation Method	EM algorithm	Simulation Study	Analyzing MGUS Data	Conclusion and Discussion
0000	0000000	00	0000000000000	000000000000000000000000000000000000000	0000

Notations

Let
$$\omega_k^T = (\omega_{1k}, \cdots, \omega_{mk}), \ k = 1, 2, 3, \ \boldsymbol{\omega}^T = (\omega_1^T, \omega_2^T, \omega_3^T)$$
 and
 $\boldsymbol{\phi}^T = (\alpha_1, \alpha_2, \alpha_3, \gamma_1, \gamma_2, \gamma_3, \beta_1^T, \beta_2^T, \beta_3^T)$ and $\boldsymbol{\theta}^T = (\theta_1, \theta_2, \theta_3).$

For i = 1, ..., m, denote

$$D_{i1} = \sum_{j=1}^{n_i} \delta_{ij1}, \quad D_{i2} = \sum_{j=1}^{n_i} (1 - \delta_{ij1}) \delta_{ij2}, \quad D_{i3} = \sum_{j=1}^{n_i} \delta_{ij1} \delta_{ij2}.$$

◆□ → ◆□ → ◆臣 → ◆臣 → ○ ● ● の < @

Log-likelihood function without measurement error

The log-likelihood for the whole sample is

$$\begin{split} l(\phi, \theta, \omega) &= \sum_{i=1}^{m} \ln L_i(\phi, \theta, \omega_{i1}, \omega_{i2}, \omega_{i3}) \\ &= l_1(\theta_1, \omega_1) + l_1(\theta_2, \omega_2) + l_1(\theta_3, \omega_3) + l_2(\phi, \omega), \end{split}$$

where

$$l_1(\theta_k,\omega_k) = \sum_{i=1}^m \left[\left(\frac{1}{\theta_k} + D_{ik} - 1 \right) \ln \omega_{ik} - \frac{\omega_{ik}}{\theta_k} - \ln \Gamma(\frac{1}{\theta_k}) - \frac{1}{\theta_k} \ln \theta_k \right],$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = ● のへで

Introduction	Model and Estimation Method	EM algorithm	Simulation Study Analyzing MGUS Data	Conclusion and Discussion
0000	00000000	00	000000000000000000000000000000000000000	0000

where

$$\begin{split} l_{2}(\phi,\omega) &= \sum_{i=1}^{m} \sum_{j=1}^{n_{i}} \left\{ \delta_{ij1}(1-\delta_{ij2}) \left[\ln(\lambda_{01}(s_{ij1})) + Z_{ij}^{T}\beta_{1} \right] \right. \\ &+ \delta_{ij1}\delta_{ij2} \left[\ln(\lambda_{01}(s_{ij1})) + \ln(\lambda_{03}(s_{ij2})) + Z_{ij}^{T}(\beta_{1}+\beta_{3}) \right] \\ &+ (1-\delta_{ij1})\delta_{ij2} \left[\ln(\lambda_{02}(s_{ij2})) + Z_{ij}^{T}\beta_{2} \right] - r(s_{ij1},s_{ij2},Z_{ij}) \bigg\}. \end{split}$$

◆□ ▶ <圖 ▶ < E ▶ < E ▶ E • 9 < 0</p>

where

$$r(s_{ij1}, s_{ij2}, Z_{ij}) = \omega_{i1} \Lambda_{01}(s_{ij1}) e^{Z_{ij}^T \beta_1} + \omega_{i2} \Lambda_{02}(s_{ij2}) e^{Z_{ij}^T \beta_2} + \omega_{i3} \left[\Lambda_{03}(s_{ij2}) - \Lambda_{03}(s_{ij1}) \right] e^{Z_{ij}^T \beta_3}.$$

Measurement error model

Denote

 Z_{ij}^T = (X_{ij}^T, V_{ij}^T), X_{ij} is a subvector of error-prone covariates, W_{ij} be the surrogate measurement of X_{ij}

•
$$\hat{Z}_{ij}^T = (W_{ij}^T, V_{ij}^T), \ \beta_k^T = (\beta_{kx}^T, \beta_{kv}^T).$$

 Additive measurement error (Carroll et al. 2006): For simplicity, let X_{ij} be univariate variable,

$$W_{ij} = X_{ij} + \varepsilon_{ij}, \quad j = 1, \cdots, n_i, \quad i = 1, \cdots, m,$$

where the errors $\{\varepsilon_{ij}\}$ is a simple random sample from $N(0, \sigma_0^2)$ and σ_0^2 is assumed a known positive constant.

(ロ)、(型)、(E)、(E)、 E) のQ(()

Introduction Model and Estimation Method EM algorithm Simulation Study Analyzing MGUS Data Conclusion and Discussion occorrection of the study of th

Corrected log-likelihood function

Let
$$\eta_0(t)=\textit{Ee}^{tarepsilon_{ij}}=e^{\sigma_0^2t^2}.$$
 The $l_2(\phi,\omega)$ is corrected as

$$\begin{split} I_{c2}(\phi,\omega) &= \sum_{i=1}^{m} \sum_{j=1}^{n_i} \bigg\{ \delta_{ij1}(1-\delta_{ij2}) [\ln(\lambda_{01}(s_{ij1})) + \hat{Z}_{ij}^{\mathsf{T}}\beta_1] \\ &+ \delta_{ij1}\delta_{ij2} [\ln(\lambda_{01}(s_{ij1})) + \ln(\lambda_{03}(s_{ij2})) + \hat{Z}_{ij}^{\mathsf{T}}(\beta_1 + \beta_3)] \\ &+ (1-\delta_{ij1})\delta_{ij2} [\ln(\lambda_{02}(s_{ij2})) + \hat{Z}_{ij}^{\mathsf{T}}\beta_2] - \hat{r}(s_{ij1},s_{ij2},\hat{Z}_{ij}) \bigg\}, \end{split}$$

where

$$\begin{split} \hat{r}(s_{ij1}, s_{ij2}, \hat{Z}_{ij}) \\ &= \eta_0^{-1}(\beta_{1x})\omega_{i1}\Lambda_{01}(s_{ij1})e^{\hat{Z}_{ij}^T\beta_1} + \eta_0^{-1}(\beta_{2x})\omega_{i2}\Lambda_{02}(s_{ij2})e^{\hat{Z}_{ij}^T\beta_2} \\ &+ \eta_0^{-1}(\beta_{3x})\omega_{i3}\left[\Lambda_{03}(s_{ij2}) - \Lambda_{03}(s_{ij1})\right]e^{\hat{Z}_{ij}^T\beta_3}. \end{split}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Corrected maximum likelihood estimators (CMLE)

The corrected log-likelihood

$$I_{c}(\phi,\theta,\omega) = I_{1}(\theta_{1},\omega_{1}) + I_{1}(\theta_{2},\omega_{2}) + I_{1}(\theta_{3},\omega_{3}) + I_{c2}(\phi,\omega).$$
(4)

Given the shared frailties $\{\omega_{ik}, i = 1, \cdots, m; k = 1, 2, 3\}$, find the corrected MLE of θ_k and ϕ

MLE of θ_k given ω_k

$$\widehat{ heta}_k = \operatorname*{argmax}_{ heta_k} l_1(heta_k, \omega_k), k = 1, 2, 3,$$

CMLE of ϕ given ω

$$\widehat{\phi} = \underset{\phi}{\operatorname{argmax}} I_{c2}(\phi, \omega). \tag{6}$$

(5)

Corrected maximum likelihood estimators (CMLE)

The corrected log-likelihood

$$I_{c}(\phi,\theta,\omega) = I_{1}(\theta_{1},\omega_{1}) + I_{1}(\theta_{2},\omega_{2}) + I_{1}(\theta_{3},\omega_{3}) + I_{c2}(\phi,\omega).$$
(4)

Given the shared frailties $\{\omega_{ik}, i = 1, \cdots, m; k = 1, 2, 3\}$, find the corrected MLE of θ_k and ϕ

MLE of θ_k given ω_k

$$\widehat{ heta}_k = rgmax_{ heta_k} I_1(heta_k, \omega_k), k = 1, 2, 3,
onumber$$

CMLE of ϕ given ω

$$\widehat{\phi} = \operatorname*{argmax}_{\phi} I_{c2}(\phi, \omega). \tag{6}$$

(5)

Bayes estimators

The posterior distribution of ω_{ik} is

$$\pi(\omega_{ik}|\alpha_k,\gamma_k,\beta_k,\theta_k) \propto \omega_{ik}^{A_{ik}-1} e^{-\omega_{ik}B_{ik}}, \tag{7}$$

where

$$A_{ik} = \frac{1}{\theta_k} + D_{ik}, \quad B_{ik} = \frac{1}{\theta_k} + \frac{1}{\eta_0(\beta_{kx})} \sum_{j=1}^{n_i} \gamma_k s_{ijk}^{\alpha_k} e^{\hat{Z}_{ij}^T \beta_k}.$$

Bayes estimators of the shared frailties

$$\widehat{\omega}_{ik} = E(\omega_{ik}|\alpha_k, \gamma_k, \beta_k, \theta_k) = \frac{A_{ik}}{B_{ik}}, \quad i = 1, \cdots, m, k = 1, 2, 3.$$
(8)

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ = 臣 = のへ⊙

Introduction	Model and Estimation Method	EM algorithm	Simulation Study Analyzing MGUS Data	Conclusion and Discussion
0000	00000000	00	000000000000000000000000000000000000000	0000

1 Introduction

2 Model and Estimation Method

3 EM algorithm

4 Simulation Study

5 Analyzing MGUS Data

Conclusion and Discussion

▲ロト ▲圖 → ▲ 国 > ▲ 国 > の Q @

Introduction	Model and Estimation Method	EM algorithm	Simulation Study	Analyzing MGUS Data	Conclusion and Discussion
0000	00000000	• 0	0000000000000	000000000000000000000000000000000000000	0000

EM algorithm: E-step

$$E_{\omega_k} I_1(\theta_k, \omega_k) = \sum_{i=1}^m \left\{ \left(\frac{1}{\theta_k} + D_{ik} - 1 \right) (\psi(A_{ik}) - \ln(B_{ik})) - \frac{A_{ik}}{B_{ik}\theta_k} - \ln\Gamma\left(\frac{1}{\theta_k}\right) - \frac{1}{\theta_k}\ln\theta_k \right\}, \quad (9)$$

where $\psi(x) = \frac{d}{dx} \ln (\Gamma(x)) = \frac{\Gamma'(x)}{\Gamma(x)}$.

$$\begin{split} E_{\omega} I_{c2}(\phi, \omega) &= \sum_{i=1}^{m} \sum_{j=1}^{n_i} \left\{ \delta_{ij1} (1 - \delta_{ij2}) \left[\ln(\lambda_{01}(s_{ij1})) + \hat{Z}_{ij}^T \beta_1 \right] \\ &+ \delta_{ij1} \delta_{ij2} \left[\ln(\lambda_{01}(s_{ij1})) + \ln(\lambda_{03}(s_{ij2})) + \hat{Z}_{ij}^T (\beta_1 + \beta_3) \right] \\ &+ (1 - \delta_{ij1}) \delta_{ij2} \left[\ln(\lambda_{02}(s_{ij2})) + \hat{Z}_{ij}^T \beta_2 \right] - r^*(s_{ij1}, s_{ij2}, \hat{Z}_{ij}) \right\}, \quad (10) \end{split}$$
where $r^*(s_{ij1}, s_{ij2}, \hat{Z}_{ij}) = E_{\omega} \hat{r}(s_{ij1}, s_{ij2}, \hat{Z}_{ij}).$

EM algorithm: M-step

- **Step 1**. Given initial values of $\{\omega_{ik}\}$, obtain the initial estimates of θ and ϕ by (5) and (6).
- **Step 2**. Calculate A_{ik} and B_{ik} , renew the estimate $\hat{\omega}_{ik}$ by (8).
- **Step 3**. Renew the estimates θ and ϕ by maximizing (9) and (10).

Step 4. Repeat Steps 2-3 till the distance between consecutive iterative estimates is smaller than 10^{-4} .

1 Introduction

- 2 Model and Estimation Method
- 3 EM algorithm
- 4 Simulation Study
- 5 Analyzing MGUS Data
- 6 Conclusion and Discussion

Simulation Setting

true parameter values:

 $(\theta_1, \theta_2, \theta_3) = (0.5, 0.5, 1), (\alpha_1, \alpha_2, \alpha_3) = (0.8, 1.1, 0.9), (\gamma_1, \gamma_2, \gamma_3) = (0.05, 0.01, 0.01), \beta_1 = (1, 1)^T, \beta_2 = (1, 1)^T$ and $\beta_3 = (1, -1)^T$.

- {x_{ij}} and {v_{ij}} are independent simple random samples from N(0,1)
- Messure errors $\{\epsilon_{ij}\}$ is a simple random sample from $N(0, \sigma_0^2)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

•
$$\sigma_0^2 = 0, 0.1, 0.25, 0.5$$

🖝 m = 10

•
$$n_1 = n_2 = \cdots = n_m = 50, \ 100$$

500 replicates

Sample data generation

- Generate a sample $\{\omega_{ik}, i = 1, \cdots, m, \}$ from $\Gamma(1/\theta_k, 1/\theta_k)$ for each k = 1, 2, 3.
- Generate covariate samples $\{x_{ij}\}$ and $\{v_{ij}\}$ from N(0, 1), and denote $Z_{ij}^T = (x_{ij}, v_{ij}), j = 1, \dots, n_1, i = 1, \dots, m$. If measurement error is present, we further generate a sample of ε_{ij} from $N(0, \sigma_0^2)$ and calculate $w_{ij} = x_{ij} + \varepsilon_{ij}$ to obtain $\widehat{Z}_{ij} = (w_{ij}, v_{ij})^T$.
- Generate the non-terminal event time T_{ij1} satisfying (1)and the terminal event time T_{ij2} satisfying (2).
- Consider two fixed censoring times: $C_{ij} = 365$ and $C_{ij} = \infty$.

Sample data generation

Table 1: Four combinations

Relation	s _{ij1}	s _{ij2}	δ_{ij1}	δ_{ij2}
$T_{ij1} < T_{ij2} \leq C_{ij}$	T _{ij1}	T _{ij2}	1	1
$T_{ij1} \leq C_{ij} < T_{ij2}$	T _{ij1}	C _{ij}	1	0
$T_{ij2} \leq min(C_{ij}, T_{ij1})$	T _{ij2}	T _{ij2}	0	1
$C_{ij} < T_{ij2} \leq T_{ij1}$	C _{ij}	Ċ _{ij}	0	0

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Three estimation procedures

- MBEM: maximum likelihood and Bayes estimation with EM algorithm
- CMBEM: corrected maximum likelihood and Bayes estimation with EM algorithm
- BMCMC: Bayes estimation with MCMC algorithm (Lee et al. (2016))

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Table 1: Results for data with no measurement error									
$\begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c } \hline Noncensored and $n=500$ \\ \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c } \hline & BIAS & 0.013 & 0.008 & 0.018 & 0.010 & 0.009 & 0.007 & 0.009 \\ \hline \end{tabular} \hline & BIAS & -0.049 & -0.052 & 0.021 & 0.033 & -0.033 & -0.034 \\ \hline \end{tabular} \hline & BIAS & 0.019 & 0.020 & 0.021 & 0.033 & 0.003 & -0.046 \\ \hline \end{tabular} \hline & Noncensored and $n=1000$ \\ \hline \end{tabular} \hline & BIAS & 0.010 & 0.008 & 0.004 & 0.003 & 0.003 & -0.046 \\ \hline \end{tabular} \hline & BIAS & 0.010 & 0.008 & 0.004 & 0.003 & 0.003 & -0.046 \\ \hline \end{tabular} \hline & BIAS & -0.047 & -0.048 & 0.037 & 0.032 & -0.018 & -0.043 \\ \hline \end{tabular} \hline & BIAS & -0.016 & 0.015 & 0.021 & 0.026 & 0.016 & -0.066 \\ \hline \end{tabular} \hline & BIAS & 0.015 & 0.016 & 0.021 & 0.026 & 0.016 & -0.066 \\ \hline \end{tabular} \hline & BIAS & -0.082 & -0.065 & 0.001 & 0.014 & -0.076 & 0.066 \\ \hline \end{tabular} \hline & BIAS & -0.082 & -0.065 & 0.001 & 0.014 & -0.076 & 0.066 \\ \hline \end{tabular} \hline & BIAS & 0.008 & 0.008 & 0.015 & 0.012 & 0.008 & -0.059 \\ \hline \end{tabular} \hline & BIAS & 0.008 & 0.003 & 0.005 & 0.006 & 0.007 & 0.008 \\ \hline \end{tabular} \hline & BIAS & 0.008 & 0.003 & 0.005 & 0.006 & 0.007 & 0.008 \\ \hline \end{tabular} \hline & BIAS & 0.003 & 0.003 & 0.005 & 0.006 & 0.007 & 0.008 \\ \hline \end{tabular} \hline \hline \end{tabular} \hline \hline \end{tabular} \hline \hline \end{tabular} \hline tabu$	Method		\hat{eta}_{1x}	$\hat{\beta}_{1v}$	$\hat{\beta}_{2x}$	$\hat{\beta}_{2v}$	$\hat{\beta}_{3x}$	$\hat{\beta}_{3v}$		
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Noncensored and $n = 500$									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	MDEM	BIAS	0.013	0.008	0.018	0.011	0.025	-0.059		
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	MDEM	MSE	0.006	0.005	0.010	0.009	0.007	0.009		
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	BMCMC	BIAS	-0.049	-0.052	0.021	0.033	-0.033	-0.034		
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	BMCMC	MSE	0.019	0.020	0.031	0.029	0.027	0.021		
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$			Noncer	nsored ar	nd $n = 1$	000				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	MDEM	BIAS	0.010	0.008	0.004	0.003	0.003	-0.046		
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	MDEM	MSE	0.003	0.003	0.004	0.004	0.004	0.005		
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	BMCMC	BIAS	-0.047	-0.048	0.037	0.032	-0.018	-0.043		
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	DIMONIC	MSE	0.016	0.015	0.021	0.021	0.018	0.015		
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$			cens	ored and	n = 50	0				
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	MDEM	BIAS	0.015	0.016	0.021	0.026	0.016	-0.066		
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	MBEM	MSE	0.006	0.006	0.011	0.010	0.012	0.014		
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	BMCMC	BIAS	-0.082	-0.065	0.001	0.014	-0.076	0.066		
MBEM BIAS 0.008 0.008 0.015 0.012 0.008 -0.059 MSE 0.003 0.003 0.005 0.006 0.007 0.008 BMCMC BIAS -0.071 -0.067 0.013 0.017 -0.089 0.071	BMOMO	MSE	0.022	0.020	0.024	0.025	0.039	0.029		
MBEM MSE 0.003 0.003 0.005 0.006 0.007 0.008 BMCMC BIAS -0.071 -0.067 0.013 0.017 -0.089 0.071			cense	ored and	n = 100	00				
MSE 0.003 0.003 0.005 0.006 0.007 0.008 BMCMC BIAS -0.071 -0.067 0.013 0.017 -0.089 0.071	MDEM	BIAS	0.008	0.008	0.015	0.012	0.008	-0.059		
BMCMC	MDEM	MSE	0.003	0.003	0.005	0.006	0.007	0.008		
MSE 0.016 0.016 0.019 0.017 0.033 0.023	PMCMC	BIAS	-0.071	-0.067	0.013	0.017	-0.089	0.071		
	DIMONIC	MSE	0.016	0.016	0.019	0.017	0.033	0.023		

Table 1: Results for data with no measurement error

Introduction	Model and Estimation Method	EM algorithm	Simulation Study Analyzing MGUS Data	Conclusion and Discussion
0000	00000000	00	000000000000000000000000000000000000000	0000

Figure 2: $\lambda_{01}(t)$ for data with no measurement error

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○

Introduction	Model and Estimation Method	EM algorithm	Simulation Study Analyzing MGUS Data	Conclusion and Discussion
0000	00000000	00	000000000000000000000000000000000000000	0000

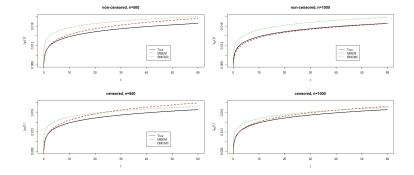


Figure 3: $\lambda_{02}(t)$ for data with no measurement error

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Simulation results

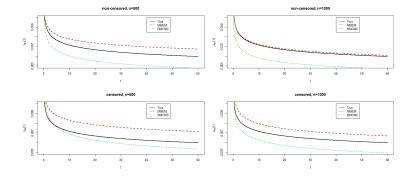


Figure 4: $\lambda_{03}(t)$ for data with no measurement error

Method		$\hat{\beta}_{1x}$	$\hat{\beta}_{1v}$	$\hat{\beta}_{2x}$	$\hat{\beta}_{2v}$	$\hat{\beta}_{3x}$	$\hat{\beta}_{3v}$			
$\sigma_0 = 0.1$										
CMBEM	BIAS	0.026	0.021	0.017	0.016	0.022	-0.058			
CIMBEM	MSE	0.007	0.007	0.010	0.011	0.008	0.009			
MBEM	BIAS	-0.003	0.005	0.004	0.005	0.009	-0.055			
MDEM	MSE	0.006	0.005	0.010	0.008	0.007	0.008			
BMCMC	BIAS	-0.052	-0.041	0.044	0.051	-0.048	-0.028			
BMOMO	MSE	0.018	0.020	0.029	0.032	0.028	0.021			
			$\sigma_0 = 0$).25						
CMBEM	BIAS	0.019	0.019	0.031	0.025	0.038	-0.063			
CMDEM	MSE	0.008	0.007	0.013	0.011	0.012	0.010			
MBEM	BIAS	-0.072	-0.017	-0.086	-0.014	-0.076	-0.037			
MDEM	MSE	0.010	0.006	0.018	0.010	0.013	0.007			
BMCMC	BIAS	-0.054	-0.048	0.042	0.048	-0.039	-0.020			
DIMONIC	MSE	0.021	0.021	0.029	0.033	0.028	0.021			
			$\sigma_0 =$	0.5						
CMBEM	BIAS	0.044	0.031	0.068	0.042	0.084	-0.075			
CMBEM	MSE	0.015	0.009	0.032	0.018	0.030	0.014			
MBEM	BIAS	-0.257	-0.072	-0.284	-0.100	-0.287	0.013			
MDEM	MSE	0.071	0.011	0.087	0.020	0.088	0.006			
BMCMC	BIAS	-0.051	-0.052	0.025	0.023	-0.038	-0.036			
BMCMC	MSE	0.019	0.022	0.024	0.026	0.029	0.025			

Table 2: Estimation for noncensored data with measurement error (n=500)

Method		$\hat{\beta}_{1x}$	$\hat{\beta}_{1v}$	$\hat{\beta}_{2x}$	$\hat{\beta}_{2v}$	$\hat{\beta}_{3x}$	$\hat{\beta}_{3v}$		
$\sigma_0 = 0.1$									
CMBEM	BIAS	0.007	0.007	0.008	0.008	0.005	-0.043		
CMBEM	MSE	0.003	0.003	0.005	0.005	0.003	0.004		
MBEM	BIAS	-0.009	-0.001	-0.015	-0.001	-0.013	-0.042		
MDEM	MSE	0.003	0.003	0.005	0.004	0.003	0.005		
BMCMC	BIAS	-0.035	-0.037	0.033	0.023	-0.013	-0.046		
BMUMU	MSE	0.013	0.012	0.019	0.018	0.017	0.014		
			$\sigma_0 = 0$).25					
CMBEM	BIAS	0.012	0.007	0.011	0.012	0.017	-0.055		
CMBEM	MSE	0.004	0.003	0.006	0.006	0.004	0.006		
MBEM	BIAS	-0.077	-0.023	-0.090	-0.033	-0.093	-0.026		
MDEM	MSE	0.008	0.003	0.012	0.006	0.012	0.004		
BMCMC	BIAS	-0.048	-0.043	0.021	0.023	-0.031	-0.027		
BMCMC	MSE	0.015	0.016	0.018	0.020	0.020	0.015		
			$\sigma_0 =$	0.5					
CMBEM	BIAS	0.024	0.013	0.033	0.022	0.034	-0.056		
CMDEM	MSE	0.007	0.004	0.013	0.008	0.010	0.007		
MBEM	BIAS	-0.263	-0.084	-0.294	-0.114	-0.301	0.021		
	MSE	0.071	0.010	0.090	0.017	0.093	0.004		
BMCMC	BIAS	-0.055	-0.053	0.018	0.016	-0.016	-0.048		
DIMONIC	MSE	0.014	0.015	0.018	0.021	0.014	0.016		

Table 3: Estimation for noncensored data with measurement error (n=1000)

Table 4:	Estimation	1 for cens	sored dat	a with n	ieasurem	ent error	(n=500)		
Method		$\hat{\beta}_{1x}$	$\hat{\beta}_{1v}$	$\hat{\beta}_{2x}$	$\hat{\beta}_{2v}$	$\hat{\beta}_{3x}$	$\hat{\beta}_{3v}$		
$\sigma_0 = 0.1$									
CMBEN	BIAS	0.016	0.018	0.023	0.027	0.024	-0.070		
OWDER	MSE	0.006	0.007	0.011	0.011	0.013	0.015		
MBEM	BIAS	0.002	0.016	-0.006	0.012	0.000	-0.068		
MIDEM	MSE	0.006	0.006	0.010	0.011	0.012	0.015		
BMCMO	BIAS	-0.069	-0.060	0.007	0.021	-0.106	0.062		
DIVICINIC	MSE	0.021	0.019	0.025	0.027	0.052	0.031		
			$\sigma_0 = 0$	0.25					
CMBEN	BIAS	0.018	0.022	0.028	0.030	0.036	-0.068		
UNDEN	MSE	0.007	0.006	0.013	0.012	0.018	0.015		
MBEM	BIAS	-0.071	-0.009	-0.076	-0.030	-0.077	-0.055		
MDEM	MSE	0.010	0.006	0.015	0.011	0.018	0.013		
BMCMO	, BIAS	-0.082	-0.074	0.018	0.030	-0.092	0.070		
DIMONIC	MSE	0.022	0.021	0.027	0.025	0.042	0.031		
			$\sigma_0 =$	0.5					
CMBEN	BIAS	0.047	0.029	0.080	0.050	0.125	-0.096		
UMDEN	MSE	0.017	0.010	0.038	0.021	0.065	0.022		
MBEM	BIAS	-0.256	-0.074	-0.281	-0.095	-0.287	-0.038		
MDEM	MSE	0.070	0.011	0.087	0.019	0.091	0.011		
BMCMO	, BIAS	-0.074	-0.073	0.012	0.026	-0.109	0.080		
DMOMO	MSE	0.021	0.020	0.024	0.027	0.043	0.031		

Table 4: Estimation for censored data with measurement error (n=500)

Introduction Model and Estimation Method EM algorithm Simulation Study Analyzing MGUS Data Conclusion and Discussion

Simulation results

Table 5:	Results for censored data with measurement error $(n=1000)$						
Method		$\hat{\beta}_{1x}$	$\hat{\beta}_{1v}$	$\hat{\beta}_{2x}$	$\hat{\beta}_{2v}$	$\hat{\beta}_{3x}$	$\hat{\beta}_{3v}$
$\sigma_0 = 0.1$							
CMBEM	BIAS	0.007	0.006	0.011	0.008	0.013	-0.057
	MSE	0.003	0.003	0.005	0.005	0.007	0.008
MBEM	BIAS	-0.008	0.003	-0.005	0.006	-0.009	-0.052
	MSE	0.003	0.003	0.004	0.005	0.006	0.008
BMCMC	BIAS	-0.077	-0.065	0.005	0.022	-0.093	0.070
	MSE	0.016	0.014	0.018	0.018	0.035	0.023
$\sigma_0 = 0.25$							
CMBEM	BIAS	0.010	0.007	0.022	0.017	0.016	-0.060
	MSE	0.004	0.003	0.006	0.005	0.008	0.009
MBEM	BIAS	-0.077	-0.021	-0.087	-0.030	-0.089	-0.046
	MSE	0.009	0.003	0.012	0.006	0.013	0.006
BMCMC	BIAS	-0.072	-0.063	0.001	0.017	-0.090	0.064
	MSE	0.015	0.014	0.016	0.016	0.030	0.020
$\sigma_0 = 0.5$							
CMBEM	BIAS	0.023	0.017	0.022	0.016	0.062	-0.071
	MSE	0.006	0.004	0.010	0.007	0.021	0.011
MBEM	BIAS	-0.267	-0.074	-0.286	-0.104	-0.295	-0.025
	MSE	0.073	0.008	0.085	0.015	0.091	0.005
BMCMC	BIAS	-0.080	-0.072	0.011	0.021	-0.096	0.079
	MSE	0.017	0.017	0.018	0.016	0.034	0.024

1000)

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 三臣 = のへぐ

Simulation results

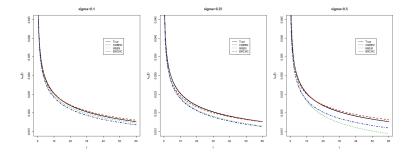


Figure 5: $\lambda_{01}(t)$ for noncensored data with measurement error and n = 500

Simulation results

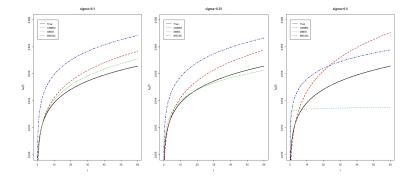


Figure 6: $\lambda_{02}(t)$ for noncensored data with measurement error and n = 500

Simulation results

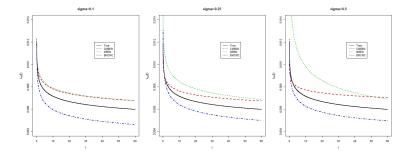


Figure 7: $\lambda_{03}(t)$ for noncensored data with measurement error and n = 500

()

- 2

Simulation results

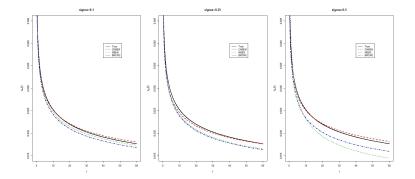


Figure 8: $\lambda_{01}(t)$ for noncensored data with measurement error and n = 1000

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ● のへで

Simulation results

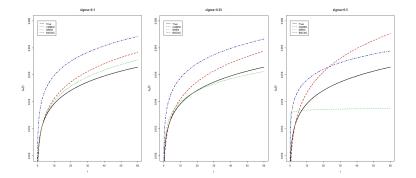


Figure 9: $\lambda_{02}(t)$ for noncensored data with measurement error and n = 1000

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Simulation results

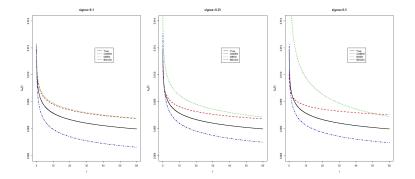


Figure 10: $\lambda_{03}(t)$ for noncensored data with measurement error and n = 1000

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ● のへで

Simulation results

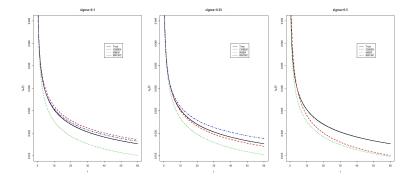


Figure 11: $\lambda_{01}(t)$ for censored data with measurement error and n = 500

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

Simulation results

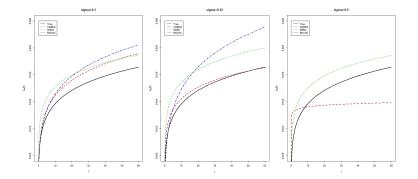


Figure 12: $\lambda_{02}(t)$ for censored data with measurement error and n = 500

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = 釣��

Introduction	Model and Estimation Method	EM algorithm	Simulation Study Analyzing MGUS Data	Conclusion and Discussion
0000	00000000	00	000000000000000000000000000000000000000	0000

Simulation results

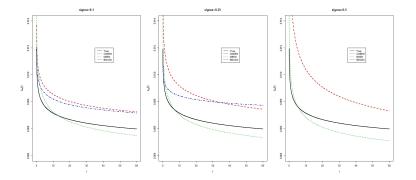


Figure 13: $\lambda_{03}(t)$ for censored data with measurement error and n = 500

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

Simulation results

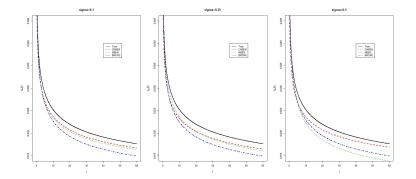


Figure 14: $\lambda_{01}(t)$ for censored data with measurement error and n = 1000

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

Simulation results

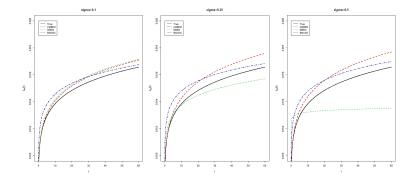


Figure 15: $\lambda_{02}(t)$ for censored data with measurement error and n = 1000

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Simulation results

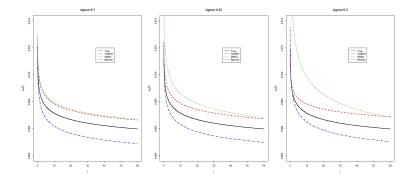
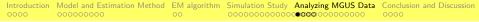


Figure 16: $\lambda_{03}(t)$ for censored data with measurement error and n = 1000

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 - 釣��

- For small variation in measurement error (e.g. $\sigma_0 = 0.1$), both CMBEM and MBEM perform very well with very small absolute biases and MSEs no matter the data is censored or not, while BMCMC is relatively worse. For example, from Table 3, the relative efficiencies of BMCMC to CMBEM and BMCMC to MBEM for $\hat{\beta}_{2x}$ are both 3.8, and for $\hat{\beta}_{2v}$ are 3.6 and 4.5.
- As the error variance increases, CMBEM becomes more efficient in estimating β_{kx} , k = 1, 2, 3. However, MBEM gradually shows the lost of efficiency. For example, from Table 2, the relative efficiencies of MBEM to CMBEM are 4.73, 2.72 and 2.93. Furthermore, the absolute biases of the estimators $\hat{\beta}_{kx}$ by MBEM are much larger than those by CMBEM. Regarding to the performance of the estimators for β_{kv} , Tables 2-5 show that CMBEM still remain small absolute biases and MSEs, sometimes even smaller than MBEM.

- For small variation in measurement error (e.g. $\sigma_0 = 0.1$), both CMBEM and MBEM perform very well with very small absolute biases and MSEs no matter the data is censored or not, while BMCMC is relatively worse. For example, from Table 3, the relative efficiencies of BMCMC to CMBEM and BMCMC to MBEM for $\hat{\beta}_{2x}$ are both 3.8, and for $\hat{\beta}_{2v}$ are 3.6 and 4.5.
- As the error variance increases, CMBEM becomes more efficient in estimating β_{kx}, k = 1, 2, 3. However, MBEM gradually shows the lost of efficiency. For example, from Table 2, the relative efficiencies of MBEM to CMBEM are 4.73, 2.72 and 2.93. Furthermore, the absolute biases of the estimators β̂_{kx} by MBEM are much larger than those by CMBEM. Regarding to the performance of the estimators for β_{kv}, Tables 2-5 show that CMBEM still remain small absolute biases and MSEs, sometimes even smaller than MBEM.


- BMCMC seems not very sensitive to the increase of the error variance. Notice that no matter the error variance is small or large, most of the results by CMBEM are better than those by BMCMC.
- With the increase of sample size, the estimators by CMBEM becomes more effective, but those by MBEM and BMCMC do not improve as much.
- Figures 4-7 show that CMBEM performs more competitively than MBEM and BMCMC in most simulation settings. Among the three estimated baseline hazard functions, all three procedures perform the best for $\hat{\lambda}_{01}(t)$, followed by $\hat{\lambda}_{02}(t)$ and $\hat{\lambda}_{03}(t)$. It is also notice that, as the sample size increases, both $\hat{\lambda}_{02}(t)$ and $\hat{\lambda}_{03}(t)$ are significantly improved by CMBEM and comparable to BMCMC, while MBEM is not robust, typically when $\sigma_0 = 0.5$.

- BMCMC seems not very sensitive to the increase of the error variance. Notice that no matter the error variance is small or large, most of the results by CMBEM are better than those by BMCMC.
- With the increase of sample size, the estimators by CMBEM becomes more effective, but those by MBEM and BMCMC do not improve as much.
- Figures 4-7 show that CMBEM performs more competitively than MBEM and BMCMC in most simulation settings. Among the three estimated baseline hazard functions, all three procedures perform the best for $\hat{\lambda}_{01}(t)$, followed by $\hat{\lambda}_{02}(t)$ and $\hat{\lambda}_{03}(t)$. It is also notice that, as the sample size increases, both $\hat{\lambda}_{02}(t)$ and $\hat{\lambda}_{03}(t)$ are significantly improved by CMBEM and comparable to BMCMC, while MBEM is not robust, typically when $\sigma_0 = 0.5$.

- BMCMC seems not very sensitive to the increase of the error variance. Notice that no matter the error variance is small or large, most of the results by CMBEM are better than those by BMCMC.
- With the increase of sample size, the estimators by CMBEM becomes more effective, but those by MBEM and BMCMC do not improve as much.
- Figures 4-7 show that CMBEM performs more competitively than MBEM and BMCMC in most simulation settings. Among the three estimated baseline hazard functions, all three procedures perform the best for $\hat{\lambda}_{01}(t)$, followed by $\hat{\lambda}_{02}(t)$ and $\hat{\lambda}_{03}(t)$. It is also notice that, as the sample size increases, both $\hat{\lambda}_{02}(t)$ and $\hat{\lambda}_{03}(t)$ are significantly improved by CMBEM and comparable to BMCMC, while MBEM is not robust, typically when $\sigma_0 = 0.5$.

1 Introduction

- 2 Model and Estimation Method
- 3 EM algorithm
- 4 Simulation Study
- 5 Analyzing MGUS Data
 - Conclusion and Discussion

MGUS Data

- MGUS: monoclonal gammopathy of undertermined significance data (Kyle et al. 2018), available in R survival package
- 1384 observations with 10 variables
- Three clusters: homoglobin low, normal, high
- Covariate with measurement error: the size of the monoclonal serum spike (*mspike*)

- Accurately observed covariate: age
- Non-terminal event: plasma cell malignancy (PCM)
- 🖝 Terminal event: death

Results for MGUS Data

Table 2: The covariate effects estimated for MGUS

Method		$\hat{\beta}_{1x}$	$\hat{\beta}_{1\nu}$	$\hat{\beta}_{2x}$	$\hat{\beta}_{2v}$	$\hat{\beta}_{3x}$	$\hat{\beta}_{3v}$
CMBEM	Estimate	0.8921	0.0139	0.0321	0.0544	0.0323	0.0541
CIVIDEIVI	SE	0.1716	0.0066	0.0545	0.0042	0.0546	0.0043

Results for MGUS Data

sigma=0.582

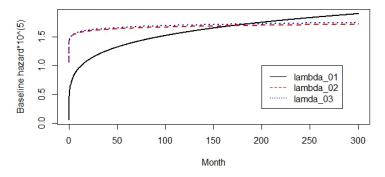


Figure 17: The baseline hazard estimated for MGUS

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● のへで

Results for MGUS Data

- age is significant for all three baseline hazards, while mspike is significant only for the hazard from healthy to PCM
- the risks from PCM to death and direct to death are about the same, while the PCM risk is much smaller than the previous two transitions within 15 years.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

1 Introduction

- 2 Model and Estimation Method
- 3 EM algorithm
- 4 Simulation Study
- 5 Analyzing MGUS Data

Conclusion

- a shared frailty semi-competing model with measurement errors in covariates for cluster data
- propose a corrected maximum likelihood estimation for the covariate effects and Bayes estimation for the shared frailties
- EM algorithm is utilized for numerical optimization.
- simulation study shows that the proposed method works better than the Bayes estimation with MCMC algorithm in Lee et al. (2016).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Discussion

Interval censored semi-competing risks data?

Different baseline hazard functions or frailty distributions?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Theoretically properties?

Discussion

- Interval censored semi-competing risks data?
- Different baseline hazard functions or frailty distributions?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Theoretically properties?

Discussion

- Interval censored semi-competing risks data?
- Different baseline hazard functions or frailty distributions?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Theoretically properties?

Main references

- Carroll RJ, Ruppert D, Stefanski LA, et al. Measurement error in nonlinear models: a modern perspective. New York: Chapman and Hall/CRC, 2006.
- Fine JP, Jiang H, Chappell R. On semi-competing risks data. *Biometrika* 2001; **88**(4): 907-919.
- Haneuse S and Lee KH, Semi-Competing Risks Data Analysis: Accounting for Death as a Competing Risk When the Outcome of Interest Is Nonterminal. *Circ Cardiovasc Qual Outcomes* 2016; 9(3):322-331. transplantation. *Stat Med* 2001; 20: 1871-1885.
- Kyle RA, Larson DR, Therneau TM, et al. Long-term follow-up of monoclonal gammopathy of undetermined significance. *New Engl J Med* 2018; **378**(3): 241-249.
- Lee KH, Dominici F, Schrag D, et al. Hierarchical models for semicompeting risks data with application to quality of end-of-life care for pancreatic cancer. *J Am Stat Assoc* 2016; **111**(515): 1075-1095.
- Peng LM and Fine JP. Regression modeling of semi-competing risks data. Biometrics 2007; 63: 96-108.
- Shu Y, Klein JP and Zhang MJ. Asymptotic theory for the Cox semi-Markov illness-death model. *Lifetime Data Analysis* 2007; **13**(1):91-117.

Introduction	Model and Estimation Method	EM algorithm	Simulation Study Analyzing MGUS Data	Conclusion and Discussion
0000	00000000	00	000000000000000000000000000000000000000	0000

Thank you !