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1 Overview of the Field
Open quantum systems. A quantum system subjected to external influences is said to be open. The
external degrees of freedom are often referred to as an environment, a bath, a reservoir or simply a noise.
Typical examples of open quantum systems cover artificial and natural systems including a register of qubits
(the system) in contact with a substrate they are mounted on (the environment), or a molecule undergoing a
chemical reaction while immersed in a sea of surrounding substances (the solvent) influencing the process.
Moreover, in large molecules the electrons and nuclear coordinates that do not directly take part in the reaction
may act as a reservoir for the reaction coordinate(s). An open system may experience phase loss, energy and
particle exchange with the surroundings, thus being open drastically impacts its dynamics. As even slight
external influences can change the evolution of a quantum system considerably, it is important, both from a
theoretical and practical standpoint, to be able to model and analyze such interactions. The study of open
quantum systems is an important part of modern science. It carries a direct impact on different areas, such
as the development of energy conversion and storage technologies based on organic or biological molecules
and the realization of quantum-based technologies.

According to the postulates of quantum mechanics, the dynamical equation of a closed quantum system
(not subjected to an external noise) is the Schrödinger equation, a differential equation governing the time
evolution of the wave function (the state) of a system. A direct method to analyze the evolution of an open
quantum system is to find the reduction of the evolution of the full system plus environment complex. In
this approach, one first explicitly models the system and the environment including their interaction. These
two components together form a closed system, and are thus described by the Schrödinger equation. (Most
often, the latter is incredibly complicated since it encompasses all degrees of freedom of the system as well
as the environment – and it cannot be used in practical applications.) One then takes the reduction of the
full Schrödinger equation to find the effective evolution equation for the system alone. This procedure is
often called tracing out the environment. It amounts to taking a partial expectation value with respect to the
environment degrees of freedom. The resulting dynamical equation is still complicated, but it involves only
the degrees of freedom of the system alone (dimensional reduction). The formally exact Nakajima-Zwanzig
master equation [1] is an example of such a reduction process. Even in the simplest possible situation where
the system is a single spin (qubit), the effective equation is one for a 2 × 2 hermitian matrix (spin density
matrix), but it is not solvable analytically. Part of the problem is that the structure of the equation changes
under the above explained reduction: While the original Schrödinger equation has a propagator generated by
a hermitian Hamiltonian (generator of the dynamics) and is local in time, the effective, reduced equation is
not local in time. It contains memory effects (is non Markovian) due to the flow of information back and
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forth between the system and its environment. The emergence of this complexity is not too surprising as the
effective equation has to incorporate all noise effects and all properties of the reservoir. Finding theoretical
and numerical approximation schemes to analyze and solve these effective equations has been a long standing
challenge in various sub-disciplines of mathematics, physics and chemistry. It is of increasing interest in
biology, engineering and even the social sciences [2, 3, 4, 5].

There is a classical, heuristic derivation of the effective open system dynamics in a parameter setting
called the Markovian approximation. In this regime, the system–environment interaction is small and the
environment has rapidly decaying correlations (fast memory loss). Using a perturbation theory based on
heuristic (mathematically not justified) arguments, one can derive the so-called Markovian master equation.
In this setting, the time-local property of the original Schrödinger equation is restored (memory effects are
neglected) and one can define the analogous object to the Hamiltonian, called the Lindblad operator, which
generates the reduced dynamics. One can then use the standard methodology to link the spectrum of the
generator to dynamical properties. The real spectrum of the Hamiltonian turns into a complex spectrum of
the non hermitian Lindblad operator. This means that effective energies are complex numbers. As such,
they introduce irreversibility into the system dynamics, according to dynamical factors e−iεt, where t is
time and ε is an energy. The Markovian master equation is ubiquitous in applied and theoretical fields,
sustaining an enormous body of research work. From a practical perspective, it is often in excellent agreement
with numerical investigations of the true open system dynamics, and with experiments. From a theoretical
perspective, the Markovian master equation is beautiful due to its inherent structure [6, 7], which in turn
can be used to produce new models of open system dynamics, dispensing with the need to go through the
reduction procedure described above.

Exciton and charge transfer processes. Many processes in chemistry involve reactions in which elec-
trons are transferred between chemical compounds, moving from a reactant to a product. In realistic models,
these transfer processes are influenced by the medium in which they are embedded. The Canadian chemist
Rudolph Marcus established a formula describing the reaction rate of such processes, named after him as the
Marcus formula. He was awarded the 1992 Nobel prize in Chemistry for his contributions to the theory of
electron transfer reactions in chemical systems. The Marcus formula is widely used, designed to work for
strong system-environment interactions and at high temperatures (room temperature), which are often en-
countered in chemistry and biology. In Marcus’ original work, the environment was not treated as a quantum
system. However, it was later shown in [8] that the Marcus formula can be derived from the fully quantum
mechanical spin-Boson model where the environment is a quantum field in thermal equilibrium. The work [8]
identifies the Marcus formula as the transition rate emerging from a (still heuristic) Markovian approximation
to the open system dynamics. The latter is based on a derivation of the master equation given in [10].

A similar formalism can be used to describe exciton, or energy transfer processes. These are mechanisms
encountered for example in light-sensitive molecules (chromophores) in plants and bacteria enabling pho-
tosynthesis [4]. In this context, excitation can be exchanged between molecular orbitals of electrons which
lie spatially close together, but which are bound to nuclei belonging to different molecules. A donor chro-
mophore, initially in its electronic excited state, can transfer energy to an acceptor chromophore through
electrostatic dipole-dipole interaction, brought about by interaction with a common environment (a radiation
field), which mediates the electrostatic coupling. No photons are emitted nor are any electrons transferred in
these processes. According to the Förster resonance energy transfer theory (Theodor Förster), the reaction
rate of such processes scales as 1/R6, where R is the distance between the donor and acceptor molecular
units. The theory is based on heuristic arguments involving an application of the so-called Fermi Golden
Rule within the realm of quantum electrodynamical calculations [11]. By measuring transfer rates one can
estimate the distance between the donor and acceptor agents, which is important in chemistry and biology
Nevertheless, to our knowledge, a mathematically satisfying derivation of the 1/R6 scaling does not exist up
to now.

A mathematical approach: Davies theory. The first mathematically rigorous derivation of the Marko-
vian master equation is due to E.B. Davies [9] in the mid 70ies. It is shown that up to times t = O(λ−2)
the Markovian master equation is correct, where λ is the system environment coupling constant, which is as-
sumed to be small. More precisely, the difference between the true dynamics and the one given by the master
equation converges to 0 as λ → 0, uniformly on time scales t ≤ cλ2 (where c > 0 is any fixed constant).
While mathematically rigorous, Davies’ results only prove the validity of the Markovian master equation for



3

finite times – if interested in longer and longer time scales, one has to shrink at the same time the strength of
the system-environment coupling. This regime is called the weak coupling, or Van Hove regime.

Numerically-exact methods. Complementing analytic treatments, the exact time evolution of an open
quantum system can be approached numerically using various ideas. In such numerically-exact techniques,
convergence (to hopefully the exact limit) is reached by pushing a numerical parameter as far as one can—
limited by computing power and available memory of resources. Numerical parameters (unlike physical
variables) include, for example, the time-step discretizing the dynamics, the size of the basis set that builds
the model, or the ‘depth’ (history) of the memory function used to solve the non-Markovian Master equation.
Due to the ‘curse of dimensionality’ – the cost of simulating a quantum system grows exponentially with the
number of degrees of freedom – numerically exact methods are typically limited to simulate relatively small
systems, specific type of baths (usually harmonic oscillators), and simple types of interactions between the
two.

The dynamics of an open quantum system bilinearly coupled to a harmonic bath can be formally written
as a path integral built around the Feynman-Vernon influence functional (IF), an object which incorporates the
effect of the environment on the system. Several numerically exact methods are based on the IF description,
including the celebrated quasi-adiabatic propagator path integral (QuAPI) method [12] and the Hierarchical
Equations of Motion (HEOM) [13]. In particular, an efficient time evolution scheme can be developed based
on the observation that in certain situations, the memory kernel of the IF decays within a finite time. This
observation is utilized in QuAPI for the controlled truncation of the memory kernel within the path integral,
and the development of an iterative time evolution scheme. The method converges to (hopefully) the exact
limit by reducing the time step (Trotter error) and increasing the memory time in the path integral. The
HEOM is similarly derived from the influence functional expression. It is organized as a sequence (layers) of
Markovian Master equations, with convergence achieved by increasing the depth of the layer, thus covering
memory (non-Markovian) effects increasingly well.

With the goal to describe more complex systems, beyond spin-boson type models, recent years have
seen an explosion in efforts to develop numerically exact algorithms. Some examples include improve-
ments of QuAPI [14, 15, 16] and the HEOM [17, 18], the development of a dynamical Quantum Monte
Carlo algorithm [19], and advancements to wavefunction-based methods such as the Multi-configuration
time-dependent Hartree (MCTDH) [20, 21, 22]. The latter approach solves the time-dependent Schrödinger
equation for multidimensional systems by considering all degrees of freedom of a (finite-size) system-bath
model. Altogether, while numerically exact methods are widely used for describing chemical processes, a
rigorous understanding of their convergence behavior is generally missing. As yet, identifying convergence
with these tools is based on the mere observation of a behavior that is seemingly focalizing and stabilizing to
an acceptable physical solution.

2 Recent Developments and Open Problems
Markovian master equations. On the mathematical side, a derivation of the Markovian master equation
for all time scales has been given recently using the so-called dynamical resonance theory. This result im-
proves the above-mentioned Davies theory. In [23] it is shown that the difference between the true and the
master equation approximated dynamics is of O(λ2), uniformly for all times t ≥ 0. This work is based on
the so-called resonance theory, which combines spectral techniques (complex scaling) with operator alge-
braic methods. So far, the rigorous theory assumes some technical conditions which translate, in particular,
into exponential decay of the environment correlation function. It became apparent from discussion during
the workshop that a substantial extension of the resonance theory is desirable. In particular, the following
questions have emerged:

– Can one extend the resonance theory for polynomially decaying correlations?

– Can one describe the dynamics of a system coupled to several reservoirs at different temperatures?

– Is the formalism useful to describe the evolution of initially entangled system-environment states?
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– What is the proper basis choice for the development of the Markovian master equation, the global
(eigenenergy) or the local (spatial) one?

Strong system-bath coupling. A fundamental aspect of many real quantum dissipative systems is that they
are not necessarily operating in the weak system-bath coupling regime, unlike macroscopic systems in which
the boundary region between the system and its environment is small relative to the bulk volume. Treating
open systems at strong coupling is challenging. It can be addressed by making use of perturbation theories
[24] and through resummation techniques [25]. One may also apply a unitary transformation to the Hamil-
tonian, to reach a form that is more suitable for weak coupling techniques. Such approaches include the
generalized quantum master equation based on the polaron transformation [26] (see e.g. [27] for a recent ap-
plication), the reaction coordinate method [28], and mapping techniques [29]. Alternatively, one may retract
from analytic methods and employ purely numerical techniques, which in principle can capture the exact dy-
namics at strong coupling. A partial list of numerically exact techniques includes QuAPI [12], HEOM [13],
transfer matrix methods [30], and the wavefunction [20] and stochastic formalisms [31]. Open questions
concern the accuracy and confluence of such different methods addressing the strong coupling limit:

– What should be the criteria for convergence in numerical algorithms?

– Is convergence necessarily monotonic if we take into account strong coupling effects (e.g. by a pertur-
bative expansion)?

– How do we meaningfully compare results obtained from different tools?

Accuracy and predictive power. The Marcus formula beautifully describes the rate of electron transfer in
donor-bridge systems at high temperatures. Motivated by this successful theory, a central goal in the research
of open quantum systems has been to construct models, which are simple enough to perform calculations,
yet sufficiently rich to be predictive. Of particular interest are light-sensitive molecules. In photosynthesis,
the energy of solar photons generates an electronic excitation, which travels (as an exciton) through the
biomolecular chromophores until it is captured at the reaction centre. Several aspects complicate simulations
of this process, specifically: (i) The coupling of the system (localized exciton) to the environment (vibrations
of the protein) cannot be treated as weak. (ii) The protein environment, described by the spectral density
function, is highly structured. These two aspects render inapplicable the weak coupling Markovian maser
equation. Understanding photochemical processes (photosynthesis, vision), and imitating them, has been a
central theme in theoretical chemistry for decades. Open challenges include:

– Developing models and methods for light harvesting processes, specifically to take into account non-
Markovian effects.

– Examining of the role of quantum coherences in condensed phases environments. Can quantum prop-
erties survive under thermal noise?

– Working closely with experimental data and developing models with predictive power.

Quantum thermodynamics and quantum control. Recent years have seen growing interest in “quantum
thermodynamics”, a discipline seeking to understand how the laws of thermodynamics emerge from quantum
mechanics, without additional assumptions. The theory of open quantum systems offers a natural framework
to examine this fundamental topic. In the context of heat engines, for example, the working fluid corresponds
to the ‘system’, while the attached heat baths and the driving protocol constitute different environments.
The field of quantum thermodynamics has a long history. The theory of the Laser is a prime example of
its success. Recent experimental progress in building, controlling, and probing nanoscale systems, and even
monitoring energy exchange at the single atom level, allows to meaningfully study basic questions regarding
the role of quantum effects in the operation of thermal machines. Some goals in quantum thermodynamics
are to:

– Develop a quantum theory that provides consistent definitions of thermodynamical concepts (heat,
work, entropy) at strong system-bath coupling.
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– Develop a master equation for driven systems, which is consistent with thermodynamic principles.

– Understand the impact of quantum resources, such as coherence and correlations (entanglement) on
the performance of quantum heat engines.

– Learn how to treat the effect of multiple reservoirs on the system, since this interaction can become
non-additive in the strong coupling limit.

New tools: Machine learning quantum and dynamics. Machine learning (ML) is revolutionizing many
fields including manufacturing industries, healthcare, finance, transportation. In the sciences, so far its main
impact has been in material science and pharmaceutics, accelerating e.g. drug discovery and providing pre-
dictions of molecular properties. Employing ML techniques to quantum molecular dynamics is a promising
new avenue. Some of the exploratory questions we ask are: Can we probe open quantum systems using ML
methods? What types of molecular dynamic methods would directly benefit from an integration with ML
tools, providing for instance efficient interpolation, parameter optimization, guided search?

Statement on the objectives of the workshop. The goal of the workshop was to open the dialog between
mathematicians, physicists and chemists, to identify important open theoretical problems surrounding charge
and energy transfer processes, and to craft solution strategies. The workshop aimed at helping to break down
“language barriers”, which prevent mathematicians from applying their knowledge to relevant chemistry
problems, and conversely, prohibit chemists from applying new mathematical tools. The idea of the workshop
was to join research efforts of different communities working on similar problems, with the ultimate goal of
creating collaborations, which could deliver mathematically rigorous results for realistic systems relevant to
physics and chemistry.

Organizational aspects. The workshop had 32 participants, with 34 presentations. The organizers had in-
vited leading researchers in the field, as well as young researchers and postdoctoral fellows who greatly bene-
fited from the interaction with senior researchers. Participants came from mathematics, theoretical chemistry
and physics departments. The meeting was international with scientists arriving from different parts of the
world: Canada, the US, South America, Europe, Asia and Africa. The organizers actively worked to have
participants from under-represented groups, particularly female scientists.

3 Presentation Highlights
The meeting Charge and Energy Transfer Processes: Open Problems in Open Quantum Systems was held
Aug 18-23, 2019. There were 34 research talks. Here are the hightlights of the talks:

Marco Merkli presented an approach to mathematically prove the validity of the Markovian approxima-
tion for N -level quantum systems in contact with thermal reservoirs. Using quantum resonance theory, he
showed that the true system dynamics is approximated by a completely positive, trace preserving dynamical
group. The novelty is that the validity is proven to hold for all times.

Francesco Petruccione gave a systematic overview of the theory of open quantum walks. He discussed
recent analytical and numerical results, along with some potential applications, and some open problems
related to open quantum walks.

Christiane Koch discussed problems that arise when quantum information meets open quantum systems.
For example, how fast can one export entropy in order to purify a qubit and erase its correlations with the
environment? Christiane addressed this question via the paradigm of a qubit interacting with a structured
environment, using a combination of geometric and numerical optimal control theory.

Martin B. Plenio discussed efficient numerical methods for simulating the dynamics of extended quan-
tum system that are in contact with non-Markovian Environments. Specifically, he presented the time evolv-
ing density operator method with orthogonal polynomials (TEDOPA), and a selection of recent applications
of this method to spatially extended systems at finite temperatures, and in fermionic environments.

Jonathan Keeling spoke about using time-evolving matrix product operators for efficient non-Markovian
quantum dynamics simulations based on the numerically exact quasi-adiabatic path integral approach of
Makri and Makarov. He showed that expressing the system state (and its propagator) as a matrix product
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state (and operator, respectively), provides an improvement of several orders of magnitude, in the size of the
problem, as compared to using QuAPI.

David Limmer presented recent work on developing perturbative master equations to study the photoiso-
merization dynamics through conical intersections. These approaches leverage a separation of time an energy
scales to treat different degrees of freedom at varying levels of accuracy, and they allow reactive pathways to
be visualized.

Dominique Spehner presented a theory of adiabatic quantum transitions in a two-level system coupled
to a free Boson reservoir. Assuming that the reservoir is initially decoupled from the system and in the
vacuum state, Dominique showed how to compute the time-dependent transition probability in the limit of
small system-reservoir coupling, and he analyzed the deviations from the adiabatic transition probability in
absence of the reservoir.

Alain Joye presented work on the nonlinear quantum adiabatic approximation. Considering the adia-
batic limit of a nonlinear Schrödinger equation, in which the Hamiltonian depends on time and on a finite
number of components of the wave function, he proved the existence of instantaneous nonlinear eigenvec-
tors and of solutions which remain close to them (up to a rapidly oscillating phases) in the adiabatic regime.
Consequences on the energy content of these solutions were also discussed.

Janet Anders spoke about the possible energetic footprints of coherence and irreversibility in the quan-
tum regime. She addressed the topic of work extraction in the quantum regime by constructing an optimal
quantum thermodynamic process that removes quantum information in analogy to Landauer’s erasure of
classical information. Janet’s thermodynamic analysis of this optimal process suggests that, in addition to
the work that can be extracted from classical non-equilibrium states, work can be extracted from quantum
coherences.

Luis A. Correa discussed how the performance enhancements that have been observed in various mod-
els of continuous quantum thermal machines have sometimes been linked to the buildup of coherences in
a preferred basis. Then Luis showed that this connection is not always evidence of so-called ‘quantum-
thermodynamic supremacy’. He argued, through some nicely constructed examples, that even if coherence
is present in a specific quantum thermal machine, it is often not essential to replicate the underlying energy
conversion process.

Ronnie Kosloff presented work on the quantum Carnot engine and its quantum signature. Motivated
by previous failed theoretical attempts to model the four-stroke quantum Carnot cycle, that were stymied by
the difficulty in modeling the isothermal branches of the process, he derived a time-dependent nonadiabatic
master equation (NAME) to overcome this challenge. Using this approach he also showed how a finite-time
Carnot-like cycle could be studied, and explored its performance.

Jianshu Cao reviewed a number of aspects of quantum coherence in light-harvesting energy transfer.
Using a minimal model of a three-level system, he showed how to systematically predict both its transient
and steady-state coherences and demonstrated the interplay of exciton trapping at the reaction center and the
non-canonical distribution due to the system-bath coupling. Further, he offered an analysis of the efficiency
and energy flux of the three-level model, showing that the optimal performance lies in the intermediate range
of temperature and coupling strength.

Javier Cerrillo introduced the transfer tensor method, which is an efficient tool for the simulation of
open quantum systems. He showed that by extracting the information contained in short samples of the
initial dynamics, this method has the ability to extend the simulation power of existing exact approaches.
Currently, this technique is being applied in combination with the hierarchy of equations of motion approach,
to facilitate quantum transport studies in the highly challenging strong-coupling and non-Markovian regimes.

Philipp Strasberg discussed quantifiers of non-Markovianity, and, based on linear response theory, pre-
sented a new definition for a measure of non-Markovianity. He went on to discuss how negativities in the
entropy production rate may, or may not, imply non-Markovianity in the dynamics of an open system, and
emphasized the subtleties involved in connecting the mathematical concept of non-Markovianity with a time-
dependent physical observable.

Erik Gauger presented microscopically-derived master equation approaches for modelling quantum net-
works with multiple environments, with a particular focus on how the interplay between coherent and dissi-
pative processes gives rise to a wide variety of non-equilibrium transport phenomena in nanoscopic systems.

Ahsan Nazir considered quantum systems coupled simultaneously to multiple environments, and showed
that enforcing additivity of such combined influences can result in unphysical behaviour in both nonequilib-



7

rium and equilibrium scenarios. He also showed that by restoring environmental non-additivity, strong-
coupling in non-equilibrium quantum systems can be studied through a reaction-coordinate type description.

Yuta Fujihashi presented HEOM simulations of the primary charge separation event at the photosystem
II reaction center, to assess the impacts of the protein environment and intramolecular vibrations on the
exciton and charge transfer dynamics. He suggested that intramolecular vibrations complement the robustness
of the charge separation against the large static electronic disorder. He also presented some recent work on
simulating electronic excitation dynamics initiated by entangled photons.

Gabriel Hanna presented mixed quantum-classical simulations of nonequilibrium heat transport in molec-
ular junctions. He showed how calculations of the steady-state heat current in the nonequilibrium spin-boson
model could be carried out in a variety of parameter regimes using a selection of quantum-classical ap-
proaches, and compared them with numerically exact, as well as weak-coupling-limit results.

Takaaki Aoki considered a single harmonic oscillator coupled to a bath of many harmonic oscillators.
He defined a time-dependent temperature of the oscillator, and showed that this temperature relaxes to that of
the bath in the long-time limit.

Naomichi Hatano introduced exceptional points in quantum mechanics using a classical analogue. He
presented a first principle derivation of the Lindblad equation based on projection operators and applied it to
a two-level system in an external electric field. The spectrum of the Liouvillian displays exceptional points:
the second-order ones are located on lines in the electric field-dissipation rate parameter space, while the
third-order one is at a point.

Abraham Nitzan discussed the quantum thermodynamics of strongly coupled and driven resonant level
models. In particular, he discussed an approximate approach based on a truncated expansion of the full
system-bath density matrix that is written as a power series in the driving modulation rate, from which
work, heat, and entropy production rates can be obtained. A complementary description was also developed,
expressing the density matrix in terms of the asymptotic eigenstates of the system using Møller transition
operators, which yields a host of results that are consistent with the standard NEGF results for this problem.

Roman Krems explored the possibility of using machine learning to build physical models for open
quantum systems based on very restricted available information, and showed how Bayesian machine learning
could be used to address the inverse problem of inferring the Hamiltonian of a system from knowledge of
a few dynamical observables. He illustrated these methods using two applications, (i) constructing accurate
potential energy surfaces from gas-phase reactive scattering data, and (ii) the model selection problem aiming
to derive the particular lattice model Hamiltonian that gives to rise to specific quantum transport properties
for particles in a phonon field.

Giuseppe Luca Celardo discussed electronic states with macroscopic excitonic coherence lengths as an
emergent property of the nanotubular structures found in natural light harvesting systems like the chlorosome.
This coherence arises due to the interplay between geometry and cooperativity observed in processes such
as superradiance and super-transfer. Due to this interplay, an energy gap between the excitonic ground state
and the first excited state emerges which, counterintuitively, increases with the length of the nanotube up to a
critical system size which is close to the length of the natural complexes considered.

Géraldine Haack introduced the reset master equation evolution equation, which describes the interac-
tion of a quantum system with an environment in a probabilistic and phenomenological way. The use and
validity of this reset equation with respect to the laws of thermodynamics were discussed, with a focus on
local detailed balance and entropy balance. She discussed how this approach can be applied in understanding
how to generate or maintain entanglement in open quantum systems, which is a central challenge in quantum
information science.

Andrew Kent Harter discussed Floquet edge state protection in non-Hermitian topological systems. He
mapped out the re-entrant PT phase diagram for a two-level system with time periodic PT-symmetric gain
and loss, that features a PT unbroken phase. As the driving frequency nears resonance the system enters a
PT-broken phase, and when the driving frequency is increased further, the system re-enters the PT-symmetric
phase. This analysis was extended to the spatially extended (periodic) one-dimensional Su-Schrieffer-Heeger
model.

Jean-Bernard Bru discussed the dynamics of fermions and quantum spin systems with long range or
mean field interactions, with the strong-coupling BCS-Hubbard model serving as an example. He argued
that long-range dynamics in such models is in general equivalent to a nontrivial combination of quantum and
classical dynamics, the solution of a self-consistent equation.
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Michael Thorwart discussed the question of whether or not, and on what time-scale, the dynamics of
molecular excitons in biological light harvesting networks is quantum coherent. Despite over a decade of
debate, and contradictory experimental results, there seems to be some convergence in the field on aspects of
this issue in terms of the nature of the observed coherence (vibrational), and on the time-scale of the electronic
coherence involved in the process (approximately 10 fs).

David Coker presented how signatures of vibronic energy transfer emerge in nonlinear spectroscopic
signals. Semi-classical methods based on a new hybrid partial linearized and coherent state density matrix
dynamics approach were outlined, and applied to compute the time-resolved two-dimensional electronic
spectra to elucidate these signatures in models for natural light harvesting systems.

Aaron Kelly discussed a selection of recently developed approaches for simulating nonequilibrium quan-
tum dynamics based on ensembles of classical-like trajectories. The performance of selected techniques of
this type was investigated in a variety of nonadiabatic charge and energy transfer processes, including cavity-
bound spontaneous emission, charge separation and polaron formation, and heat transport through molecular
junctions.

Paul Brumer discussed how processes induced by natural light display properties distinct from those
studied in the laboratory using pulsed lasers. He showed that studying the dichotomy of these situations
helps address the presence or absence of stationary coherences, and reveals new tests for the range of validity
of secular versus nonsecular treatments of driven dynamics.

Qiang Shi spoke about applications of the non-perturbative hierarchical equations of motion approach in
simulating charge and energy transfer dynamics in condensed phase systems. A new approach to calculate
the exact time non-local and time-local memory kernels and their high order perturbative expansions were
discussed, along applications of the HEOM method to charge separation dynamics at the donor/acceptor
interface in organic photovoltaic devices, excitation energy transfer in the Fenna-Matthews-Olson complex,
and electron transport in molecular junctions.

Dvira Segal discussed full counting statistics for charge and energy transport, in terms of methods and ap-
plications to study the steady state transport of particles and energy in open quantum systems. She described
numerous benefits of the FCS approach, and explained in more details recent analysis of experimental data
of anomalous electronic shot noise, which revealed fundamental information on the conducting junction.

Bonus Tutorial Talks: Naomichi Hatano A non-Markovian Analysis of Quantum Otto Engine, Jianshu
Cao Stochastic Formalism and Simulation of Quantum Dissipative Dynamics.

4 Outcome of the Meeting
The meeting involved scientists that study complementing aspects of open quantum system dynamics: math-
ematical foundations of the equations of motion, chemical dynamics in real systems, principles of quantum
thermodynamics, and method development. While the community is diverse, questions over the validity of
techniques, approaching the strong coupling limit, and applications to real systems unified the different pre-
sentations. All the attendees commented that through the workshop they met new people, learned about new
fields, and expanded their scientific network. Several of the participants initiated collaborations based on
interactions at the meeting. The meeting provided mathematicians with an appreciation of the complexity of
real systems, and the fact that simplifying approximations that are favourable mathematically are not justified
in complex environments. The Chemistry and Physics communities were exposed to the process of rigorously
assessing the validity of approximate techniques. Altogether, attendees felt that similar meetings aiming to
consolidate the diverse communities involved in studies of open quantum systems should be organized in the
near future. In particular, it was repeatedly suggested to the organizers to try and arrange for another BIRS
event in the coming years...
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