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Adiabatic transitions in closed systems (1)

e Two-level atom with Hamiltonian Hg(et) varying slowly in time

T = et rescaled time, € « 1 adiabatic parameter.
6(Hg)
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e Assume (A.1) e;(7) and P;(7) depend smoothly on rescaled time
(A2) PZ(T) = PZ(O) for T <0
(A.3) Gap hypothesis: A = inf, g |ea(7) —e1(7)] > 0.



[ Adiabatic transition in closed systems (2) }

e ADIABATIC THEOREM: The probability of transition from
one eigenstate of Hg into another vanishes in the adiabatic
limit £ — 0 and is given at the fixed recaled time ¢ by

s (0) [ Wi () Wi (Dl OD2
(ex(t) — 1(0))° + 0

pV(t;0) =«

W (t) = Kato operator defined by

OWk(t) = i 01 P;(t) Py (t) Wk (1) / . /\

0 ta
and WK(O) =1 1> O
[Kato, J. Phys. Soc. Japan ’50,...] .




| Landau-Zener formula

e Assume that Hg(et) has an o(Hy)
avoided crossing at t = 0, In e(1)
the visicinity of which it wvaries
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linearly with time, o g
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et A el(t)
Hs(et) = % ( A —et )

e LANDAU-ZENER FORMULA: (under appropriate smoothness
assumptions) the probability of transition is exponentially small,
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[Landau 32, Zener ’32, Majorana ’32, ...J
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2-level atom coupled to a free boson reservoir

The 2-level atom is weakly coupled to a free boson bath by a
time-dependent interaction Hamiltonian

Hii(et) = AB(et) ® (a(g) + a*(9))/v/2, X = coupling const.

o linear coupling in the bosonic anihilation and creation op. a(g)
and a*(g) = {d°k g(k)a;, with g € L*(R?)= form factor

o the s.a. operator B(ct) (acts on the atom Hilbert space C?)
varies slowly with time with the same adiabatic parameter ¢
as for the atom Hamiltonian Hg(et).

From now on: t — ¢t = rescaled time

o B(t) commutes with Hg(t) at all times
— no dissipation of energy (pure dephasing dynamics).

Hs(t) = X, ¢;(00Pi(1) . B(t) = 3, b;(8)Py(0)



Adiabatic transition probability

e At t = 0, atom and bosons are decoupled and in their GS
p(0) = |11(0) }X1(0)| ® |0)(0| (bath at zero temperature).

o U) (1) atom-bath evolution operator, given by the time-rescaled
Schrodinger equation

ie&tU,\,g(t) = (Hs(t) Q1 + Hint(t) + 1I® HR) UA,e(t)
e Goal: determine the transition T

probability from one eigenstate s N
|

of the atom into another at the , .

fixed rescaled time ¢t > 0 in the
limits e « 1, \ « 1. - .

pME(t) = tr (Po(t) ® LU () P1(0) ® [0)0| Uy (¢)7)




| Bath time-autocorrelation function

Bath autocorrelation function for free bosons with Hamiltonian
Hpr = { &’k w(k)a;ar and linear dispersion w(k) = |k|:

t) = {(e"g,g9) = § &k |g(k)[Pe M
Fourier transform 4 (w) > 0 (= power spectrum function).

e E.g. rotation-invariant form factor g

g(k) = golk|Z texp (— M) with m > 0

['(m+1)

— ’7( ) — 47Tg0(1+1t)m+1 ) ’7( ) - 87T29(2) we 1{w>0}

e | ime-independent case: decoherence induced by the atom-bath
coupling essentially depends on low frequency behavior of ~(w):
-m < 1 (Ohmic or sub-Ohmic regime): p12(t) — 0 as t — oo

- m > 1 (super-Ohmic regime): decoherence factor
exp(—A2b7, So ds{ dTRe(7)) > e > 0ast — o



Main result
o Assume (Al) e;(t), b;(t) and P;(t) depend smoothly on ¢
(A2) P;(t) = P;(0) for t <0
(A3) Gap hypothesis: A = inf;~g|ea(t) —eq(t)| > 0.

(A4) The bath autocorrelation function satifies
()| <ct ™ L forany t > tgwithm >0 = vye L!
Y(w) ~ yow™ as w — 0+ with m > 0.

e THEOREM: (Joye-Merkli-DS ’19) If A « en=77 « 1 with
m- = min{m, 1} > 0, the transition probability is given by

PO =500+ - [ sV (e ens) + O

p'9(t) = transition proba in the absence of bath, r > 2
e12(s) = e1(s) — ea(s), bia(s) = bi(s) — ba(s) Bohr frequencies



Comments on the theorem

)\2

PO =0 + 5 | ds p ()3 (enals)) +O(E

~N"

>0, =0 when eq2(s)<0
* 1. If X\ scales like /e, the transition proba increases due to
the coupling with the bath by an amount ~ p'?(¢) if tunneling
from excited to ground state, and is left unchanged if
tunneling from ground to excited state.

2. If \/e « A « e/m=*2) the bath strongly helps the atom to

decay from excited state to ground state in a finite time
(P () » plO(t) if eq > e2)

* The 27 term is proportional to A% (since p!%(t) = O(?))

< similar result as for dephasing Lindbladian dynamics (Born
Markov approx.) [Avron-Fraas-Graf-Grech ’10, Fraas-Hdnggli 16/



| Error terms

*x If A~ e qg> (mo+2)71, error terms are of order " with
r=min{3,q + 2= 2¢ + 1 + 4q + m—, 6q}

2m m<+2’
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Expansion of the wave operator

1. Adiabatic evolution operator V) .(t) given by
igatVA,s(t) — (H(t) + 1€ Zj atPj (t)Pj (t) X 1)V>\,€(t)

= Vae(t) = Wk(t) ® 1 Uy (t) with dynamical phase operator
U, () diagonal in the eigenbasis of Hg(0)

2. Dyson expansion of the “wave operator” {1 (t) = Vy _(1)Ux (%)

~

- Z (_1>kf dks qj;’g(sl)k(sl)qu’s(Sl) T \IJ*A,6<Sk)K(Sk)\IJ>\,€(Sk)

k=0 O<sp<-<81<t
with K (t) = W;(t) 3, 0,P;(t) P;(t)Wi(t) independent of .
3. Transition probability:

£ 2 k 2
pr(t) = |P0) c(8)]12(0)) ® 0] = | S i 2(1)))]
— only the first term in the Dyson expansion contributes.



( Exact calculations & Integrations by Parts W

4. The dynamical phase operator can be determined exactly In
terms of the bosonic Weyl operators W (f) = ela(/)+a"(5))/v2.

Ue(t) = ;e A L0-GEOP;0) @ e <HmW (Fy(t,0))
with (1, 7) = ¢ 1S dse;(s) dynamical phase for Hg
i(t,7), F;(t, ) bath functions proportional to \?/c*

5. Integrate twice by parts and use (O|W (F)|0) = e IFI7/4
t S
= Wl =500 ~ 2:%Re { | ds | are e
0 0

1 1 — S, T
X57(621( )a (e( C12—m12)(s, )621(7—)611_)2(577-)))}

with Cia(s, 7), nia(s, 7) oc A?/e?
612(7’) = 61( ) 62( ) and ql_>2(8,7') independent of &, \.




{ Contribution of the 1°' term of the Dyson series J

t S
Wl (1)]2 = <>(t)—252Re{ f s f 1r omiora(s
0 0

1 :
0, (621(7) 0. (e<1C12_”12)<8’7)621(T)Q1—>2(57 T))) }

6. The fastly oscillating bath phase (15 and damping exponent 715
and their derivatives up to 2"¢ order are given by integrals
involving the bath autocorrelation function ~(¢), that are
evaluated in the limit e, A\ <« 1 by relying on

ve LY(R), y(—t) = v(t) and {, dtRe~(t) =0
— the main contribution comes from the term 02(i(1o — 712),

= 01 =500 + ) [ dspO oo era(s)

up to errors O(e3) + O(\2e! T zm=m=r2) + O(X4e™=<) + O(\)
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[ Conclusions & Perspectives }

* Rigorous proof that the coupling with the bath modifies the
transition proba by a positive term oc A\%c determined explicitely
up to small errors when \ « 13 if m > 1 or A « gV/m*2) jf
m < 1 (recall that m > 0 is s.t. Y(w) ~ Yw™ as w — 0+).

* The system+ bath has a continuous
spectrum o,.(t) = |e1(t), 0) and no gap
— we got a more precise adiabatic theo )

than for general gapless time-depend. N

. . . . Py
Hamiltonians with continuous spectra

G (Hg)

1> e

showing that p;_,o > 0 ase — 0
[Avron-FElgart, Teufel, Elgart-Hagedorn 10/
* Open problem: improve control over the error terms for Landau-
Zener Hamiltonians with an avoided crossing: errors of order

O(N2er T Zm=m=32) 4 O(Xe™=) + O(A) ?

t




That’s all!
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