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Open quantum systems

System S coupled to reservoir R of harmonic oscillators

H = HS +
∑
k

ωka
†
kak︸ ︷︷ ︸

HR

+λG ⊗
(∑

k

gka
†
k + h.c.

)

HS =
d∑

j=1

Ej |φj〉〈φj |

λ = coupling constant (∈ R)

G = coupling matrix

gk = form factor (∈ C)



Reduced system dynamics

Initial SR density matrix: ρSR(0)

Reduced density matrix of system:

ρS(t) = trR

(
e−itHρSR(0) eitH

)
In case ρSR(0) = ρS(0)⊗ ρR(0) ⇒ well defined dynamical map

V (t)ρS(0) = ρS(t)

◦ V (t) is not a group: V (t + s) 6= V (t)V (s)

◦ ∀t, V (t) is completely positive, trace preserving (CPT)

◦ Markovian approximation: V (t) ≈ etL CPT semigroup



Resonance theory

Goal

Find a manageable approximation for ρS(t) that

– captures irreversible effects (e.g. decay rates)
– is valid for all times (no “λ2t < const” constraint)
– has a controlled error (λ small, time arbitrary)

Basic philosophy

(1) Start with coupled SR Hamiltonian H

Irreversible dynamics ↔ continuous mode limit of reservoir

(2) Do spectral analysis of H by perturbation theory (λ small)

Eigenvalues ↔ stationary (bound) states
Resonances ↔ metastable states
Continuous spectrum ↔ “scattering states”



Thermodynamic limit

Consider (for instance) reservoir equilibrium state ρR,β ∝ e−βHR

and perform thermodynamic limit

Limit state is represented by a vector in a purified (new) Hilbert
space; has simple, explicit expression

ρR,β  |Ω〉

In the new space, Hamiltonian H takes different form, called
Liouvillian L

eitH  eitL



Spectral analysis of Lλ = L0 + λI

(A) λ = 0: L0 has eigenvalues Ei − Ej embedded in continuous
spectrum, 0 is degenerate (multiple stationary states)

(B) λ 6= 0: Eigenvalues are generically unstable, degeneracy of 0 is
lifted: unique stationary state (equilibrium)



Unstable eigenvalues become complex resonances

– ‘Deform’ operator Lλ  Lλ(θ) by complex scaling:

◦ θ moves continuous spectrum away from eigenvalues

◦ uncovers new, complex eigenvalues

◦ works if reservoir correlation function decays in time

– Analytic perturbation theory: εij(λ) = Ei − Ej + λ2ε′ij + · · ·



Expressing propagator via resonances

– When sandwiched between (suitable) states 〈Ψ| · |Φ〉, true
propagator e itL can be replaced by deformed propagator e itL(θ)

– Spectral decomposition:

e itL(θ) =
∑
j

e itεj (λ)Pj(λ) + O(e−θt)

εj(λ) = e + λ2ε
(2)
j + O(λ4)

e itεj (λ) = e itRe εj (λ)e−tIm εj (λ)

Decay rates: Imεj(λ) ∝ λ2 (or O(λ4)...), decay directions: Pj(λ)



Result 1: Resonance expansion of dynamics

ρSR = initial SR state

ρS,β,λ = full equilibrium state ∝ e−βHλ reduced to S

For all λ small, t ≥ 0, system observable X :

trSR

(
ρSR e itHλXe−itHλ

)
= trS

(
ρS ,β,λX

)
+
∑
j

e itεj (λ) trSR

(
ρSR
(
PjX ⊗ 1R

))
+O

(
λe−γ(λ)t

)
Here, γ(λ) = minj{Imεj(λ)} and Pj are λ-independent projections



Result 2: Markovian approx is valid for all times

ρSR = ρS ⊗ ρR,β ⇒ dynamical map V (t)ρS = ρS(t) well defined

Suppose “Fermi Golden Rule holds”:

γFGR ≡ min
j

Imε
(2)
j > 0

where ε
(2)
j is the second order term of εj(λ) in λ. Then

∥∥V (t)− et(LS+λ
2K)
∥∥ ≤ Cλ2, for all t ≥ 0

LS = −i[HS , · ], K is the “Davies generator”



This result overcomes “λ2t < const.” regime

Previously, only weak coupling- or, Van Hove regime was treated
rigorously:

[Davies ’73, ’74] ∀a > 0

lim
λ→0

sup
0≤λ2t<a

∥∥V (t)− et(L0+λ
2K)
∥∥ = 0

Resonance theory eliminates constraint λ2t < const. !



Illustration: Electron transport in degenerate
donor-acceptor systems

Collaboration with A. Saxena and G.P. Berman, in progress

ND , NA fold degenerate donor, acceptor in thermal enviornment:

H = HS +
∑
k

ωka
†
kak + λG ⊗

∑
k

(
gka
†
k + h.c.

)

Energy landscape for Donor/Acceptor: degenerate minima



Homogeneous coupling between donor and acceptor levels

HS = ED

ND∑
j=1

|Dj〉〈Dj |+ EA

NA∑
k=1

|Ak〉〈Ak |+ V
∑
j,k

(
|Ak〉〈Dj |+ |Dj〉〈Ak |

)

Diagonal coupling to noise

G = gD

ND∑
j=1

|Dj〉〈Dj |+ gA

NA∑
k=1

|Ak〉〈Ak |



Symmetry of Hamiltonian ⇒ invariant subspaces

H = Heff ⊕ HD⊥ ⊕ HA⊥

I Heff is an effective open 2-level system on span{|D〉, |A〉}

|D〉 = 1√
ND

∑ND
j=1 |Dj〉, |A〉 = 1√

NA

∑NA
k=1 |Ak〉

I HD⊥,HA⊥ act on states orthogonal to |D〉 and |A〉 (& on R)

I Via polaron transformation, HD⊥, HA⊥ = HR + const.

⇒ multitude of stationary states ρS ⊗ ρdressed
R,β



Resonance theory: dynamics of DA density matrix for
general initial state ρ0

ρt = Tr(ρ0P
eff
S ) ρeff

S,β + PD⊥ρ0PD⊥ + PA⊥ρ0PA⊥

+2Re e itε
(3)
4 PA⊥ρ0PD⊥

+
e itε

(2)
1

e−βe1 + e−βe2

[
e−βe2P11ρ0P11 − e−βe2P21ρ0P12

−e−βe1P12ρ0P21 + e−βe1P22ρ0P22

]
+2Re e itε

(3)
1 P22ρ0P11 + 2Re

∑
s=1,2 e

itε
(s)
2 PD⊥ρ0Pss

+2Re
∑

s=3,4 e
itε

(s)
2 PA⊥ρ0P(s−2)(s−2) + O(λ2)

– Diabatic DA energies e1,2, states {ϕ1, ϕ2}, Pij = |ϕi 〉〈ϕj |
– Error is independent of t and ND , NA



Total donor population at time t

pD(t) ≡
∑ND

k=1 〈Dk , ρtDk〉

• Resonance theory gives (modulo O(λ2))

pD(t) = pD(0)− (1− e itε
(2)
1 )

1− α2

1 + α2

e−βe2 [ρ0]11 − e−βe1 [ρ0]22
e−βe1 + e−βe2

−2
|α|

1 + α2
Re(1− e itε

(3)
1 )[ρ0]21

−2Re
∑ND

k=1

∑
s=1,2(1− e itε

(s)
2 ) 〈Dk ,PD⊥ρ0PssDk〉

• Note: several decay rates (all explicit)



Coherent/incoherent spread of initial donor population

p1, . . . , pND
: a probability distribution, 0 ≤ pj ≤ 1,

∑
j pj = 1

Consider two families of initial states:

(inc) The incoherent (classical) superposition

ρinc =

ND∑
j=1

pj |Dj〉〈Dj |

(coh) The coherent (quantum) superposition pure state

ρcoh = |ψ〉〈ψ| where |ψ〉 =

ND∑
j=1

√
pj |Dj〉



Final donor population: classical initial state

Independent of distribution {pj}

pD,inc(∞) ≈


1− 1

2ND
, T >> e1 − e2

1− 1

ND(1 + α2)
, T << e1 − e2.

Acceptor not populated for large ND



Final donor population: quantum initial state

Depends on {pj}

pD,coh(∞) ≈


1−

(∑ND
k=1

√
pk

)2
1

2ND
, T >> e1 − e2

1−
(∑ND

k=1

√
pk

)2
1

ND(1+α2)
, T << e1 − e2.

• Low temp & pk = 1/ND ⇒ pD,coh(∞) = 1− 1
1+α2

• Depletion of donor = total population of acceptor (α = 0)

pD,coh(∞) ≈ 0 if T and V
√

NDNA << ED − EA



Upshot

I Coherent (quantum) spread of initial excitation on donor sites
enhances transfer efficiency

I Acceptor population maximized for coherent, uniformly spread
initial excitation, can get fully populated at low temperature

I For large ND and incoherent (classical) initial spread, transfer
efficiency is always low



Conclusion

Resonance theory

I gives expansion of system dynamics for small λ, all t

I gives decay rates, decay directions

I shows Markovian approximation is valid for all times

I furnishes explicit expressions suitable for detailed analysis


