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1 Overview of the Field
After the era of genome-wide association studies (GWAs) high-throughput DNA sequencing studies became
fundamental to isolate the exact causes and contributors of human disease, and to tailor medical treatment
to the individual characteristics of each patient (“precision medicine”). While the vast majority of effect
sizes for common single nucleotide polymorphisms (SNPs) reported in the GWAS catalogue are small, we
now know that much of the heritability for many traits including complex disorders can be explained by
rare but highly penetrant variants. These variants have the potential to be used as “genetic biomarkers” in
practice, for example to predict disease risk or response to a specific therapy. To detect these rare but highly
penetrant variants, family-based study designs are much better suited than population based designs as they
provide a way to test co-segregation with disease of variants that are too rare in the population to be tested
individually in a conventional case-control study. However, many mathematical and statistical challenges
remain in approaches to fully exploit the information in these family based designs. One of the particularly
difficult but exciting challenges for bio-mathematicians and statistical geneticists is to account for various
types of dependence structures in familial DNA sequencing data, and to develop optimal approaches (in
terms of power and scalability) for these time-consuming and expensive studies. Here, dependency can be
caused by relatedness among individuals unknown to the investigators, correlation of nearby genetic markers,
and/or pleiotropy (i.e. genetic variants affecting multiple traits). This workshop brought together some of the
world’s leading experts in this field to address these critical and timely issues.

2 Presentation Highlights

2.1 Rare variant sharing
Sequencing DNA in extended multiplex families can help to identify high penetrance disease variants too rare
in the population to be detected through tests of association in population based studies, but co-segregating
with disease in families. Alexandre Bureau and Ingo Ruczinski presented a statistical framework based on
this paradigm to exploit sequencing data from extended multiplex families [2, 4]. Specifically, when only
few affected subjects per family are sequenced, evidence that a rare variant may be causal can be quantified
from the probability of sharing alleles by all affected relatives given it was seen in any one family member
under the null hypothesis of complete absence of linkage and association. Ingo Ruczinski presented the
general RVS (rare variant sharing) framework for calculating such sharing probabilities when two or more
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affected subjects per family are sequenced, showed how information from multiple families can be combined
by calculating a p-value as the sum of the probabilities of sharing events as (or more) extreme, and introduced
the concept of ”potential p-values” to alleviate the burden due to multiple comparisons. He discussed the im-
portance of the rare variant assumption, and the power of the approach. Alexandre Bureau later discussed
the effect of cryptic relatedness among family founders on the inference, and presented solutions to address
the independence violation (see 2.2). The usefulness of this approach was highlighted in a case study from
families with multiple members born with oral clefts, interrogating the sharing patterns of nucleotide and
structural variants [3, 6].

Dandi Qiao presented an alternative approach, the gene-based segregation test (GESE) [9]. In contrast to
RVS, GESE requires an estimate of variant frequencies to calculate an unconditional probability of segrega-
tion patterns (as compared to calculating the probability of sharing conditional on the variant being observed),
but otherwise relies on very similar assumptions as RVS. Specifically, GESE (like RVS) assumes only one
founder in the family introduced a causal variant in a gene, and limiting the tests to variants with high func-
tional impact is recommended. Further, GESE also calculates the p-value as the sum of the probabilities
of all events as or less likely as the observed event. GESE uses the sequence data from affected and unaf-
fected family members, while RVS is based only on sharing among affected subjects, and does not make any
assumptions about unaffected subjects.

2.2 Exploiting genealogical databases and isolated populations
Genealogical databases have been developed from a variety of data sources. Databases created from system-
atic civil registers in founder populations contain nearly the complete history of the population and can serve
to answer a number of questions about the distribution and history of genetic variants in the population. The
largest such database in Canada is the BALSAC database of the Quebec founder population (balsac.uqac.ca).
Simon Girard gave an overview of this database hosted at Université du Québec à Chicoutimi and containing
over 3 million linked records from the Catholic church.

For rare genetic conditions due to a genetic variant likely introduced by a single population founder,
Simon Gravel presented an approach to estimate the variant genotype posterior distribution over the popu-
lation founders and, from that founder distribution, estimate the variant frequency in the various regions of
Quebec. Assuming the variant entered the population through a unique founder and the genealogy is correct,
the variant genotype founder distribution is inferred by ”Monte Carlo climbing simulations”, where more
promising paths are favored by an importance sampling scheme. The resulting bias in likelihood compu-
tation is then corrected. The method implemented in ISGen (github.com/DomNelson/ISGen) was applied
to Chronic Atrial et Intestinal Dysrhythmia (CAID), an autosomal recessive condition caused by a variant
in gene SGOL1 present in Europe with frequency 0.0002. The distribution of the ancestor most likely to
have introduced the variant was inferred based on 11 patients tied to the genealogy, and is concentrated on 4
founders. The allele frequencies inferred in the various regions of Quebec matches estimates from population
samples. The genealogical approach predicted high frequencies of the causal variant in regions where the
available population samples were too small for reliable estimation (e.g. the Charlevoix region), highlighting
its potential for orienting mutation screening.

The problem addressed by Alexandre Bureau within the rare variant sharing framework for identifica-
tion of rare disease-susceptibility variants (see 2.1), was conceptually different but similar in approach. It
consisted in estimating the null distribution of rare variant sharing events among present-day affected sub-
jects included in a sequencing study, given a rare variant was seen in any of them, considering the genealogy
of these subjects as a single extended pedigree. Solving this problem would have two benefits: controlling
for cryptic relatedness (i.e. relatedness that is not captured in typical pedigree structures extending over 3-5
generations) and improving the power of the approach. Like the variant frequency estimation approach of
Gravel, the present approach has two steps: 1) sampling the distribution of the founder introducing the vari-
ant conditional on the genotype of present-day subjects and 2) sampling the transmission of the variant from
that founder to the current generation. Step 1) is here much simpler because it conditions on the genotype
of a single subject instead of a set of subjects: thus the sampling of the parent transmitting the variant to
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his offspring is a simple coin toss performed recursively from a present-day variant carrier to a genealogy
founder, while step 2) is the same as for frequency estimation, but applies to a more restricted set of subjects.
Estimates of the sharing probabilities given any affected subject carries the variant (instead of a specific one)
and their associated standard error are obtained by combining results for all present-day affected subjects.
This method was attempted on datasets simulated using the 56,800-member genealogy of 217 families from
the SaguenayLac-St-Jean (SLSJ) region of Quebec comprising 1018 individuals enrolled in an actual study
of asthma, extracted from the BALSAC database. The current implementation is however excessively slow
when the number of affected subjects exceeds about 10.

A contrasting example of a smaller and older population isolate without genealogical database was pro-
vided by Arthur Gilly with the Minoean isolates of the Greek island of Crete. With no genealogical database
available, standard rare variant aggregation methods to test association with quantitative and dichotomous
traits have been applied to genotyping and sequencing data on 1500 individuals from this population, while
controlling for relatedness estimated from the genotype data. This analysis in this special population revealed
a burden of rare variants in gene FAM189B driven by isolate-specific rare variants.

2.3 Gene genealogies
For understanding genetic associations with trait data, it can be useful to model the latent ancestries that give
rise to the sample’s genetic variability. The gene genealogy is a graph that describes the ancestry or lines of
descent of chromosomal segments sampled from the general population. The neutral coalescent provides a
mathematical model for the topology and node times of the graph. Several speakers spoke about their work in
incorporating the gene genealogy in mapping methodology, including for the discovery of rare variants and
extending the modeling to pedigrees.

Jinko Graham presented her work in developing ancestral tree based statistics to find trait-influencing
mutations. The ancestry-based approach is motivated by a similar principle as family-based mapping: the
similarity in relationships between haplotypes is reflected in similarity between trait values. This suggests
examining statistics that capture the degree to which haplotypes from individuals with similar trait values
cluster together in the ancestral tree. She discussed an application in which Pearson correlation between
tree-defined clusters and disease status was used as a measure of association. This was applied to a dataset
consisting of genotype data for diabetes cases and healthy controls. Trees were sampled from their posterior
distribution conditional on imputed haplotype data at 55 focal points in a genomic region. The fuzzy pvalue
was used to assess the strength of the association. The results highlighted a small number of adjacent focal
points where the median of the fuzzy pvalue was low and the spread of the fuzzy pvalue distribution was
small, indicating more certainty about the genealogical tree given the data.

Both Kelly Burkett and Renaud Alie discussed their progress in extending population-based models for
the gene genealogy to family data. Kelly Burkett presented her work in extending a Markov chain Monte
Carlo approach to sample an approximation of the gene genealogy conditional on genotype data from trios
(mother, father, child). Each parents’ two unobserved haplotypes correspond to two tips of the ancestral tree
and the child’s genotypic data restricts the set of parental haplotype configurations. A proposal distribution
is then used to update the parental haplotypes while ensuring the child’s genotypes remain the same. She
applied the sampler to a previously-analysed Crohn’s disease dataset and compared results using the trio-
based sampler to sampling conditional on imputed parental haplotypes. Results were similar between the two
approaches; however, the trio-based sampler showed signs of poor convergence. Renaud Alie spoke about
his work developing the pedigree-based coalescent. He proposed using previously developed models for the
inheritance of genetic material within the pedigrees at the tips and using the ancestral recombination graph
as the model for the relationships between the pedigree founders.

Tree-based association statistics capture the degree to which sequences from disease-affected individuals
cluster in the ancestral tree. However, each individual corresponds to two tips of the ancestral tree - one
for each of their sequences. Depending on the disease model, it’s possible that only one of these sequences
actually carries a risk variant. Therefore, a sequence from a case could be misclassified. Charith Bhagya
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Karunarathna described his work comparing the performance of multiple tree and non-tree based associa-
tion methods in localizing a risk variant. In particular, he compared two versions of the tree-based Mantel
test: a naive version where both sequences are classified as a case and an informed version where only the
sequence carrying the risk variant was classified as a case. He showed that there was a substantially worse
performance for the naive Mantel test relative to all other approaches. The informed Mantel test performed
well, but it is an idealized test that cannot be implemented in practice without knowledge of the risk variant.
This highlights a challenge to be addressed when developing tree-based association statistics.

2.4 Simulation software to test rare variant methods for family data
Simulated genetic data is frequently required for testing new rare variant methods or to compare existing
methods. Although many programs for simulating genetic data have been created, they often rely on mathe-
matical models from population genetics that may not be biologically plausible. In addition, programs typi-
cally simulate data from unrelated individuals; to generate family data, additional programming or separate
software is needed to probabilistically “drop genes” in known family structures. As mentioned in Section
2.2, public databases contain real genealogical (BALSAC) or genomic data (e.g. 1000 Genomes). These
databases are valuable resources for simulating realistic datasets or evaluating algorithms based on proba-
bilistic models. Many of the participants presented simulation software developed by themselves or their
colleagues that utilicize these public databases to model the reference population for their simulations.

A number of speakers (e.g. Briollais, Bull, Choi) used Sim1000G as part of the research that they
presented. Sim1000G, co-developed by Laurent Briollais, can be used to simulate genetic data using a
reference population stored in a VCF file that is supplied by the user. In particular, the reference popula-
tion can be phased data from the 1000 Genomes project. Genetic data for new individuals is generated by
sampling from this reference population so that the allele frequencies and linkage disequilibrium patterns are
maintained. Unrelated individuals and pedigrees of arbitrary size can be simulated. For pedigree data, two
recombination models are available.

Christina Nieuwoudt presented two R packages that she and Jinko Graham developed for simulating
genetic data on pedigrees ascertained to contain a minimum number of affected individuals. simRVpedigree
[8] is used to simulate the pedigrees and disease status. The disease model for affected pedigree members in-
cludes sporadic cases as well as cases caused by a rare variant segregating in the pedigree. simRVsequences
can then be used to simulate genetic data for the pedigree members using a model inspired by gene dropping
and including recombination events. The sequence data in the founders can be obtained using publicly-
available datasets.

Simon Gravel described how a coalescent-based simulation algorithm, msprime, failed to capture the
genomic structure seen with real data. The distributions of both the length and number of IBD segments
between individuals with different familial relationships were quite different between data from “23andme”
and the simulated data. Although coalescent-based simulators might reasonably approximate real data over
smaller genomic regions, the approximation is poor when simulating large regions since it allows more than
two parents per offspring. He is working with collaborators on a simulator, hybride, that is based on the
forward-in-time Wright-Fisher model rather than the coalescent. By incorporating recent improvements to
the representation of gene genealogies used in msprime [7], computation time for hybride is remarkably
fast. Though they are still working on improvements, the software will be available for download in the future.

2.5 Variance-components models and identity by descent
Variance-components models are a useful tool for mapping quantitative phenotypes in families. Phenotypes
are typically assumed to follow a Gaussian distribution, with a mean that may depend on alleles at a genetic
marker of known or hypothesized influence. Overall phenotypic variance within a family is decomposed into
genetic and non-genetic components. In the linear model of the mean phenotype, the genetic component is
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characterized by a vector of family-specific random effects. The variance-covariance matrix of these family-
specific random effects is the genetic component of variance. To assess the evidence for genetic association
between the phenotype and alleles at a given genetic marker, the coefficients for fixed allelic effects are
tested in the linear model. To assess the evidence for genetic linkage between the phenotype and a particular
genomic location, the variance of the random effects is further decomposed into genome-wide and location-
specific components. The genome-wide genetic-variance matrix is written as a scalar “polygenic” variance
times a kinship matrix summarizing the pairwise relationships in the pedigree. The location-specific vari-
ance matrix is expressed as a scalar, location-specific variance times a matrix of pairwise identity-by-descent
(IBD) proportions estimated from genetic markers near the location of interest. Linkage corresponds to the
scalar location-specific variance being non-zero. Presentations in the workshop extended and/or applied this
variance-components model in novel ways. We heard about extensions to accommodate non-Gaussian (e.g.,
time-to-event or binary) phenotypes, and heterogeneous variance components across families and across
ethnic groups. We also heard about methods for estimating kinship matrices and local IBD sharing. The
estimates from these methods allow for linkage analysis without the need to know the pedigree relationships
between individuals.

Yun-Hee Choi and JC Loredo-Osti presented variance-components models for linkage and association
analysis of time-to-event and binary phenotypes, respectively. Their generalized linear models for the mean
phenotype specify a linear predictor comprised of fixed effects and a vector of family-specific random ef-
fects, as well as a link function that relates the linear predictor to the mean. In classic variance-components
style, the covariance between family-specific random effects is decomposed into genome-wide and location-
specific components. Fixed effects in the mixed model can be viewed as association parameters. By contrast,
the location-specific scalar variance in the variance-component model is a linkage parameter. In particular,
large scalar variances indicate that the locus-specific contribution to the genetic random effect varies accord-
ing to the degree of local relationship (i.e. linkage). Choi’s model allows for ascertainment of the families
through a proband. The likelihood for randomly-sampled (i.e. unascertained) families is corrected by condi-
tioning or adding a penalty term. Issues such as model identifiability and the appropriate null distribution of
test statistics for linkage and/or association were discussed by both speakers. Loredo-Osti commented that
unrelated individuals may be incorporated as “families” of size one.

Laura Almasy presented methods that allow for genetic variance components that can vary across fami-
lies. Her motivation for developing these methods was the family-based Collaborative Study on the Genetics
of Alcoholism. So far, linkage-mapping studies of alcoholism and its endophenotypes have identified only
broad genomic regions of interest. The rationale for her proposed extension is that more detailed modelling
of the genetic variance should improve the linkage resolution and provide insight into families segregat-
ing different causal loci. Almasy lets the proportion of total variance attributable to the genome-wide and
location-specific genetic components vary by family, while holding constant across all families the total vari-
ance. In the linear model, fixed effects are also assumed to be the same across families. Examining the
resulting family-specific lod scores for linkage leads to insight into which families are contributory to a given
linkage peak. Focusing analysis on these contributory families leads to insight into which genes under a link-
age peak are contributory, and therefore improved resolution. The results of her linkage analysis highlight the
complex nature of alcoholism. Several promising genes and variants were prioritized for further investigation.

Tim Thornton described a variance-components association analysis for two large consortia comprised
of multiple ethnic groups. The data for these consortia were collected from different study designs involving
families, founder populations and case-control samples. He used variance-components models to account for
correlation between related study subjects. The multi-ethnic nature of the subjects leads to a mix of recent
relatedness through family structure and distant relatedness through population structure. To account for
population structure, he included fixed effects for genetic principal components in the linear model for the
mean response. The new approach improves upon competing methods that under-compensate for population
stratification at highly-differentiated markers, and over-compensate for population stratification at weakly-
differentiated markers. He found that, in multiethnic samples, allowing for the non-genetic variance to be
different for different ethnic groups is crucial for unbiased tests of association.
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The Workshop included several case studies involving variance-component models and/or IBD. These
case studies highlighted the challenges, rewards and insights offered by analysis of sequencing data. For ex-
ample, Mariza de Andrade described whole-genome sequencing of a family with venous thromboembolism
and insights gained from linkage and association analysis. Heather Cordell described valuable lessons
learned from sequencing under a linkage peak in an ongoing study of families with vesico-ureteric reflux.
The process of analysis uncovered some pitfalls of working with sequencing data, including variant calls
that are highly dependent on the platforms used for sequencing and on the bioinformatics pipeline. Janet
Sinsheimer discussed a sequencing study of the microbiome of a beetle that lives in family units. The aim of
the study was to estimate the heritability of the microbiome. Her results suggested heritability of important
bacterial groups. Simon Girard used pairwise IBD sharing in the Quebec founder population to identify
genetic variants associated with epilepsy.

Elizabeth Thompson discussed methods for estimating kinship matrices and local IBD sharing. The re-
sulting estimates allow for linkage analysis without knowing the pedigree relationships between individuals.
Thompson first presented methods for local IBD estimation. She then described how to combine these local
estimates to obtain genome-wide measures of kinship. When these estimates are used in linkage analyses
of simulated datasets, the likelihood-ratio (lod) curves correctly identify the linkage regions. Shelley Bull
described an application of inferred local IBD to mapping risk genes for breast cancer using data on affected
sisters. The basic premise is that the siblings share disease because of the genomic regions they share IBD,
and in particular the susceptibility variants within those regions. If so, more susceptibility variants are ex-
pected on haplotypes shared IBD by the sisters than on haplotypes that are not shared IBD. These idea leads
to a statistical test of association in terms of inferred IBD and the number of rare variants in a genomic region
for the sibship.

2.6 Accommodating biased sampling of families
Family studies of genetic diseases typically sample families having one or more affected members. The first
affected family member to be included in the study is called the proband, and the set of individuals used
to determine family eligibility for the study is called the ascertainment set. As ascertained families do not
represent a random sample from the population, statistical methods must account for the biased sampling to
avoid biased inference. If we view families as independent, we can understand the ascertainment issues in
terms of the likelihood for a single family. Let A be the event that the family is ascertained and Y be the
phenotypes (e.g., disease status, or age-at-onset of disease). In heritability studies that do not collect genetic
data, the likelihood is P (Y |A). In studies that collect genetic data, G, the likelihood is P (Y,G|A).

In studies that collect genetic data, alternatives to the full likelihood, P (Y,G|A), may be obtained by
further conditioning. The prospective likelihood is based on P (Y |G,A) and the retrospective likelihood on
P (G|Y,A). As a rule, conditioning ignores information and can lead to a loss of efficiency in statistical in-
ference. However, approaches based on conditional likelihoods may be easier to implement than approaches
based on the full likelihood. For example, if ascertainment depends only on Y, then P (A|Y,G) = P (A|Y ).
We can then argue that the retrospective likelihood is P (G|Y,A) = P (G|Y ), so that the ascertainment
doesn’t matter. Prospective likelihoods can also be easier to implement under certain assumptions. For exam-
ple, complete ascertainment occurs when every eligible family in the population is ascertained into a study.
Under complete ascertainment, P (A|Y,G) = 1 for every (Y,G) that meets the ascertainment criteria. Choi
et al. (2008) show that the prospective likelihood is P (Y |G,A) = P (Y |G)/P (A|G), which is a penal-
ized prospective likelihood with penalty term 1/P (A|G). This simplification allows ascertainment-adjusted
methods to be developed as penalized versions of existing prospective methods.

The workshop featured several talks that included the concept of biased sampling of families and as-
certainment adjustment. Lajmi Lakhal Chaieb presented work investigating the heritability of psoriatic
arthritis and its possible dependence on parent of origin. Families were ascertained through a proband only.
The phenotype was age-at-onset of arthritis and no genetic data were collected; hence the likelihood is of
the form P (Y |A). The ascertainment event A is that the proband develops disease by the time the family
is recruited. Jooyoung Lee presented methods to estimate risk parameters from time-to-disease phenotypes
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in studies collecting genetic data. The ascertainment event A is that the proband is alive and affected with
the disease and has multiple relatives alive at the time of recruitment into the study. She described how the
complexity of the full likelihood, P (Y,G|A), increases rapidly with the family size. To make the problem
tractable, she proposed an approximation to P (Y,G|A) that involves the proband and a pair of non-probands
from the ascertainment set. Other speakers took retrospective approaches to the analysis of data from their
family studies. For example, Alexandre Bureau and Ingo Ruczinski presented an approach to test for co-
segregation of a rare variant with disease. The approach is based on the sharing probabilities, P (G|Y,A),
under the null hypothesis of no co-segregation. The ascertainment event A is that there is at least one affected
family member and that the rare variant is present in at least one of them. In contrast, Yun-Hee Choi took a
prospective approach to analysis of her family data. Under complete ascertainment, she adjusts the prospec-
tive likelihood by a penalty term to correct for the biased sampling of families. She also assumes that families
are recruited through a proband only. The ascertainment event A is that the proband develops disease by the
time of recruitment into the study.

Under complex ascertainment, simplifying assumptions for tractable calculations may not be possible.
We may then have to resort to Monte-Carlo sampling of ascertained families. Families are randomly sampled
from the population and then filtered by the ascertainment criteria. Along these lines, Christina Nieuwoudt
described her simRVSequences R package. This software simulates whole-exome sequence data in fami-
lies segregating a rare causal variant and allows for different schemes of family ascertainment.

2.7 Causal inference using genetic and epigenetic measurements
Inference of causal effects of exposures on health outcomes from observational data gives rise to a large vari-
ety of difficult problems. Two contributors to this workshop considered the setting where an exposure A may
have a causal effect on a continuous health outcome Y through a mediator variable M , but some of these
causal effects may be confounded by a set of factors X [1] (see Figure 2.7). Both Karim Oualkacha and Xi-
hong Lin considered studies where DNA methylation at a given genomic site was the mediator variable M ,
but the problems studied by these two speakers differed. In Oualkacha’s talk, the interest lied in establishing
the causal effect of M on Y , and A was genotype at a set of genetic markers, to be used as instrumental vari-
ables in a Mendelian randomization analysis. Since genotype is fixed at birth, the effect of genotype cannot
be confounded by factors acting after birth, so it is assumed that there is no effect of X on A. Mendelian
randomization also requires that the genetic markers A selected as instruments have no direct effect on the
outcome Y . When these conditions are met, detecting an association between A and Y is evidence of a causal
effect of M on Y . With high-dimensional genotype data from genome-wide arrays, selection of the markers
to use as instruments A can be performed by penalized least square regression methods such as the Lasso.
The difficulty encountered by Oualkacha was that study subjects were grouped in families. A two-step pro-
cedure had previously been proposed: 1) use linear mixed models to adjust for relatedness of the subjects and
2) use the residuals from step 1 in variable-selection least-square regression methods. Oualkacha introduced
ggmix, a two-in-one procedure which controls for relatedness and performs variable selection under linear
mixed models. The optimization problem was solved using a block relaxation technique. Initial simulations
studies focused on the performance of the approach to select the right set of markers and correctly estimate
heritability of M and revealed that ggmix is a promising alternative to the two-step approach and the naive
Lasso ignoring familial relatedness.

Figure 1: Causal diagram between an exposure A, a mediator M , confounding factors X and an outcome Y

A

M

X

Y

Lin was interested in performing classical mediation analysis in unrelated subjects with an exposure A
(e.g. smoking) that may affect DNA methylation M at multiple genomic sites, and thus may have a natural
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indirect effect (NIE) on the outcome Y through M , in addition to a possible direct effect. Earlier work had
showed that tests of the NIE were conservative under the null case where there is no association between A
and M and no association between M and Y , which is likely to be the case for most methylation sites in a
genome-wide analysis[1]. She proposed the divide-aggregate or DAT method to correct conservativeness of
NIE tests under standard mediation approaches.

3 Outcome of the Meeting
The workshop was an opportunity for exchanges leading to new ideas to solve problems faced by participants.
For instance, Alexandre Bureau, Ingo Ruczinski and Simon Gravel determined that the software developed
by the Gravel group to sample the transmission of variants from founders of a genealogy to present-day indi-
viduals could speed-up the same step in the estimation of the null distribution of rare variant sharing statistics
in extended families extracted from a genealogical database attempted by Bureau. Also, the suggestion made
by Ken Lange at the workshop to subdivide the genealogy into lineages under each founder was later imple-
mented by Bureau in the RVS Bioconductor package and enabled exact computations in larger families than
had been possible previously.

The workshop gave speakers an opportunity to demonstrate the use of their software in assessing meth-
ods for rare variant discovery with family data. As the software described above is freely available, other
participants can now use these programs for their own research. For example, sim1000G is currently being
used by Kelly Burkett’s research group for simulating genetic pathway data on trios (mother, father, child).
Because it uses real human genetic data, they are able to easily simulate data for human genes in the pathways
of interest.
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