A new backward error analysis for the matrix exponential based on pseudo-spectra

Marco Caliari*

University of Verona, Italy

Integrating the Integrators for Nonlinear Evolution Equations 2–7 December 2018, Banff (Alberta, CANADA)

*joint work with Franco Zivcovich

Marco Caliari

Error analysis on pseudo-spectra for the matrix exponential

Exponential integrators

We consider the simplest exponential integrator for

$$u'(t) = Au(t) + g(u(t)), \quad u(0) = u_0$$

that is exponential Euler

$$u_{n+1} = u_n + h\varphi_1(hA)(Au_n + g(u_n))$$

where *h* is the time step and φ_1 is the entire function

$$\varphi_1(z)=\frac{\mathrm{e}^z-1}{z}.$$

Exponential integrators

We consider the simplest exponential integrator for

$$u'(t) = Au(t) + g(u(t)), \quad u(0) = u_0$$

that is exponential Euler

$$u_{n+1} = u_n + h\varphi_1(hA)(Au_n + g(u_n))$$

where *h* is the time step and φ_1 is the entire function

$$\varphi_1(z)=rac{\mathrm{e}^z-1}{z}.$$

Given the augmented matrix

$$\tilde{A} = \begin{bmatrix} A & v \\ 0 & 0 \end{bmatrix}, \quad v = Au_n + g(u_n)$$

we have

$$\exp(h\tilde{A})\begin{bmatrix}0\\1\end{bmatrix} = \begin{bmatrix}h\varphi_1(hA)\nu\\1\end{bmatrix}$$

Power series expansion of the backward error for exp(A)

We formally approximate $\exp(A)$ as

$$p(s^{-1}A)^s = \exp(A + \Delta A) = \exp(A + sh(s^{-1}A))$$

where p(z) is a polynomial of degree m (with p(0) = 1) and h(z) has a power series expansion

$$h(z) = \log(\mathrm{e}^{-z} p(z)) = \sum_{k=\ell+1}^{\infty} c_k z^k$$

where ℓ is the largest integer such that $p^{(j)}(0) = 1, j = 0, 1, \dots, \ell$.

Power series expansion of the backward error for exp(A)

We formally approximate $\exp(A)$ as

$$p(s^{-1}A)^s = \exp(A + \Delta A) = \exp(A + sh(s^{-1}A))$$

where p(z) is a polynomial of degree m (with p(0) = 1) and h(z) has a power series expansion

$$h(z) = \log(\mathrm{e}^{-z}p(z)) = \sum_{k=\ell+1}^{\infty} c_k z^k$$

where ℓ is the largest integer such that $p^{(j)}(0) = 1, j = 0, 1, \dots, \ell$. Therefore, $\|\Delta A\| \leq \operatorname{tol} \cdot \|A\|$ if

$$\frac{\|\Delta A\|}{\|A\|} = \frac{\|h(s^{-1}A)\|}{\|s^{-1}A\|} \le \frac{\tilde{h}(s^{-1}\|A\|)}{s^{-1}\|A\|} \le \text{tol}$$

where $\tilde{h}(z) = \sum_{k=\ell+1}^{\infty} |c_k| z^k$.

Precomputation of the threshold

We can precompute in high precision the threshold $\boldsymbol{\theta}$ such that

$$\frac{\tilde{h}(\theta)}{\theta} = \text{tol.}$$

Then

$$\|\Delta A\| \le \operatorname{tol} \cdot \|A\|$$
 if $s^{-1}\|A\| \le \theta$.

Precomputation of the threshold

We can precompute in high precision the threshold $\boldsymbol{\theta}$ such that

$$\frac{\tilde{h}(\theta)}{\theta} = \text{tol.}$$

Then

$$\|\Delta A\| \le \operatorname{tol} \cdot \|A\|$$
 if $s^{-1}\|A\| \le \theta$.

Given

$$\alpha_q(A) = \max\{\|A^q\|^{1/q}, \|A^{q+1}\|^{1/(q+1)}\}$$

then

$$\|\Delta A\| \leq ext{tol} \cdot \|A\| \quad ext{if } \mathsf{s}^{-1} lpha_{m{q}}(A) \leq heta ext{ and } m{q}(m{q}-1) \leq \ell+1$$

The sequence $\{\alpha_q(A)\}_q$ usually decreases for nonnormal matrices.

Precomputation of the threshold

We can precompute in high precision the threshold $\boldsymbol{\theta}$ such that

$$\frac{\tilde{h}(\theta)}{\theta} = \text{tol.}$$

Then

$$\|\Delta A\| \le \operatorname{tol} \cdot \|A\|$$
 if $s^{-1}\|A\| \le \theta$.

Given

$$\alpha_q(A) = \max\{\|A^q\|^{1/q}, \|A^{q+1}\|^{1/(q+1)}\}$$

then

$$\|\Delta A\| \leq ext{tol} \cdot \|A\| \quad ext{if } s^{-1} lpha_{m{q}}(A) \leq heta ext{ and } q(m{q}-1) \leq \ell+1$$

The sequence $\{\alpha_q(A)\}_q$ usually decreases for nonnormal matrices. Usually we work with shifted matrices $B = A - \mu I$. Instead of a single polynomial of degree m, we can consider sequences $\{p_m\}_m$. For instance

▶ truncated Taylor series p_m(z) = ∑^m_{i=0} zⁱ/i! [Al-Mohy–Higham, 2011] Instead of a single polynomial of degree m, we can consider sequences $\{p_m\}_m$. For instance

- ▶ truncated Taylor series p_m(z) = ∑^m_{i=0} zⁱ/i! [Al-Mohy–Higham, 2011]
- ► Interpolation $p_m(z) = \sum_{i=0}^m e^{[z_0, z_1, \dots, z_i]} \prod_{j=0}^{i-1} (z z_j)$ at Leja–Hermite points [C., Kandolf, Ostermann, Rainer, Zivcovich 2016–2018]

$$z_0 = z_1 = \ldots = z_\ell = 0,$$

 $z_{i+1} \in \arg \max_{x \in [-c,c]} \prod_{j=0}^i |x - z_j| \quad i = \ell, \ell + 1, \ldots, m-1$

For each *m*, *c* can be chosen in order to maximize θ .

More information from the spectrum of A

The field of values $\mathcal{W}(A)$ satisfies

$$\mathcal{W}(\mathcal{A}) = \mathcal{W}(\mathcal{A}_{\mathrm{H}} + \mathcal{A}_{\mathrm{SH}}) \subseteq \mathcal{W}(\mathcal{A}_{\mathrm{H}}) + \mathcal{W}(\mathcal{A}_{\mathrm{SH}}) = \ \mathrm{conv}(\sigma(\mathcal{A}_{\mathrm{H}})) + \mathrm{conv}(\sigma(\mathcal{A}_{\mathrm{SH}})) \subseteq [\alpha, \nu] + \mathrm{i}[\eta, \beta]$$

We use Gershgorin's disks to obtain the rectangle $[\alpha, \nu] + i[\eta, \beta]$.

The field of values $\mathcal{W}(A)$ satisfies

$$\mathcal{W}(\mathcal{A}) = \mathcal{W}(\mathcal{A}_{\mathrm{H}} + \mathcal{A}_{\mathrm{SH}}) \subseteq \mathcal{W}(\mathcal{A}_{\mathrm{H}}) + \mathcal{W}(\mathcal{A}_{\mathrm{SH}}) =$$

 $\operatorname{conv}(\sigma(\mathcal{A}_{\mathrm{H}})) + \operatorname{conv}(\sigma(\mathcal{A}_{\mathrm{SH}})) \subseteq [\alpha, \nu] + \mathrm{i}[\eta, \beta]$

We use Gershgorin's disks to obtain the rectangle $[\alpha, \nu] + i[\eta, \beta]$. After applying the obvious shift μ , with abuse of notation, we get

$$\mathcal{W}(A) \subseteq R(A) = [-\nu, \nu] + \mathrm{i}[-\beta, \beta]$$

The field of values $\mathcal{W}(A)$ satisfies

$$\mathcal{W}(\mathcal{A}) = \mathcal{W}(\mathcal{A}_{\mathrm{H}} + \mathcal{A}_{\mathrm{SH}}) \subseteq \mathcal{W}(\mathcal{A}_{\mathrm{H}}) + \mathcal{W}(\mathcal{A}_{\mathrm{SH}}) =$$

 $\operatorname{conv}(\sigma(\mathcal{A}_{\mathrm{H}})) + \operatorname{conv}(\sigma(\mathcal{A}_{\mathrm{SH}})) \subseteq [\alpha, \nu] + \mathrm{i}[\eta, \beta]$

We use Gershgorin's disks to obtain the rectangle $[\alpha, \nu] + i[\eta, \beta]$. After applying the obvious shift μ , with abuse of notation, we get

$$\mathcal{W}(A) \subseteq R(A) = [-\nu, \nu] + \mathrm{i}[-\beta, \beta]$$

and

$$\Lambda_{\varepsilon}(A) \subseteq \mathcal{W}(A) + \Delta_{\varepsilon} \subseteq R(A) + \Delta_{\varepsilon}$$

where $\Lambda_{\varepsilon}(A) = \{z \in \mathbb{C} : ||(zI - A)^{-1}||_2 \ge \varepsilon^{-1}\}$ is the *\varepsilon*-spectrum of A and $\Delta_{\varepsilon} = \{z \in \mathbb{C} : |z| \le \varepsilon\}$.

Contour integral expansion of the backward error

 $\Lambda_{\varepsilon}(A)$ does not scale with A: we consider instead

$$egin{aligned} &\Lambda_{\delta\|tA\|_2}(tA)\subseteq \mathcal{W}(tA)+\Delta_{\delta\|tA\|_2}\subseteq R(tA)+\Delta_{\delta\|tA\|_2}=\ &t(R(A)+\Delta_{\delta\|A\|_2})\subseteq tR_{\delta}(A) \end{aligned}$$

where $R_{\delta}(A)$ is the extented rectangle

$$R_{\delta}(A) = [-\nu - \delta \|A\|_2, \nu + \delta \|A\|_2] + \mathrm{i}[-\beta - \delta \|A\|_2, \beta + \delta \|A\|_2].$$

Contour integral expansion of the backward error

 $\Lambda_{\varepsilon}(A)$ does not scale with A: we consider instead

$$egin{aligned} &\Lambda_{\delta\|tA\|_2}(tA)\subseteq \mathcal{W}(tA)+\Delta_{\delta\|tA\|_2}\subseteq R(tA)+\Delta_{\delta\|tA\|_2}=\ &t(R(A)+\Delta_{\delta\|A\|_2})\subseteq tR_{\delta}(A) \end{aligned}$$

where $R_{\delta}(A)$ is the extented rectangle

$$R_{\delta}(A) = [-\nu - \delta \|A\|_2, \nu + \delta \|A\|_2] + \mathrm{i}[-\beta - \delta \|A\|_2, \beta + \delta \|A\|_2].$$

Then

$$\frac{\|\Delta A\|_2}{\|A\|_2} = \frac{\|h(s^{-1}A)\|_2}{\|s^{-1}A\|_2} \le \|s^{-1}A\|_2 \|g(s^{-1}A)\|_2 = \\ \|s^{-1}A\|_2 \left\|\frac{1}{2\pi \mathrm{i}} \int_{\Gamma} g(z)(zI - s^{-1}A)^{-1} \mathrm{d}z\right\|_2 \le \frac{\mathcal{L}(\Gamma)}{2\pi\delta} \|g\|_{\Gamma},$$

 $\text{if } h(z) = z^2 g(z) \ (\ell \ge 1) \text{ and } \Gamma = \partial K \text{ encloses } \Lambda_{\delta \| s^{-1} A \|_2}(s^{-1} A).$

Contour integral expansion of the backward error

 $\Lambda_{\varepsilon}(A)$ does not scale with A: we consider instead

$$egin{aligned} &\Lambda_{\delta\|tA\|_2}(tA)\subseteq \mathcal{W}(tA)+\Delta_{\delta\|tA\|_2}\subseteq R(tA)+\Delta_{\delta\|tA\|_2}=\ &t(R(A)+\Delta_{\delta\|A\|_2})\subseteq tR_{\delta}(A) \end{aligned}$$

where $R_{\delta}(A)$ is the extented rectangle

$$R_{\delta}(A) = [-\nu - \delta \|A\|_2, \nu + \delta \|A\|_2] + i[-\beta - \delta \|A\|_2, \beta + \delta \|A\|_2].$$

Then

$$\begin{split} \frac{\|\Delta A\|_2}{\|A\|_2} &= \frac{\|h(s^{-1}A)\|_2}{\|s^{-1}A\|_2} \le \|s^{-1}A\|_2 \|g(s^{-1}A)\|_2 = \\ &\|s^{-1}A\|_2 \left\|\frac{1}{2\pi \mathrm{i}} \int_{\Gamma} g(z)(zI - s^{-1}A)^{-1} \mathrm{d}z\right\|_2 \le \frac{\mathcal{L}(\Gamma)}{2\pi\delta} \|g\|_{\Gamma}, \end{split}$$

if $h(z) = z^2 g(z)$ ($\ell \ge 1$) and $\Gamma = \partial K$ encloses $\Lambda_{\delta \parallel s^{-1} A \parallel_2}(s^{-1}A)$. This is true if $s^{-1} R_{\delta}(A) \subseteq K$.

For given c and δ , we consider the ellipse Γ_{γ} of foci $(\pm c, 0)$ and capacity (half sum of the semi-axes) γ . We look for γ_{δ} such that

$$\frac{\|\Delta A\|_2}{\|A\|_2} \leq \ldots \leq \frac{\mathcal{L}(\Gamma_{\gamma_{\delta}})}{2\pi\delta} \|g\|_{\Gamma_{\gamma_{\delta}}} = \mathrm{tol}$$

where g is associated to a given polynomial $p_m: [-c, c] \to \mathbb{R}$.

For given c and δ , we consider the ellipse Γ_{γ} of foci $(\pm c, 0)$ and capacity (half sum of the semi-axes) γ . We look for γ_{δ} such that

$$\frac{\|\Delta A\|_2}{\|A\|_2} \leq \ldots \leq \frac{\mathcal{L}(\Gamma_{\gamma_{\delta}})}{2\pi\delta} \|g\|_{\Gamma_{\gamma_{\delta}}} = \mathrm{tol}$$

where g is associated to a given polynomial $p_m: [-c, c] \to \mathbb{R}$.

For a given (shifted) matrix A, compute the rectangle R_δ(A) = [−ν − δ||A||₂, ν + δ||A||₂] + i[−β − δ||A||₂, β + δ||A||₂]

For given c and δ , we consider the ellipse Γ_{γ} of foci $(\pm c, 0)$ and capacity (half sum of the semi-axes) γ . We look for γ_{δ} such that

$$\frac{\|\Delta A\|_2}{\|A\|_2} \leq \ldots \leq \frac{\mathcal{L}(\Gamma_{\gamma_{\delta}})}{2\pi\delta} \|g\|_{\Gamma_{\gamma_{\delta}}} = \mathrm{tol}$$

where g is associated to a given polynomial $p_m: [-c, c] \to \mathbb{R}$.

► For a given (shifted) matrix A, compute the rectangle $R_{\delta}(A) = [-\nu - \delta ||A||_2, \nu + \delta ||A||_2] + i[-\beta - \delta ||A||_2, \beta + \delta ||A||_2]$

• compute s as the smallest integer such that $s^{-1}R_{\delta}(A)\subseteq K_{\gamma_{\delta}}$

$$\frac{(\nu+\delta\|A\|_2)^2}{s^2a_\delta^2}+\frac{(\beta+\delta\|A\|_2)^2}{s^2b_\delta^2}\leq 1$$

For given c and δ , we consider the ellipse Γ_{γ} of foci $(\pm c, 0)$ and capacity (half sum of the semi-axes) γ . We look for γ_{δ} such that

$$\frac{\|\Delta A\|_2}{\|A\|_2} \leq \ldots \leq \frac{\mathcal{L}(\Gamma_{\gamma_{\delta}})}{2\pi\delta} \|g\|_{\Gamma_{\gamma_{\delta}}} = \mathrm{tol}$$

where g is associated to a given polynomial $p_m: [-c, c] \to \mathbb{R}$.

► For a given (shifted) matrix *A*, compute the rectangle $R_{\delta}(A) = [-\nu - \delta ||A||_2, \nu + \delta ||A||_2] + i[-\beta - \delta ||A||_2, \beta + \delta ||A||_2]$

▶ compute *s* as the smallest integer such that $s^{-1}R_{\delta}(A) \subseteq K_{\gamma_{\delta}}$

$$\frac{(\nu+\delta\|\boldsymbol{A}\|_2)^2}{s^2\boldsymbol{a}_\delta^2}+\frac{(\beta+\delta\|\boldsymbol{A}\|_2)^2}{s^2\boldsymbol{b}_\delta^2}\leq 1$$

► approximate $\exp(A)v$ as $p_m(s^{-1}A)(\dots(p_m(s^{-1}A)v)\dots)$ s times

• We used Leja–Hermite interpolation polynomials with $\ell \geq 1$

- ▶ We used Leja–Hermite interpolation polynomials with $\ell \ge 1$
- For given intervals [−c, c] and i[−c, c] and given degrees m up to 55, we computed the corresponding ellipses Γ_{γδ}

- ▶ We used Leja–Hermite interpolation polynomials with $\ell \ge 1$
- For given intervals [−c, c] and i[−c, c] and given degrees m up to 55, we computed the corresponding ellipses Γ_{γδ}
- we optimized over δ and ℓ

- ▶ We used Leja–Hermite interpolation polynomials with $\ell \ge 1$
- For given intervals [−c, c] and i[−c, c] and given degrees m up to 55, we computed the corresponding ellipses Γ_{γδ}
- \blacktriangleright we optimized over δ and ℓ

• given the matrix A, we minimize $s \cdot m$ (matrix-vector cost)

A is a 2D diffusion matrix, size 2041 \times 2041, $||A^q||_1^{1/q} = 100$

Method	5	т	с	$ heta$ or γ	l	s · m	act. its.	rel. err.
Taylor	11	53	0	9.3	53	583	495	4.4e-14
L–H p.s.	10	55	4.8	1.0e1	0	550	460	3.3e-14
L–H c.i.	8	51	1.3e1	7.1	15	408	268	1.3e-14

The number of actual iterations is smaller than $s \cdot m$ because of an early termination criterion

if
$$\left\|\frac{A^k}{k!}v^{(l)}\right\| \le \operatorname{tol} \cdot \left\|\sum_{i=0}^k \frac{A^i}{i!}v^{(l)}\right\|$$
 for $k < m$ and $0 \le l \le s-1$

then stop substep /

A is a 1D Schrödinger matrix, size 69 × 69, $||A^q||_1^{1/q} = 2450$

Method	5	m	с	$ heta$ or γ	l	s · m	act. its.	rel. err.
Taylor	249	55	0	9.9	55	13695	13197	7.3e-11
L–H p.s.	292	55	8.4	8.4	1	16060	10220	2.7e-13
L–H c.i.	186	54	1.3e1	7.9	42	10044	9858	1.7e-13

There is a hump phenomenon for Taylor series approximation. We mean that

$$\left\|\sum_{i=0}^{k} \frac{A^{i}}{i!} v^{(l)}\right\| \gg \left\|\sum_{i=0}^{m} \frac{A^{i}}{i!} v^{(l)}\right\| \quad \text{for } k < m \text{ and } 0 \le l \le s-1$$

and cancellation takes place.

A is triu(-4*ones(20),1) (nilpotent), v is cos((1:20)'), $||A||_1 = 76$, $\alpha_8(A) = 16.29$, $\lim_{q \to \infty} \alpha_q(A) = \rho(A) = 0$

Method	5	т	с	$ heta$ or γ	l	s · m	act. its.	rel. err.
Taylor	2	54	0	9.6	54	108	42	3.2e-14
L–H p.s.	2	53	6.7	9.6	41	106	42	4.2e-14
L–H c.i.	6	55	5.5	9.2	2	330	186	2.0e-14

Since it is not possible to use the values $\alpha_q(A)$ for L–H c.i., there is overscaling.

A is triu(-4*ones(20),1) (nilpotent), v is cos((1:20)'), $||A||_1 = 76, \alpha_8(A) = 16.29, \lim_{q \to \infty} \alpha_q(A) = \rho(A) = 0$

Method	5	т	с	$ heta$ or γ	l	s · m	act. its.	rel. err.
Taylor	2	54	0	9.6	54	108	42	3.2e-14
L–H p.s.	2	53	6.7	9.6	41	106	42	4.2e-14
L–H c.i.	6	55	5.5	9.2	2	330	186	2.0e-14

Since it is not possible to use the values $\alpha_q(A)$ for L–H c.i., there is overscaling.

This is the famous **triw** example by [Al-Mohy–Higham, 2011] for which Krylov and rational methods may suffer of loss of accuracy.

A is triu(-4*ones(110),1) (nilpotent), v is ones(110,1), $||A||_1 = 436$, $\alpha_8(A) = 112.08$

Method	5	m	С	$ heta$ or γ	l	s · m	act. its.	rel. err.
Taylor	12	55	0	9.9	55	660	313	3.2e-12
L-H c.i.	34	55	0	9.2	55	1870	635	2.2e-14

In this case, we have that L–H c.i. is Taylor, but the abuse of the values $\alpha_q(A)$ makes Taylor to underscale.

 A mixture of power series and contour integral expansions would probably be optimal

- A mixture of power series and contour integral expansions would probably be optimal
- The backward error analysis can be applied to any polynomial method (Taylor truncated series, interpolation, Chebyshev series, ..., Krylov)

- A mixture of power series and contour integral expansions would probably be optimal
- The backward error analysis can be applied to any polynomial method (Taylor truncated series, interpolation, Chebyshev series, ..., Krylov)
- It should be possible to perform the backward error analysis on-the-fly [C. and Zivcovich, 2018]

- A mixture of power series and contour integral expansions would probably be optimal
- The backward error analysis can be applied to any polynomial method (Taylor truncated series, interpolation, Chebyshev series, ..., Krylov)
- It should be possible to perform the backward error analysis on-the-fly [C. and Zivcovich, 2018]
- matrix-free?

- A mixture of power series and contour integral expansions would probably be optimal
- The backward error analysis can be applied to any polynomial method (Taylor truncated series, interpolation, Chebyshev series, ..., Krylov)
- It should be possible to perform the backward error analysis on-the-fly [C. and Zivcovich, 2018]
- matrix-free?
- Thanks for your attention