A new backward error analysis for the matrix exponential based on pseudo-spectra

Marco Caliari*
University of Verona, Italy

Integrating the Integrators for Nonlinear Evolution Equations 2-7 December 2018, Banff (Alberta, CANADA)

[^0]
Exponential integrators

We consider the simplest exponential integrator for

$$
u^{\prime}(t)=A u(t)+g(u(t)), \quad u(0)=u_{0}
$$

that is exponential Euler

$$
u_{n+1}=u_{n}+h \varphi_{1}(h A)\left(A u_{n}+g\left(u_{n}\right)\right)
$$

where h is the time step and φ_{1} is the entire function

$$
\varphi_{1}(z)=\frac{\mathrm{e}^{z}-1}{z}
$$

Exponential integrators

We consider the simplest exponential integrator for

$$
u^{\prime}(t)=A u(t)+g(u(t)), \quad u(0)=u_{0}
$$

that is exponential Euler

$$
u_{n+1}=u_{n}+h \varphi_{1}(h A)\left(A u_{n}+g\left(u_{n}\right)\right)
$$

where h is the time step and φ_{1} is the entire function

$$
\varphi_{1}(z)=\frac{\mathrm{e}^{z}-1}{z}
$$

Given the augmented matrix

$$
\tilde{A}=\left[\begin{array}{ll}
A & v \\
0 & 0
\end{array}\right], \quad v=A u_{n}+g\left(u_{n}\right)
$$

we have

$$
\exp (h \tilde{A})\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
h \varphi_{1}(h A) v \\
1
\end{array}\right]
$$

Power series expansion of the backward error for $\exp (A)$

We formally approximate $\exp (A)$ as

$$
p\left(s^{-1} A\right)^{s}=\exp (A+\Delta A)=\exp \left(A+\operatorname{sh}\left(s^{-1} A\right)\right)
$$

where $p(z)$ is a polynomial of degree m (with $p(0)=1$) and $h(z)$ has a power series expansion

$$
h(z)=\log \left(\mathrm{e}^{-z} p(z)\right)=\sum_{k=\ell+1}^{\infty} c_{k} z^{k}
$$

where ℓ is the largest integer such that $p^{(j)}(0)=1, j=0,1, \ldots, \ell$.

Power series expansion of the backward error for $\exp (A)$

We formally approximate $\exp (A)$ as

$$
p\left(s^{-1} A\right)^{s}=\exp (A+\Delta A)=\exp \left(A+\operatorname{sh}\left(s^{-1} A\right)\right)
$$

where $p(z)$ is a polynomial of degree m (with $p(0)=1$) and $h(z)$ has a power series expansion

$$
h(z)=\log \left(\mathrm{e}^{-z} p(z)\right)=\sum_{k=\ell+1}^{\infty} c_{k} z^{k}
$$

where ℓ is the largest integer such that $p^{(j)}(0)=1, j=0,1, \ldots, \ell$. Therefore, $\|\Delta A\| \leq$ tol $\cdot\|A\|$ if

$$
\frac{\|\Delta A\|}{\|A\|}=\frac{\left\|h\left(s^{-1} A\right)\right\|}{\left\|s^{-1} A\right\|} \leq \frac{\tilde{h}\left(s^{-1}\|A\|\right)}{s^{-1}\|A\|} \leq \mathrm{tol}
$$

where $\tilde{h}(z)=\sum_{k=\ell+1}^{\infty}\left|c_{k}\right| z^{k}$.

Precomputation of the threshold

We can precompute in high precision the threshold θ such that

$$
\frac{\tilde{h}(\theta)}{\theta}=\text { tol. }
$$

Then

$$
\|\Delta A\| \leq \mathrm{tol} \cdot\|A\| \quad \text { if } s^{-1}\|A\| \leq \theta
$$

Precomputation of the threshold

We can precompute in high precision the threshold θ such that

$$
\frac{\tilde{h}(\theta)}{\theta}=\text { tol. }
$$

Then

$$
\|\Delta A\| \leq \mathrm{tol} \cdot\|A\| \quad \text { if } s^{-1}\|A\| \leq \theta
$$

Given

$$
\alpha_{q}(A)=\max \left\{\left\|A^{q}\right\|^{1 / q},\left\|A^{q+1}\right\|^{1 /(q+1)}\right\}
$$

then

$$
\|\Delta A\| \leq \mathrm{tol} \cdot\|A\| \quad \text { if } s^{-1} \alpha_{q}(A) \leq \theta \text { and } q(q-1) \leq \ell+1
$$

The sequence $\left\{\alpha_{q}(A)\right\}_{q}$ usually decreases for nonnormal matrices.

Precomputation of the threshold

We can precompute in high precision the threshold θ such that

$$
\frac{\tilde{h}(\theta)}{\theta}=\text { tol. }
$$

Then

$$
\|\Delta A\| \leq \operatorname{tol} \cdot\|A\| \quad \text { if } s^{-1}\|A\| \leq \theta
$$

Given

$$
\alpha_{q}(A)=\max \left\{\left\|A^{q}\right\|^{1 / q},\left\|A^{q+1}\right\|^{1 /(q+1)}\right\}
$$

then

$$
\|\Delta A\| \leq \mathrm{tol} \cdot\|A\| \quad \text { if } s^{-1} \alpha_{q}(A) \leq \theta \text { and } q(q-1) \leq \ell+1
$$

The sequence $\left\{\alpha_{q}(A)\right\}_{q}$ usually decreases for nonnormal matrices. Usually we work with shifted matrices $B=A-\mu l$.

Families of polynomial approximations

Instead of a single polynomial of degree m, we can consider sequences $\left\{p_{m}\right\}_{m}$. For instance

- truncated Taylor series $p_{m}(z)=\sum_{i=0}^{m} z^{i} / i$!
[Al-Mohy-Higham, 2011]

Families of polynomial approximations

Instead of a single polynomial of degree m, we can consider sequences $\left\{p_{m}\right\}_{m}$. For instance

- truncated Taylor series $p_{m}(z)=\sum_{i=0}^{m} z^{i} / i$!
[Al-Mohy-Higham, 2011]
- Interpolation $p_{m}(z)=\sum_{i=0}^{m} \mathrm{e}^{\left[z_{0}, z_{1}, \ldots, z_{i}\right]} \prod_{j=0}^{i-1}\left(z-z_{j}\right)$ at Leja-Hermite points [C., Kandolf, Ostermann, Rainer, Zivcovich 2016-2018]

$$
\begin{aligned}
& z_{0}=z_{1}=\ldots=z_{\ell}=0 \\
& z_{i+1} \in \arg \max _{x \in[-c, c]} \prod_{j=0}^{i}\left|x-z_{j}\right| \quad i=\ell, \ell+1, \ldots, m-1
\end{aligned}
$$

For each m, c can be chosen in order to maximize θ.

More information from the spectrum of A

The field of values $\mathcal{W}(A)$ satisfies

$$
\begin{aligned}
& \mathcal{W}(A)=\mathcal{W}\left(A_{\mathrm{H}}+A_{\mathrm{SH}}\right) \subseteq \mathcal{W}\left(A_{\mathrm{H}}\right)+\mathcal{W}\left(A_{\mathrm{SH}}\right)= \\
& \quad \operatorname{conv}\left(\sigma\left(A_{\mathrm{H}}\right)\right)+\operatorname{conv}\left(\sigma\left(A_{\mathrm{SH}}\right)\right) \subseteq[\alpha, \nu]+\mathrm{i}[\eta, \beta]
\end{aligned}
$$

We use Gershgorin's disks to obtain the rectangle $[\alpha, \nu]+\mathrm{i}[\eta, \beta]$.

More information from the spectrum of A

The field of values $\mathcal{W}(A)$ satisfies

$$
\begin{aligned}
& \mathcal{W}(A)=\mathcal{W}\left(A_{\mathrm{H}}+A_{\mathrm{SH}}\right) \subseteq \mathcal{W}\left(A_{\mathrm{H}}\right)+\mathcal{W}\left(A_{\mathrm{SH}}\right)= \\
& \quad \operatorname{conv}\left(\sigma\left(A_{\mathrm{H}}\right)\right)+\operatorname{conv}\left(\sigma\left(A_{\mathrm{SH}}\right)\right) \subseteq[\alpha, \nu]+\mathrm{i}[\eta, \beta]
\end{aligned}
$$

We use Gershgorin's disks to obtain the rectangle $[\alpha, \nu]+\mathrm{i}[\eta, \beta]$. After applying the obvious shift μ, with abuse of notation, we get

$$
\mathcal{W}(A) \subseteq R(A)=[-\nu, \nu]+\mathrm{i}[-\beta, \beta]
$$

More information from the spectrum of A

The field of values $\mathcal{W}(A)$ satisfies

$$
\begin{aligned}
& \mathcal{W}(A)=\mathcal{W}\left(A_{\mathrm{H}}+A_{\mathrm{SH}}\right) \subseteq \mathcal{W}\left(A_{\mathrm{H}}\right)+\mathcal{W}\left(A_{\mathrm{SH}}\right)= \\
& \quad \operatorname{conv}\left(\sigma\left(A_{\mathrm{H}}\right)\right)+\operatorname{conv}\left(\sigma\left(A_{\mathrm{SH}}\right)\right) \subseteq[\alpha, \nu]+\mathrm{i}[\eta, \beta]
\end{aligned}
$$

We use Gershgorin's disks to obtain the rectangle $[\alpha, \nu]+\mathrm{i}[\eta, \beta]$. After applying the obvious shift μ, with abuse of notation, we get

$$
\mathcal{W}(A) \subseteq R(A)=[-\nu, \nu]+\mathrm{i}[-\beta, \beta]
$$

and

$$
\Lambda_{\varepsilon}(A) \subseteq \mathcal{W}(A)+\Delta_{\varepsilon} \subseteq R(A)+\Delta_{\varepsilon}
$$

where $\Lambda_{\varepsilon}(A)=\left\{z \in \mathbb{C}:\left\|(z I-A)^{-1}\right\|_{2} \geq \varepsilon^{-1}\right\}$ is the ε-pseudo-spectrum of A and $\Delta_{\varepsilon}=\{z \in \mathbb{C}:|z| \leq \varepsilon\}$.

Contour integral expansion of the backward error

$\Lambda_{\varepsilon}(A)$ does not scale with A : we consider instead

$$
\begin{gathered}
\Lambda_{\delta\|t A\|_{2}}(t A) \subseteq \mathcal{W}(t A)+\Delta_{\delta\|t A\|_{2}} \subseteq R(t A)+\Delta_{\delta\|t A\|_{2}}= \\
t\left(R(A)+\Delta_{\delta\|A\|_{2}}\right) \subseteq t R_{\delta}(A)
\end{gathered}
$$

where $R_{\delta}(A)$ is the extented rectangle

$$
R_{\delta}(A)=\left[-\nu-\delta\|A\|_{2}, \nu+\delta\|A\|_{2}\right]+\mathrm{i}\left[-\beta-\delta\|A\|_{2}, \beta+\delta\|A\|_{2}\right] .
$$

Contour integral expansion of the backward error

$\Lambda_{\varepsilon}(A)$ does not scale with A : we consider instead

$$
\begin{gathered}
\Lambda_{\delta\|t A\|_{2}}(t A) \subseteq \mathcal{W}(t A)+\Delta_{\delta\|t A\|_{2}} \subseteq R(t A)+\Delta_{\delta\|t A\|_{2}}= \\
t\left(R(A)+\Delta_{\delta\|A\|_{2}}\right) \subseteq t R_{\delta}(A)
\end{gathered}
$$

where $R_{\delta}(A)$ is the extented rectangle

$$
R_{\delta}(A)=\left[-\nu-\delta\|A\|_{2}, \nu+\delta\|A\|_{2}\right]+\mathrm{i}\left[-\beta-\delta\|A\|_{2}, \beta+\delta\|A\|_{2}\right]
$$

Then

$$
\begin{aligned}
& \frac{\|\Delta A\|_{2}}{\|A\|_{2}}=\frac{\left\|h\left(s^{-1} A\right)\right\|_{2}}{\left\|s^{-1} A\right\|_{2}} \leq\left\|s^{-1} A\right\|_{2}\left\|g\left(s^{-1} A\right)\right\|_{2}= \\
& \quad\left\|s^{-1} A\right\|_{2}\left\|\frac{1}{2 \pi \mathrm{i}} \int_{\Gamma} g(z)\left(z I-s^{-1} A\right)^{-1} \mathrm{~d} z\right\|_{2} \leq \frac{\mathcal{L}(\Gamma)}{2 \pi \delta}\|g\|_{\Gamma}
\end{aligned}
$$

if $h(z)=z^{2} g(z)(\ell \geq 1)$ and $\Gamma=\partial K$ encloses $\Lambda_{\delta\left\|s^{-1} A\right\|_{2}}\left(s^{-1} A\right)$.

Contour integral expansion of the backward error

$\Lambda_{\varepsilon}(A)$ does not scale with A : we consider instead

$$
\begin{gathered}
\Lambda_{\delta\|t A\|_{2}}(t A) \subseteq \mathcal{W}(t A)+\Delta_{\delta\|t A\|_{2}} \subseteq R(t A)+\Delta_{\delta\|t A\|_{2}}= \\
t\left(R(A)+\Delta_{\delta\|A\|_{2}}\right) \subseteq t R_{\delta}(A)
\end{gathered}
$$

where $R_{\delta}(A)$ is the extented rectangle

$$
R_{\delta}(A)=\left[-\nu-\delta\|A\|_{2}, \nu+\delta\|A\|_{2}\right]+\mathrm{i}\left[-\beta-\delta\|A\|_{2}, \beta+\delta\|A\|_{2}\right]
$$

Then

$$
\begin{aligned}
& \frac{\|\Delta A\|_{2}}{\|A\|_{2}}=\frac{\left\|h\left(s^{-1} A\right)\right\|_{2}}{\left\|s^{-1} A\right\|_{2}} \leq\left\|s^{-1} A\right\|_{2}\left\|g\left(s^{-1} A\right)\right\|_{2}= \\
& \quad\left\|s^{-1} A\right\|_{2}\left\|\frac{1}{2 \pi \mathrm{i}} \int_{\Gamma} g(z)\left(z I-s^{-1} A\right)^{-1} \mathrm{~d} z\right\|_{2} \leq \frac{\mathcal{L}(\Gamma)}{2 \pi \delta}\|g\|_{\Gamma}
\end{aligned}
$$

if $h(z)=z^{2} g(z)(\ell \geq 1)$ and $\Gamma=\partial K$ encloses $\Lambda_{\delta\left\|s^{-1} A\right\|_{2}}\left(s^{-1} A\right)$.
This is true if $s^{-1} R_{\delta}(A) \subseteq K$.

Choice of K

For given c and δ, we consider the ellipse Γ_{γ} of foci $(\pm c, 0)$ and capacity (half sum of the semi-axes) γ. We look for γ_{δ} such that

$$
\frac{\|\Delta A\|_{2}}{\|A\|_{2}} \leq \ldots \leq \frac{\mathcal{L}\left(\Gamma_{\gamma_{\delta}}\right)}{2 \pi \delta}\|g\|_{\Gamma_{\gamma_{\delta}}}=\text { tol }
$$

where g is associated to a given polynomial $p_{m}:[-c, c] \rightarrow \mathbb{R}$.

Choice of K

For given c and δ, we consider the ellipse Γ_{γ} of foci $(\pm c, 0)$ and capacity (half sum of the semi-axes) γ. We look for γ_{δ} such that

$$
\frac{\|\Delta A\|_{2}}{\|A\|_{2}} \leq \ldots \leq \frac{\mathcal{L}\left(\Gamma_{\gamma_{\delta}}\right)}{2 \pi \delta}\|g\|_{\Gamma_{\gamma_{\delta}}}=\text { tol }
$$

where g is associated to a given polynomial $p_{m}:[-c, c] \rightarrow \mathbb{R}$.

- For a given (shifted) matrix A, compute the rectangle

$$
R_{\delta}(A)=\left[-\nu-\delta\|A\|_{2}, \nu+\delta\|A\|_{2}\right]+\mathrm{i}\left[-\beta-\delta\|A\|_{2}, \beta+\delta\|A\|_{2}\right]
$$

Choice of K

For given c and δ, we consider the ellipse Γ_{γ} of foci $(\pm c, 0)$ and capacity (half sum of the semi-axes) γ. We look for γ_{δ} such that

$$
\frac{\|\Delta A\|_{2}}{\|A\|_{2}} \leq \ldots \leq \frac{\mathcal{L}\left(\Gamma_{\gamma_{\delta}}\right)}{2 \pi \delta}\|g\|_{\Gamma_{\gamma_{\delta}}}=\text { tol }
$$

where g is associated to a given polynomial $p_{m}:[-c, c] \rightarrow \mathbb{R}$.

- For a given (shifted) matrix A, compute the rectangle

$$
R_{\delta}(A)=\left[-\nu-\delta\|A\|_{2}, \nu+\delta\|A\|_{2}\right]+\mathrm{i}\left[-\beta-\delta\|A\|_{2}, \beta+\delta\|A\|_{2}\right]
$$

- compute s as the smallest integer such that $s^{-1} R_{\delta}(A) \subseteq K_{\gamma \delta}$

$$
\frac{\left(\nu+\delta\|A\|_{2}\right)^{2}}{s^{2} a_{\delta}^{2}}+\frac{\left(\beta+\delta\|A\|_{2}\right)^{2}}{s^{2} b_{\delta}^{2}} \leq 1
$$

Choice of K

For given c and δ, we consider the ellipse Γ_{γ} of foci $(\pm c, 0)$ and capacity (half sum of the semi-axes) γ. We look for γ_{δ} such that

$$
\frac{\|\Delta A\|_{2}}{\|A\|_{2}} \leq \ldots \leq \frac{\mathcal{L}\left(\Gamma_{\gamma_{\delta}}\right)}{2 \pi \delta}\|g\|_{\Gamma_{\gamma_{\delta}}}=\text { tol }
$$

where g is associated to a given polynomial $p_{m}:[-c, c] \rightarrow \mathbb{R}$.

- For a given (shifted) matrix A, compute the rectangle

$$
R_{\delta}(A)=\left[-\nu-\delta\|A\|_{2}, \nu+\delta\|A\|_{2}\right]+\mathrm{i}\left[-\beta-\delta\|A\|_{2}, \beta+\delta\|A\|_{2}\right]
$$

- compute s as the smallest integer such that $s^{-1} R_{\delta}(A) \subseteq K_{\gamma_{\delta}}$

$$
\frac{\left(\nu+\delta\|A\|_{2}\right)^{2}}{s^{2} a_{\delta}^{2}}+\frac{\left(\beta+\delta\|A\|_{2}\right)^{2}}{s^{2} b_{\delta}^{2}} \leq 1
$$

- approximate $\exp (A) v$ as $\underbrace{p_{m}\left(s^{-1} A\right)\left(\ldots\left(p_{m}\left(s^{-1} A\right)\right.\right.}_{s \text { times }} v) \ldots)$

Details

- We used Leja-Hermite interpolation polynomials with $\ell \geq 1$

Details

- We used Leja-Hermite interpolation polynomials with $\ell \geq 1$
- for given intervals $[-c, c]$ and $\mathrm{i}[-c, c]$ and given degrees m up to 55 , we computed the corresponding ellipses $\Gamma_{\gamma_{\delta}}$

Details

- We used Leja-Hermite interpolation polynomials with $\ell \geq 1$
- for given intervals $[-c, c]$ and $\mathrm{i}[-c, c]$ and given degrees m up to 55 , we computed the corresponding ellipses $\Gamma_{\gamma_{\delta}}$
- we optimized over δ and ℓ

Details

- We used Leja-Hermite interpolation polynomials with $\ell \geq 1$
- for given intervals $[-c, c]$ and $\mathrm{i}[-c, c]$ and given degrees m up to 55 , we computed the corresponding ellipses $\Gamma_{\gamma_{\delta}}$
- we optimized over δ and ℓ

- given the matrix A, we minimize $s \cdot m$ (matrix-vector cost)

Numerical results: 1

A is a 2D diffusion matrix, size $2041 \times 2041,\left\|A^{q}\right\|_{1}^{1 / q}=100$

Method	s	m	c	θ or γ	ℓ	$s \cdot m$	act. its.	rel. err.
Taylor	11	53	0	9.3	53	583	495	$4.4 \mathrm{e}-14$
L-H p.s.	10	55	4.8	1.0 e 1	0	550	460	$3.3 \mathrm{e}-14$
L-H c.i.	8	51	1.3 e 1	7.1	15	408	268	$1.3 \mathrm{e}-14$

The number of actual iterations is smaller than $s \cdot m$ because of an early termination criterion

$$
\text { if }\left\|\frac{A^{k}}{k!} v^{(I)}\right\| \leq \text { tol } \cdot\left\|\sum_{i=0}^{k} \frac{A^{i}}{i!} v^{(I)}\right\| \quad \text { for } k<m \text { and } 0 \leq I \leq s-1
$$

then stop substep /

Numerical results: 2

A is a 1D Schrödinger matrix, size $69 \times 69,\left\|A^{q}\right\|_{1}^{1 / q}=2450$

Method	\boldsymbol{s}	m	c	θ or γ	ℓ	$\boldsymbol{s} \cdot \boldsymbol{m}$	act. its.	rel. err.
Taylor	249	55	0	9.9	55	13695	13197	$7.3 \mathrm{e}-11$
L-H p.s.	292	55	8.4	8.4	1	16060	10220	$2.7 \mathrm{e}-13$
L-H c.i.	186	54	1.3 e 1	7.9	42	10044	9858	$1.7 \mathrm{e}-13$

There is a hump phenomenon for Taylor series approximation. We mean that

$$
\left\|\sum_{i=0}^{k} \frac{A^{i}}{i!} v^{(I)}\right\| \gg \sum_{i=0}^{m} \frac{A^{i}}{i!} v^{(I)} \| \quad \text { for } k<m \text { and } 0 \leq I \leq s-1
$$

and cancellation takes place.

Numerical results: 3

A is $\operatorname{triu}(-4 * \operatorname{ones}(20), 1)$ (nilpotent), v is $\cos ((1: 20)$ '), $\|A\|_{1}=76, \alpha_{8}(A)=16.29, \lim _{q \rightarrow \infty} \alpha_{q}(A)=\rho(A)=0$

Method	s	m	c	θ or γ	ℓ	$s \cdot m$	act. its.	rel. err.
Taylor	2	54	0	9.6	54	108	42	$3.2 \mathrm{e}-14$
L-H p.s.	2	53	6.7	9.6	41	106	42	$4.2 \mathrm{e}-14$
L-H c.i.	6	55	5.5	9.2	2	330	186	$2.0 \mathrm{e}-14$

Since it is not possible to use the values $\alpha_{q}(A)$ for L-H c.i., there is overscaling.

Numerical results: 3

$$
\begin{aligned}
& A \text { is } \operatorname{triu}(-4 * \operatorname{ones}(20), 1) \text { (nilpotent), } v \text { is } \cos \left((1: 20)^{\prime}\right), \\
& \|A\|_{1}=76, \alpha_{8}(A)=16.29, \lim _{q \rightarrow \infty} \alpha_{q}(A)=\rho(A)=0
\end{aligned}
$$

Method	s	m	c	θ or γ	ℓ	$s \cdot m$	act. its.	rel. err.
Taylor	2	54	0	9.6	54	108	42	$3.2 \mathrm{e}-14$
L-H p.s.	2	53	6.7	9.6	41	106	42	$4.2 \mathrm{e}-14$
L-H c.i.	6	55	5.5	9.2	2	330	186	$2.0 \mathrm{e}-14$

Since it is not possible to use the values $\alpha_{q}(A)$ for L-H c.i., there is overscaling.
This is the famous triw example by [Al-Mohy-Higham, 2011] for which Krylov and rational methods may suffer of loss of accuracy.

Numerical results: 4

A is $\operatorname{triu}(-4 * \operatorname{ones}(110), 1)$ (nilpotent), v is ones $(110,1)$, $\|A\|_{1}=436, \alpha_{8}(A)=112.08$

Method	s	m	c	θ or γ	ℓ	$s \cdot m$	act. its.	rel. err.
Taylor	12	55	0	9.9	55	660	313	$3.2 \mathrm{e}-12$
L-H c.i.	34	55	0	9.2	55	1870	635	$2.2 \mathrm{e}-14$

In this case, we have that $\mathrm{L}-\mathrm{H}$ c.i. is Taylor, but the abuse of the values $\alpha_{q}(A)$ makes Taylor to underscale.

Conclusions

- A mixture of power series and contour integral expansions would probably be optimal

Conclusions

- A mixture of power series and contour integral expansions would probably be optimal
- The backward error analysis can be applied to any polynomial method (Taylor truncated series, interpolation, Chebyshev series, ..., Krylov)

Conclusions

- A mixture of power series and contour integral expansions would probably be optimal
- The backward error analysis can be applied to any polynomial method (Taylor truncated series, interpolation, Chebyshev series, ..., Krylov)
- It should be possible to perform the backward error analysis on-the-fly [C. and Zivcovich, 2018]

Conclusions

- A mixture of power series and contour integral expansions would probably be optimal
- The backward error analysis can be applied to any polynomial method (Taylor truncated series, interpolation, Chebyshev series, ..., Krylov)
- It should be possible to perform the backward error analysis on-the-fly [C. and Zivcovich, 2018]
- matrix-free?

Conclusions

- A mixture of power series and contour integral expansions would probably be optimal
- The backward error analysis can be applied to any polynomial method (Taylor truncated series, interpolation, Chebyshev series, ..., Krylov)
- It should be possible to perform the backward error analysis on-the-fly [C. and Zivcovich, 2018]
- matrix-free?
- Thanks for your attention

[^0]: *joint work with Franco Zivcovich

