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Exponential integrators

We consider the simplest exponential integrator for

u′(t) = Au(t) + g(u(t)), u(0) = u0

that is exponential Euler

un+1 = un + hϕ1(hA)(Aun + g(un))

where h is the time step and ϕ1 is the entire function

ϕ1(z) =
ez − 1

z
.

Given the augmented matrix

Ã =

[
A v
0 0

]
, v = Aun + g(un)

we have

exp(hÃ)

[
0
1

]
=

[
hϕ1(hA)v

1

]
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[
0
1

]
=

[
hϕ1(hA)v

1

]
Marco Caliari Error analysis on pseudo-spectra for the matrix exponential



Power series expansion of the backward error for exp(A)

We formally approximate exp(A) as

p(s−1A)s = exp(A + ∆A) = exp(A + sh(s−1A))

where p(z) is a polynomial of degree m (with p(0) = 1) and h(z)
has a power series expansion

h(z) = log(e−zp(z)) =
∞∑

k=`+1

ckz
k

where ` is the largest integer such that p(j)(0) = 1, j = 0, 1, . . . , `.

Therefore, ‖∆A‖ ≤ tol · ‖A‖ if

‖∆A‖
‖A‖ =

‖h(s−1A)‖
‖s−1A‖ ≤ h̃(s−1‖A‖)

s−1‖A‖ ≤ tol

where h̃(z) =
∑∞

k=`+1|ck |zk .
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Precomputation of the threshold

We can precompute in high precision the threshold θ such that

h̃(θ)

θ
= tol.

Then
‖∆A‖ ≤ tol · ‖A‖ if s−1‖A‖ ≤ θ.

Given
αq(A) = max{‖Aq‖1/q, ‖Aq+1‖1/(q+1)}

then

‖∆A‖ ≤ tol · ‖A‖ if s−1αq(A) ≤ θ and q(q − 1) ≤ `+ 1

The sequence {αq(A)}q usually decreases for nonnormal matrices.
Usually we work with shifted matrices B = A− µI .
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Families of polynomial approximations

Instead of a single polynomial of degree m, we can consider
sequences {pm}m. For instance

I truncated Taylor series pm(z) =
∑m

i=0 z
i/i !

[Al-Mohy–Higham, 2011]

I Interpolation pm(z) =
∑m

i=0 e
[z0,z1,...,zi ]

∏i−1
j=0(z − zj) at

Leja–Hermite points [C., Kandolf, Ostermann, Rainer,
Zivcovich 2016–2018]

z0 = z1 = . . . = z` = 0,

zi+1 ∈ arg max
x∈[−c,c]

i∏
j=0

|x − zj | i = `, `+ 1, . . . ,m − 1

For each m, c can be chosen in order to maximize θ.
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More information from the spectrum of A

The field of values W(A) satisfies

W(A) =W(AH + ASH) ⊆ W(AH) +W(ASH) =

conv(σ(AH)) + conv(σ(ASH)) ⊆ [α, ν] + i[η, β]

We use Gershgorin’s disks to obtain the rectangle [α, ν] + i[η, β].

After applying the obvious shift µ, with abuse of notation, we get

W(A) ⊆ R(A) = [−ν, ν] + i[−β, β]

and
Λε(A) ⊆ W(A) + ∆ε ⊆ R(A) + ∆ε

where Λε(A) = {z ∈ C : ‖(zI − A)−1‖2 ≥ ε−1} is the
ε-pseudo-spectrum of A and ∆ε = {z ∈ C : |z | ≤ ε}.
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Contour integral expansion of the backward error

Λε(A) does not scale with A: we consider instead

Λδ‖tA‖2
(tA) ⊆ W(tA) + ∆δ‖tA‖2

⊆ R(tA) + ∆δ‖tA‖2
=

t(R(A) + ∆δ‖A‖2
) ⊆ tRδ(A)

where Rδ(A) is the extented rectangle

Rδ(A) = [−ν − δ‖A‖2, ν + δ‖A‖2] + i[−β − δ‖A‖2, β + δ‖A‖2].

Then

‖∆A‖2

‖A‖2
=
‖h(s−1A)‖2

‖s−1A‖2
≤ ‖s−1A‖2‖g(s−1A)‖2 =

‖s−1A‖2

∥∥∥∥ 1

2πi

∫
Γ
g(z)(zI − s−1A)−1dz

∥∥∥∥
2

≤ L(Γ)

2πδ
‖g‖Γ,

if h(z) = z2g(z) (` ≥ 1) and Γ = ∂K encloses Λδ‖s−1A‖2
(s−1A).

This is true if s−1Rδ(A) ⊆ K .
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Choice of K

For given c and δ, we consider the ellipse Γγ of foci (±c , 0) and
capacity (half sum of the semi-axes) γ. We look for γδ such that

‖∆A‖2

‖A‖2
≤ . . . ≤ L(Γγδ)

2πδ
‖g‖Γγδ

= tol

where g is associated to a given polynomial pm : [−c , c]→ R.

I For a given (shifted) matrix A, compute the rectangle
Rδ(A) = [−ν − δ‖A‖2, ν + δ‖A‖2] + i[−β− δ‖A‖2, β + δ‖A‖2]

I compute s as the smallest integer such that s−1Rδ(A) ⊆ Kγδ

(ν + δ‖A‖2)2

s2a2
δ

+
(β + δ‖A‖2)2

s2b2
δ

≤ 1

I approximate exp(A)v as pm(s−1A)(. . . (pm(s−1A)︸ ︷︷ ︸
s times

v) . . .)
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Details

I We used Leja–Hermite interpolation polynomials with ` ≥ 1

I for given intervals [−c, c] and i[−c , c] and given degrees m up
to 55, we computed the corresponding ellipses Γγδ

I we optimized over δ and `

-4 -2 0 2 4
-4

-2

0

2

4

−3 3

ℓ = 1, δ = 0.1800

ℓ = 3, δ = 0.0178

ℓ = 1, δ = 0.0180

I given the matrix A, we minimize s ·m (matrix-vector cost)
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Numerical results: 1

A is a 2D diffusion matrix, size 2041× 2041, ‖Aq‖1/q
1 = 100

Method s m c θ or γ ` s ·m act. its. rel. err.

Taylor 11 53 0 9.3 53 583 495 4.4e-14

L–H p.s. 10 55 4.8 1.0e1 0 550 460 3.3e-14

L–H c.i. 8 51 1.3e1 7.1 15 408 268 1.3e-14

The number of actual iterations is smaller than s ·m because of an
early termination criterion

if

∥∥∥∥Ak

k!
v (l)

∥∥∥∥ ≤ tol ·
∥∥∥∥∥

k∑
i=0

Ai

i !
v (l)

∥∥∥∥∥ for k < m and 0 ≤ l ≤ s − 1

then stop substep l
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Numerical results: 2

A is a 1D Schrödinger matrix, size 69× 69, ‖Aq‖1/q
1 = 2450

Method s m c θ or γ ` s ·m act. its. rel. err.

Taylor 249 55 0 9.9 55 13695 13197 7.3e-11

L–H p.s. 292 55 8.4 8.4 1 16060 10220 2.7e-13

L–H c.i. 186 54 1.3e1 7.9 42 10044 9858 1.7e-13

There is a hump phenomenon for Taylor series approximation. We
mean that∥∥∥∥∥

k∑
i=0

Ai

i !
v (l)

∥∥∥∥∥�
∥∥∥∥∥

m∑
i=0

Ai

i !
v (l)

∥∥∥∥∥ for k < m and 0 ≤ l ≤ s − 1

and cancellation takes place.
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Numerical results: 3

A is triu(-4*ones(20),1) (nilpotent), v is cos((1:20)’),
‖A‖1 = 76, α8(A) = 16.29, limq→∞ αq(A) = ρ(A) = 0

Method s m c θ or γ ` s ·m act. its. rel. err.

Taylor 2 54 0 9.6 54 108 42 3.2e-14

L–H p.s. 2 53 6.7 9.6 41 106 42 4.2e-14

L–H c.i. 6 55 5.5 9.2 2 330 186 2.0e-14

Since it is not possible to use the values αq(A) for L–H c.i., there
is overscaling.

This is the famous triw example by [Al-Mohy–Higham, 2011] for
which Krylov and rational methods may suffer of loss of accuracy.
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Numerical results: 4

A is triu(-4*ones(110),1) (nilpotent), v is ones(110,1),
‖A‖1 = 436, α8(A) = 112.08

Method s m c θ or γ ` s ·m act. its. rel. err.

Taylor 12 55 0 9.9 55 660 313 3.2e-12

L–H c.i. 34 55 0 9.2 55 1870 635 2.2e-14

In this case, we have that L–H c.i. is Taylor, but the abuse of the
values αq(A) makes Taylor to underscale.
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Conclusions

I A mixture of power series and contour integral expansions
would probably be optimal

I The backward error analysis can be applied to any polynomial
method (Taylor truncated series, interpolation, Chebyshev
series, . . . , Krylov)

I It should be possible to perform the backward error analysis
on-the-fly [C. and Zivcovich, 2018]

I matrix-free?

I Thanks for your attention
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