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Multiphysics Problems

“Multiphysics” problems typically involve a variety of interacting processes:

System of components coupled in the bulk [cosmology, combustion]

System of components coupled across interfaces [climate, tokamak fusion]

Multiphysics simulation challenges include:

Multirate processes, but too close to analytically reformulate.

Optimal solvers may exist for some pieces, but not for the whole.

Mixing of stiff/nonstiff processes, a challenge for standard algorithms.

Historical approaches rely on lowest-order time step splittings, may suffer from:

Low accuracy – typically O(h)-accurate; symmetrization/extrapolation
may improve this but at significant cost [Ropp, Shadid & Ober 2005].

Poor/unknown stability – even when each part utilizes a ’stable’ step size,
the combined problem may admit unstable modes [Estep et al., 2007].
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Need for Flexible Time Integration Libraries

Multiphysics time integration needs:

Stability/accuracy for each component, as well as inter-physics couplings

Custom/flexible step sizes for distinct components

Robust temporal error estimation & adaptivity of step size(s)

Built-in support for spatial adaptivity

Ability to apply optimal solver algorithms for individual components

Support for testing a variety of methods and solution algorithms

Legacy software frameworks enforce overly-rigid standards on applications:

Fully implicit or fully explicit, without ImEx flexibility.

Fixed data structures for vectors, matrices, (non)linear solvers.

Hard-coded parameters – good for most problems, but rarely optimal.
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Additive Runge–Kutta (ARK) Methods [Ascher et al. 1997; Araújo et al. 1997; . . . ]

ARKode was initially designed to implement adaptive ARK methods, supporting up to
two split components: explicit and implicit,

Mẏ = fE(t, y) + fI(t, y), t ∈ [t0, tf ], y(t0) = y0,

M is any nonsingular linear operator (mass matrix, typically M = I),

fE(t, y) contains the explicit terms,

fI(t, y) contains the implicit terms.

Combine two s-stage RK methods; denoting t∗n,j = tn + c∗jhn, hn = tn+1 − tn:

Mzi =Myn + hn

i−1∑
j=1

AE
i,jf

E(tEn,j , zj) + hn

i∑
j=1

AI
i,jf

I(tIn,j , zj), i = 1, . . . , s,

Myn+1 =Myn + hn

s∑
j=1

[
bEj f

E(tEn,j , zj) + bIjf
I(tIn,j , zj)

]
(solution)

Mỹn+1 =Myn + hn

s∑
j=1

[
b̃Ej f

E(tEn,j , zj) + b̃Ijf
I(tIn,j , zj)

]
(embedding)
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ARK Coefficients

Two Butcher tables define the method:{
cE , AE , bE , b̃E

}
define the explicit Butcher table

{
cI , AI , bI , b̃I

}
define the diagonally-implicit Butcher table

Formulation supports adaptive or fixed-step ERK, DIRK and ARK methods:

Explicit methods: AI = 0 and all IVP terms are in fE(t, y).

Implicit methods: AE = 0 and all IVP terms are in fI(t, y).

Tables derived in unison to satisfy inter-component coupling.

For fixed or user-defined steps hn: b̃E and b̃I need not be defined.
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Solving each stage zi, i = 1, . . . , s

Each stage is implicitly defined via a root-finding problem:

0 = Gi(z) ≡Mz−Myn−hn

AI
i,if

I(tIn,i, z) +

i−1∑
j=1

(
AE

i,jf
E(tEn,j , zj) +AI

i,jf
I(tIn,j , zj)

)
if fI(t, y) is linear in y then we must solve a linear system for each zi,

otherwise Gi is nonlinear, and requires an iterative nonlinear solver.

Algebraic solver options (see Carol Woodward’s talk):

Nonlinear solver options include: modified Newton, inexact Newton,
Anderson-accelerated fixed point, and user-supplied.

Linear solver options include: dense/band/sparse-direct, preconditioned
Krylov iterative, and user-supplied.

All solvers (except for direct linear) formulated via vector operations, with
data structures including: serial, MPI, PETSc, hypre, and user-supplied.
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ARKode Flexibility Enhancements

Additionally, ARKode includes enhancements for multi-physics codes, including:

Variety of built-in RK tables; supports user-supplied

Variety of built-in adaptivity functions; supports user-supplied

Variety of built-in implicit predictor algorithms

Ability to specify that problem is linearly implicit

Ability to resize data structures based on changing IVP size

All internal solver parameters are user-modifiable

http://www.smu.edu
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ARKode Usage

ARKode has been freely-available since 2014. We have specifically worked with
applications groups in:

ParaDiS – large-scale simulations of dislocation
growth/propagation (material strain hardening)
[Gardner et al., MSMSE, 2015]

Examined high-order adaptive DIRK
methods.

Examined nonlinear solvers and options.

Tempest & HOMME-NH – non-hydrostatic 3D
dynamical cores for atmospheric simulations
[Gardner et al., GMD, 2018; Vogl et al, in prep.]

Examined ImEx splittings & fixed-step
ARK methods for accuracy/stability

Examined nonlinear/linear solver
algorithms for implicit components

Implicit integration methods for dislocation dynamics 21

Table 3. Run time (seconds) and number of time steps for 3rd through 5th order

DIRK integrators on the Frank-Read source problem using the Newton-Krylov (NK)

solver to a final time of 50 µs. Recall ✏n is the nonlinear solver convergence tolerance

from (17) and ✏l is the linear solver tolerance factor in the inexact Newton iteration.

The native ParaDiS solver took 1120s and required 6,284 time steps for the same

problem. The DIRK solvers with ✏n = 1.0 and 4 iterations took as little as 1/44 as

many steps. Several methods achieved a speedup of 95% over the native ParaDiS

solver.

✏n = 0.1 ✏n = 0.5 ✏n = 1.0

Method Run time Steps Run time Steps Run time Steps

DIRK3 NK I2 ✏l0.1 174 576 620 1636 178 535

DIRK3 NK I3 ✏l0.1 1396 2995 664 1676 64 208

DIRK3 NK I4 ✏l0.1 84 235 68 216 62 202

DIRK3 NK I2 ✏l0.5 670 1832 104 368 432 1289

DIRK3 NK I3 ✏l0.5 77 240 613 1788 608 1739

DIRK3 NK I4 ✏l0.5 78 242 60 188 89 270

DIRK4 NK I2 ✏l0.1 174 478 108 305 81 229

DIRK4 NK I3 ✏l0.1 96 237 80 195 72 176

DIRK4 NK I4 ✏l0.1 84 203 71 117 67 175

DIRK4 NK I2 ✏l0.5 144 421 106 308 436 1060

DIRK4 NK I3 ✏l0.5 87 231 71 187 127 227

DIRK4 NK I4 ✏l0.5 86 213 87 202 53 140

DIRK5 NK I2 ✏l0.1 202 540 136 351 113 294

DIRK5 NK I3 ✏l0.1 286 620 114 253 70 170

DIRK5 NK I4 ✏l0.1 99 215 90 213 74 161

DIRK5 NK I2 ✏l0.5 222 571 139 369 86 250

DIRK5 NK I3 ✏l0.5 1001 1868 384 575 77 185

DIRK5 NK I4 ✏l0.5 88 212 366 665 70 169

(a) Initial system state (b) System state after 3.3 µs

Figure 3. (a) The initial condition for the cold start simulations containing ⇠450

nodes forming straight line dislocations. (b) The final system state after 3.3 µs with

⇠2850 nodes.

Implicit integration methods for dislocation dynamics 26

Figure 5. Dislocation density for the cold start problem using the trapezoid

method with two nonlinear iterations, trapezoid using Anderson acceleration with four

iterations and three residual vectors, and the 3rd and 5th order DIRK integrators with

Anderson acceleration with four nonlinear iterations and three residual vectors with

nonlinear tolerance factor ✏n 1.0. The di↵erent methods show good agreement in the

density curves throughout the duration of the simulation.

(a) System state after 4.4 µs (b) System state after 6.25 µs

Figure 6. (a) The final dislocation network for the warm start test after 1.1 µs for

a final simulation time of 4.4 µs containing ⇠2920 nodes. (b) The final warm start

system state after 2.95 µs for a final time of 6.25 µs with ⇠4950 nodes.
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Reconfiguring ARKode into an infrastructure

Over the last year, we have overhauled ARKode to serve as an infrastructure
for general, adaptive, one-step time integration methods:

ARKode provides the outer time integration loop.

Time-stepping modules handle problem-specific components: how a user
defines the IVP itself, and how to take a single time step.

Time-stepping modules may leverage shared ARKode infrastructure:

SUNDIALS’ vector, matrix, linear solver and nonlinear solver objects,

translation between Jacobians and mass-matrices at the IVP level, to
those required within an implicit stage solve,

usage modes (interpolation vs “tstop”) and dense output
interpolation,

time adaptivity controllers,

implicit predictors,

temporal root-finding,

etc.
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Timestep module requirements

Each timestep module must provide functions to:

initialize the module once all user-specified options have been set,

evaluate the full ODE right-hand side function (if partitioned), and

actually perform a single time step of the method.

To leverage shared algebraic solver infrastructure, it must provide functions to:

attach implicit linear solver routines and data structures to the module,

return the linear solver memory structure,

return function pointer fi(t, y) corresp. to current implicit stage solve, and

return γ for the linear system, Ax = b where A =M − γ ∂f
∂y

(t, y).

Timestep modules are also responsible for providing a user interface:

Define types of supported problems, and allow users to supply problem-defining
vectors, functions, parameters, etc.

Interally create the shared ARKode infrastructure.

http://www.smu.edu
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Shared infrastructure: ARKLS linear solver interface

Translation layer between SUNDIALS’ generic matrix/solver structures
(Ax = b) and IVP-specific linear systems (A ≈M − γ ∂f

∂y
(t, y)).

Provides five routines for timestep modules to use:

Initialize: completes solver initialization based on optional inputs.

Setup: recomputes ∂f
∂y

(t, y) as necessary, including finite-difference

approximations for dense/banded matrices.

Multiply: computes the matrix-vector products Av and ∂f
∂y
v.

Solve: solves Ax = b to a desired accuracy (WRMS norm).

Free: frees up memory allocated by the linear solver.

Similar routines are supported for non-identity mass-matrices.

http://www.smu.edu
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Shared infrastructure: Stepsize adaptivity controllers

A variety of built-in stepsize adaptivity controllers are provided.
Defining q and p as the method and embedding orders, and εk ≈ ‖yk − ỹk‖:

PID: hn+1 = hnε
−k1/p
n ε

k2/p
n−1 ε

−k3/p
n−2

PI: hn+1 = hnε
−k1/p
n ε

k2/p
n−1

I: hn+1 = hnε
−k1/p
n

explicit Gustafsson: hn+1 =

h1ε
−1/p
1

hnε
−k1/p
n

(
εn

εn−1

)k2/p

implicit Gustafsson: hn+1 =

h1ε
−1/p
1

hn
(

hn
hn−1

)k2/p
ε
−k1/p
n

(
εn

εn01

)k2/p

ImEx Gustafsson: hn+1 is set to the minimum of the two previous estimates

user-supplied: hn+1 = H (y, t, hn, hn−1, hn−2, εn, εn−1, εn−2, q, p)

http://www.smu.edu
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Shared infrastructure: Temporal interpolation module

ARKode provides an integrator-agnostic dense output module based on
Hermite polynomial interpolation.

Defining [tn−1, tn] as the most-recently-computed solution interval,
hn = tn − tn−1 and τ = t−tn

hn
:

O(hn): p0(τ) = 1
2
(yn−1 + yn)

O
(
h2n
)
: p1(τ) interpolates { yn−1, yn }

O
(
h3n
)
: p2(τ) interpolates { yn−1, yn, ẏn }

O
(
h4n
)
: p3(τ) interpolates { yn−1, yn, ẏn−1, ẏn }

O
(
h5n
)
: p4(τ) interpolates

{
yn−1, yn, ẏn−1, ẏn, ẏ

(
tn − 1

3
hn
) }

O
(
h6n
)
: p5(τ) interpolates

{
yn−1, yn, ẏn−1, ẏn, ẏ

(
tn − 1

3
hn
)
, ẏ
(
tn − 2

3
hn
) }
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Shared infrastructure: Implicit predictor module

ARKode provides implicit predictors for stages in the step tn → tn+1, mainly

utilizing the interpolation module, z
(0)
i = p

(
ci

hn+1

hn

)
:

Trivial: p(τ) = yn.

Maximum order: p(τ) = pqmax(τ) for user-specified qmax ∈ [0, 5].

Variable order: p(τ) = pq(τ) where q =


3, if τ ≤ 1

2
,

2, if 1
2
< τ ≤ 3

4
,

1, otherwise.

Cutoff order: p(τ) = pq(τ) where q =

{
qmax, if τ ≤ 1

2
,

1, otherwise.

Bootstrap: p(τ) = yn for i = 1; for i > 1, p(τ) interpolates
{ yn, ẏn, ẏ(tn,j) } where tn,j = maxj<i(tn + cjhn+1).

http://www.smu.edu
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Shared infrastructure: Butcher table module

ARKode provides a Butcher table data structure, with required fields for
A ∈ Rs×s, b ∈ Rs, c ∈ Rs and q; optional fields are b̃ ∈ Rs and p.

Users may supply table structures to timestep modules. Alternately, ARKode
already includes a variety of tables:

Explicit: 12 embedded tables from O
(
h2/h

)
through O

(
h8/h7

)
.

Diagonally-implicit: 12 embedded tables from O
(
h2/h

)
to O

(
h5/h4

)
.

ImEx: 3 ARK pairs with orders O
(
h3/h2

)
, O
(
h4/h3

)
, and O

(
h5/h4

)
.

http://www.smu.edu
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Continued support for ARK, DIRK and ERK methods

Our existing functionality from previous ARKode versions has been retained:

ARKStep supports ARK, DIRK and ERK methods for problems of the form

Mẏ = fE(t, y) + fI(t, y), t ∈ [t0, tf ], y(t0) = y0.

Can fully utilize any Butcher table packaged with ARKode, or any
user-supplied tables.

Fully retains all functionality of previous ARKode versions.

ERKStep is a leaner module that provides more optimal support for
ERK-specific methods applied to the standard IVP problem,

ẏ = f(t, y), t ∈ [t0, tf ], y(t0) = y0.

http://www.smu.edu
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Multirate Infinitesimal Step (MIS) stepper [Knoth & Wolke 1998; Schlegel et al. 2009; . . . ]

David Gardner [LLNL] has implemented a new MRIStep module to support O
(
h2
)

and O
(
h3
)

MIS methods for explicit-explicit multirate problems:

ẏ = f{f}(t, y) + f{s}(t, y), t ∈ [t0, tf ], y(t0) = y0,

f{f}(t, y) contains the “fast” terms; f{s}(t, y) contains the “slow” terms;

hs > hf ; currently both are user-defined, but can be varied between steps;

slow scale integrated with an ERK method satisfying ci < ci+1, i = 1, . . . , s− 1;

fast scale is advanced over slow stage τ ∈ [tn + cihs, tn + ci+1hs] by solving:

ẏ = f{f} (τ, y) +

j∑
k=1

αkf
{s}
(
t
{s}
n,k , z

{s}
k

)
, y(tn + cihs) = z

{s}
i ;

while currently explicit, implicit and ImEx will be added soon;

only a single traversal of [tn, tn+1] is required to obtain yn+1.

This module will be included in the next release (this week).

http://www.smu.edu
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Generalized Additive Runge-Kutta (GARK) stepper [Sandu & Günther, SINUM 2015]

David has also implemented a new IMEXGARKStep module to support ImEx
GARK methods for problems with two partitions:

ẏ = f{E}(t, y) + f{I}(t, y), t ∈ [t0, tf ], y(t0) = y0.

Users supply Butcher table components A{E,E}, A{I,I}, A{E,I} and
A{I,E}, corresponding to E-E, I-I, E-I and I-E couplings, respectively;
coefficients b{E} and b{I} define the timestep solution.

A{E,E} and A{E,I} must be explicit.

A{I,I} and A{I,E} can be diagonally implicit.

Currently assumes that all tables have the same number of stages.

This module will be included in an upcoming release.

http://www.smu.edu
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Conclusions

The ARKode infrastructure flexibly supports extensive studies of optimal
algorithms for multiphysics problems:

Numerous built-in ERK, DIRK, ARK methods, support for user-supplied

Numerous vector/matrix data structures, support for user-supplied

Numerous algebraic solver algorithms, support for user-supplied

Simplifies transition from research-level time integration methods to
production software, via reusable infrastructure components:

Numerous timestep adaptivity controllers, support for user-supplied

Robust temporal interpolation

Numerous implicit predictors

Extensible Butcher table module simplifies user control over method.

http://www.smu.edu
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