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Rate-independent systems (Mielke—Theil, Mielke—Rossi-Savaré)

Prototypical equation:

IZE:;I — Au(t) + DWo(u(t)) = £(t)  inQx [0, T],

where Wy = double well potential:
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{1} if s > 0.
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Rate-independent systems (Mielke—Theil, Mielke—Rossi-Savaré)

Prototypical equation:

a(t) Au(t) + DWo(u(t)) = £(t) in Q x [0, T],

la(t)]
(@ —1)

where Wy = double well potential:

-1 1 g
Interpretation:

ot {-1} ifs<0O,
|ZEt;| = Segn(d(t)), where Sgn(s) :=1<[-1,1] ifs=0,
{1} if s > 0.

Features:
= Rate-independence: Dissipation does not depend on rate (speed) of
movement ~~ idealization!
m Can only expect BV-regularity ~~ jumps
m The above equation says nothing about the behavior on jump transients!
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Jump parametrization?

Two-speed solutions (R., Schwarzacher, Siili, Veldzquez, 2017-):
= Strong solutions as long as possible
m Late jumps (similar to Mielke-Rossi—-Savaré “Balanced Viscosity” theory)

= Jump resolution (viscous PDE on jump transients)



BV-maps with jumps: Relaxation

Let © C R? bounded Lipschitz domain, d, m > 1, and
Flu] = / f(x, u(x), Vu(x)) dx, ue WHHQ; R™),
Q

where f: Q x R™ x R™? — [0, 00) with

0< f(x,y,A) < C(1+|y|7“ Y +A).



BV-maps with jumps: Relaxation

Let Q c RY bounded Lipschitz domain, d,m > 1, and
Flu] == / f(x,u(x), Vu(x))dx,  uve W H(QR™),
Q
where f: Q x R™ x R™? — [0, 00) with

0 < f(xy,A) < C(L+ly[”/7Y + |A]).
Relaxation of .% at u € BV(; R"):

Fax[u] := inf {Ii_minfy[uj-]: (uj); € WY R™), uj ~ u}
j—oo

with “uj ~» u” meaning BV-weak* or L!-strong convergence.

Q: What is %,..7 Does it have an integral representation?



BV-maps with jumps: Relaxation

Let Q c RY bounded Lipschitz domain, d,m > 1, and
Flu] == / f(x,u(x), Vu(x))dx,  uve W H(QR™),
Q
where f: Q x R™ x R™? — [0, 00) with
0 < F(x,y,A) < C(L+ [y|” "D +A)).
Relaxation of .% at u € BV(; R"):

Fax[u] := inf {Ii_minf,?[uj-]: (uj); € WY R™), uj ~ u}
j—oo

with “uj ~» u” meaning BV-weak* or L!-strong convergence.

Q: What is .%,..? Does it have an integral representation? Jump paths matter!

SN SN

Previous work: Fonseca—Miiller '93, Ambrosio—Dal Maso '92 and many other
works (Leoni, Bouchitté, Mascarenhas, ...).




Relaxation theorem with respect to BV-weak* convergence

Theorem (R. & Shaw 2017)
Let f: Q x R™ x R™¢ — [0, 00) where d > 2 and m > 1 be such that
(i) f is a Carathéodory function whose recession function f°° exists as a limit,

< (x,y,A) = lim —f(xk’yk’tkAk)

(%, Yk Ak) = (x,,A) tk
t)—00

(i) 0< F(x,y,A) < C(L+|y|”/C +|A));
(iii) f(x,y,*) is quasiconvex for every (x,y) € Q x R™.
Then the sequential weak* relaxation %, of & to u € BV(Q;R™) is

fﬂ*[u]:/f(x, u,Vu) dx—l—/f°° X, u,ﬂ d|DCU|+/Kf[U] A !
Q Q d|D<ul J

where J is the jump set of u and

i) =inf { = [ (o), Vo)) dy

Wd—1

€ CX(BYR™), plogs = u=(x) iy - mu(x) 2 o}



Toward L1-relaxation

Task: Compute the [-limit of the sequence of functionals as ¢ | O:

AN %/g(x, u)? dx—l—E/ h(x, u, Vu)? dx.
Q Q

~~ liquid crystals, fluid mixtures, phase transitions in solids, reaction—diffusion
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Toward L1-relaxation

Task: Compute the I-limit of the sequence of functionals as ¢ | 0:
&elu] == 1 / g(x,u)’ dx—l—E/ h(x, u, Vu)? dx.
€ Ja Q

~ liquid crystals, fluid mixtures, phase transitions in solids, reaction—diffusion

For f(x,y,A) := g(x, y)h(x,y, A), by the Cauchy—Schwarz inequality:

Flu] = /Q f(x,u,Vu)dx = /Q g(\);,c:u) -\Veh(x,u, Vu) dx < &[u].

= A relaxation of .7 gives lower bound for -lim._,o & (often optimall)
= Main difficulty: g may have zeroes ~» need L'-relaxation %}, of .#

= Dal Maso '79 example: there exists a continuous, convex (!), positively
1-homogeneous integrand f: Q x RY — [0, o0) for which .% is not equal
to ZL, over W“(Q;]R).



The story so far

Main works: Fonseca & Miiller '92, Fonseca & Leoni '01.
(2) Need g bounded.
(b) Need fairly strong continuity assumptions in x.

(c) Need joint lower semicontinuity in (x, y).

Interesting integrands that are not covered:

m Models of chemical reactions (Rubinstein—Sternberg—Keller 1989,
Lin—Pan-Wang 2012) or harmonic maps (Chen—Struwe 1989) lead to

g(x,y) = dist(y, K)", h(x, u, A) := |A|

with K = compact Riemannian manifold.
® Inhomogeneity, e.g.

gla,y) =y h(x,u,A) = A



Partial coercivity

Assume that g: Q x R™ — [0, c0) is continuous and:

(a) partial coercivity:
g(x, ¥)IAl < f(x,y,A) < Cg(x,y)(1+A])
(b) there exists R > 0 and M > 1 for which
g(x,y) < Mg(x,ty) forallxeQ, |y|>Randt>1,
(c) for every compact K C R™ and ¢ > 0, there exists R. > 0 such that
I(f = £2)(x, y, A)l < eg(x, y)(1 + |A])
for (x,y,A) € Q x K x R™9 with |A] > R..



Relaxation theorem with respect to L!-convergence

Theorem (R. & Shaw 2018)

Let f: Q x R™ x R™? — [0,00) where d > 2 and m > 1 be such that
(i) f is a Carathéodory function whose recession function f°° exists as a limit;
(ii) f is partially coercive via g (g(x,y)|Al < f(x,y,A) < Cg(x,y)(1+ |A]));
(iii) f(x,y,*) is quasiconvex for every (x,y) € Q x R™.
Define
G = { ue MR : /g(x, u(x)) dx < oo }
Q

Then, the 1.'-relaxation of Z from W' (Q;R™)N¥ to BV(Q;R™)NY is

Frlul = [ fOx,u, Vu)dx+ [ £ (x,u, &cu d|Du| + [ Hf[u] doe?!
d|D<u|
Q Q J

where Hy[u] is given on the next slide.



Surface densities

Given u € BV(Q;R™) and x € J = J,, let 7,(x) by
Ay(x) = {cp € (C® NL®) (B R™): o = u on aB"},
Define
Kl =i i [ ole). Vet@)) az + o e ) |,
H ] (x) = |nf{ wyt 1/Bd £ (x4 rz, 0(2), Vop(2))dz : ¢ € (),
ol < 2l |,
Hirlul(x) = lim inf H7 u] (x).

Example in paper: In general, Kr # Hf, hence .ZY* and .}, differ

In previous works (Fonseca, Miiller, Leoni, Bouchitté, Mascarenhas .. .):
technical assumptions are strong enough to force Kr = Hr.



Proof ideas

= Very (very) careful truncation.
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u Partial coercivity implies that .# is coercive in small boxes

B4(x,r) x B™(y, R) about every pair (x,y) C Q x R™ which “matters
from the perspective of computing .#L,".



Proof ideas

= Very (very) careful truncation.

u Partial coercivity implies that .# is coercive in small boxes
B4(x,r) x B™(y, R) about every pair (x,y) C Q x R™ which “matters
from the perspective of computing .#L,".

m Liftings.
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Weak* convergence of liftings means weak* convergence in M(Q x R™; R™*9).
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Liftings (R. & Shaw 2017 based on special case by Jung & Jerrard '04)

BV4(QR™) :={ueBV(QR") : fyu(x)dx=0}.

Definition
A lifting v € Lift(Q x R™) is a measure v € M(Q x R™; R™*9) for which there
exists a (unique) u € BV4(£; R™) such that the chain rule holds:

/ Vxp(x, u(x)) dx + / V,o(x,y) dy(x,y) =0 for all ¢ € Co(Q2 x R™).
Q QxRM

This u is called the barycenter [v] of ~.
Weak* convergence of liftings means weak* convergence in M(Q x R™; R™*9).

Lemma
gy = Du in M(S; R™%9) and my|y| > |Du| in M*(RQ).



Elementary liftings
Definition (Elementary/Minimal Liftings)
Given u € BV4(;R™), the associated .
elementary lifting v[u] € Lift(Q x R™)

IS H
dbu [ d9> TN
Ue b

A[u] == |Du| ® <W 0

where u? is the jump interpolant,

9(x) = Ou (x) + (1 —0)uT(x) if x € Ju,
= u(x) otherwise.

that is,

(i30T = /Q /0 o(x, 1°(x)) 46 dDu(x) for all ¢ € Co(Q x R™).



The liftings chain rule for the elementary lifting

el dy) = Dudx) © [ () ao,

follows from usual BV-chain rule:



The liftings chain rule for the elementary lifting

1
ul(dx,dy) i= Du(d) ® [ 8,00(dy) do,
0
follows from usual BV-chain rule:

For ¢ € C3(Q x R™):
[Tty ax+ [ Tpxy) diixy)
Q QxRM
= /vago(x, u(x)) dx+/9/o V,o(x, u’(x)) d8 dDu(x)
= /QVX [o(x, u(x))] dx
=0



Non-elementary liftings

U L

t t
= |Du| ® (% JE6, da) 2 = |Du| ® (f|—3| X de)

affine squiggle

G}




Non-elementary liftings

t t
= |Du| ® (% JE6, da) 2 = |Du| ® (f|—3| X de)

affine squiggle

Example:

u, = { }
J ast —osf
0s t )
15 |
3 / L 710 ok, 10
N - J B B 705 T Fos
T as T oo P 700
T— 700 B 7 i 708
3705 270

Yluj] = v # ~[u] for some ~y € Lift((—1,1) x R?).



Non-elementary liftings

t t
v = |Du| ® (% S50 da) 2 = |Du| ® (;l—gl 6.0 de)

affine squiggle

Example:

uj =«
J os} 0!
os ;
s . \
. il w0
B S - s R Fos
P o P % B %o
- oo ; 4 : Vo5
370s 37

Yluj] = v # ~[u] for some ~y € Lift((—1,1) x R?).

Lemma
Every lifting v € Lift(Q x R) is elementary: v = [ u] for some u € BV4(Q; R).



Compactness for liftings

Lemma (Compactness)

Let (7;); C Lift(Q2 x R™) be such that sup; |v;|(Q2 x R™) < oo. Then there
exists a subsequence (v, )« C (v;); and a limit ~ € Lift(Q2 x R™) such that

Yie = v in M(Q x R™;R™?) and [v;,] = [7] in BV&(Q;R™).



Compactness for liftings

Lemma (Compactness)

Let (7;); C Lift(Q2 x R™) be such that sup; |v;|(Q2 x R™) < oo. Then there
exists a subsequence (v, )« C (v;); and a limit ~ € Lift(Q2 x R™) such that

Yie = v in M(Q x R™;R™?) and [v;,] = [7] in BV&(Q;R™).

Corollary (Lifting generation from BV)
Let (u;); C BV4(Q;R™) be a bounded sequence with u; — u in BV4(; R™).

Then there exists a (non-relabelled) subsequence and a limit ~ € Lift(Q x R™)
with [] = u such that

~lu;] = v in Lift(Q x R™).



Structure theorem

Graph map: gr': x — (x, u(x)) for u € BV(Q; R™)
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Structure theorem

Graph map: gr': x — (x, u(x)) for u € BV(Q; R™)

Pushforward: If u € M(Q) satisfying |u| < 2297 and |u|(Ju) = 0, then the
pushforward gry, pu of 11 under gr* is well-defined as a measure on  x R™.
(we will usually take = |Du|L_(Q\ Ju)

Theorem (Structure Theorem for Liftings, R. & Shaw 2017)

If v € Lift(Q x R™) with u = [~], then v admits the following decomposition
into mutually singular measures:

7= MElL(@\ £2) x R") + 7%,

Moreover, v5° € M(Q x R™; R™*?) satisfies

divy 7% = —|D/u| ® (8 — 0, ),

ny
lut —u~|
and it is graph-singular with respect to u in the sense that v%° is singular with
respect to all measures of the form griy A\ where A\ € M(Q) satisfies both
A< 97t and A\(Jy) = 0.



Perspective functionals

Proposition

Let y € Lift(2 x R™) with u = [~] be minimal in the sense that
[7|(2 x R™) = |Du|(2). Then v must be elementary, v = ~[u]. In particular, if
uj — u in BV4(;R™) strictly, then y[u;] — ~[u] strictly in Lift(Q x R™).
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Let y € Lift(2 x R™) with u = [~] be minimal in the sense that
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Perspective functionals

Proposition

Let y € Lift(2 x R™) with u = [~] be minimal in the sense that
[7|(2 x R™) = |Du|(2). Then v must be elementary, v = ~[u]. In particular, if
uji — u in BV (Q; R™) strictly, then vy[u;] — ~[u] strictly in Lift(Q x R™).

Define .#1: Lift(Q2 x R™) — R by

il = / F(x, 7100, VI71(x)) dx + / £ (%,y,77).-

XRM

For u € BV4(2;R™) we have by the structure theorem

ﬁL['y[u]]:/Qf(x,u,Vu) dXJr/Q £ (x,u, D°u) = Flu].

XRM

Strategy: Study % via %1, (via blowups / Young measures for liftings .. .).



Thank you for your attention!




Solution concepts for a motivating example

Zero-dimensional (ODE) setup:
#o(z) = Wo(z) := min{z(z + 2), z(z — 2)}, %#1(z) = Ru(z) == |2|

r 150

Sen(a(t)) + DWo > f(t) ==t
{ u(0) =-1
where
{-1} ifs<0Q,
Sgn(s) =< [-1,1] ifs=0,
{1} if s> 0.



Weak & balanced viscosity / two-speed solution

uweak(t) =

B 3 O B

utwospeed(t) =

Effective energy: Wo(z) + |z — (—1)| —t-z




Perspective integrands / measures

m For an integrand f: Q x R™ x R™9 — R, define the perspective
integrand

[tlf(x,y, [t]TTA)if |t >0,

(P)(x,y, (A1) := {foo(x v, A) if t = 0.

m Pf is positively one-homogeneous in the (A, t)-argument.

m The perspective measure Py € M(Q x R™; R™*? x R) of a lifting
v € Lift(Q2 x R™) is

Pry = (’y,grggl(fdl_ﬂ)) .

m By a (hard) Structure Theorem: Py admits the following decomposition
with respect to gry,(-Z91_Q), where u = [v]:

Py = (Vu,1)gri(27LQ) + (7°,0).

m If uj — u area-strictly in BV4(Q; R™), then Pv; — P strictly.



