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Kantorovich distance

Given probability measures 1o, 111 € P(R?), their Kantorovich distance
is given by

W2(uo 1) = inf / X — yP dv(x,y),
~vECPI(po,11) JRIxRE

where Cpl(uo, 111) = {7 € P(R? x RY) : why = po, wiy = pu1 }.
Optimal transport problem first formulated by Gaspard Monge in 1781.



The Benamou-Brenier formula

According to Benamou-Brenier (2000) we can write

1
W2(M07,Uf1) = inf {/ / ‘Vt‘z d,LLt(X) at . 81Mt+diV,U,[Vt = 0}
()t LJo JRre
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) 1
=2inf /SUP<8tut7¢>—/ §|V¢>|2d#t(x) dt
0 ¢ Rd

A* (e, O pat)



Discretization (first attempt)

@ Closed convex set Q c RY.

@ Approximate (P(2), W) using a discrete space.

@ Idea: Pick xq,...,xy € .

o Xy = {25\1:1 ajby, © i =1}

@ The metric space (Xy, W) Gromov-Hausdorff converges to
(P(Q), W) as long as limy_,ee {X; } ¥, = Q.



Discretization (first attempt)

@ Closed convex set Q c RY.

@ Approximate (P(2), W) using a discrete space.

@ Idea: Pick xq,...,xy € .

o Xy = {1 aidy 1 X e =1},

@ The metric space (Xy, W) Gromov-Hausdorff converges to
(P(Q), W) as long as limy_,ee {X; } ¥, = Q.

@ Problem: (Xy, W) doesn’t have geodesics.

@ (Xz, W) has no nontrivial curves of finite length.

() W((1 — t)éo + t51,(1 — S)(So + 851) = 4/ |t— S’.



Discretization

@ Finite volume method: mesh 7 = {K C Q : K € T} finite partition of
Q2 into convex sets

@ Control points {xx € K : K€ T}

e interfaces (K|L) = K N L between neighboring cells

@ distances dx. = |xk — Xt|

@ Admissibility condition: xx — x; L (K|L)

@ Piecewise constant probability measures
P(T) = {mldx) = >oker p(K) 1k dx = 3 ey [Klp(K) =1}




Discrete Kantorovich distance

@ Discretize continuity equation:

(K|L)| ~
KoK +Z' 1

@ Here ¢ : T — R is a potential.

pr(K, L)(r(L) —

P1(K)) =



Discrete Kantorovich distance

@ Discretize continuity equation:

K|orpi(K +Z'K'“‘A(KL(¢I() or(K)) =

@ Here ¢ : T — R is a potential.
@ pi(K,L) =0(p(K),p(L)) is a concave mean.
@ Examples:

o(s,t) =(s+t)/2
0(s.t) =V/st
2st

0(s,t) =

o(s t)—s_f—/1 sPt'P g
" logs—logt Jo i



@ Discretize weighted H'-seminorm:

H(K, L)(61(L) — ¢e(K))>.
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@ Discretize weighted H'-seminorm:

Ar(pr, 8) = Z‘ G50 Do) - ).

@ Discretize action:

AT(pt, Otpt) = sup Z |K|0tpi(K)p(K) — A7 (pt, ).
KeT



@ Discretize weighted H'-seminorm:

Ar(pr )= 3 > 1EL)

H(K, L)(61(L) — ¢e(K))>.

>

@ Discretize action:

AT(pt, Otpt) = sup Z |K|0tpi(K)p(K) — A7 (pt, ).
KeT

@ Discrete distance:

*WT(povm inf {/ A7 (pt, pe)at = (x )}

(1,01t

= inf {/ A%(pt, Orpt) dt}
(pt)e



Gromov-Hausdorff convergence

Show that:
@ As [T] = maxke7 diam K — 0, for uniformly regular meshes, we have

lim Wr(Prpo, Prus) = W(uo, p1)
[T]—0

uniformly.

@ The near-isometry Pr: P(Q2) — P(T) is the projection
1= (p(K))ker = (1(K)/|K)keT-

@ The metric spaces (P(7), W) Gromov-Hausdorff converge to
(P(2), W).
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Theorem (Gigli-Maas 2013)

Let (Tx)ken be refining cubic meshes on the torus T°. Then
(P(Tx), Wr.) — (P(T9), W) Gromov-Hausdorff with near-isometry Py




Upper bound for general meshes

@ Show that for 10, ;11 € P(R) there are curves (p/ )iejo.1] € P(T)
connecting p§ = Pruo and p] = Pru1, such that

1
limsup [ As(p{, dip] ) dt < W3(pig, pa).
[T]—0 Jo
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@ Take W-geodesic (1t):, apply Neumann heat flow for small a > 0 to
obtain (Haﬂt)t-

@ Heat flow is W-contraction. (Jordan, Kinderlehrer, Otto 1998)



Upper bound for general meshes

@ Show that for 10, ;11 € P(R) there are curves (p/ )iejo.1] € P(T)
connecting p§ = Pruo and p] = Pru1, such that

1
limsup [ As(p{, dip] ) dt < W3(pig, pa).
[T]—0 Jo

@ Take W-geodesic (1t):, apply Neumann heat flow for small a > 0 to
obtain (Haﬂt)t-

@ Heat flow is W-contraction. (Jordan, Kinderlehrer, Otto 1998)
@ Because H,u is smooth with lower bound, the continuity equation

8tHa,u, + div(HaquzSt) =0
V¢t -n=0on o2

is elliptic.



@ Solve the discrete continuity equation for ptT = PrHgu and
Orp] = P7Hadyus to obtain ¢] = T — R.

@ Elliptic finite volume estimates give for regular meshes
\A5(p Ol ) — A*(Haput, OHape)| = ‘AT(/);C ¢f) — /Q |V e[? dHapu

< C(a)||0tHaputl|%[T]

@ This gives competing curves between PrHzpo and PrHyuq after time
regularization.

@ Connect Prpg with PyHapo with cost O(+1/a).
@ = Uniform upper bound.




Lower bound?

Theorem (First counterexample, G-Kopfer-Maas 2017)

For the alternating large-small mesh with ratio b € (0,1) on [0, 1], we have

lim sup71_,0 W7 (P10, Priun) < W(uo, 1) whenever po # pa. In fact,
limp—o lim suppr1_.o Wr(Prdo, Prdy) = 0.

N
A 00) = sUp(010.0) 5 3~ plk — 1 KN6(K) — ok 1))

Idea: p(K, L) is always larger than it should be.
= A’ is always smaller than it should be.



Lower bound with symmetry?

Theorem (Second counterexample, G-Kopfer-Maas 2018)

For the periodic mesh consisting of 45-45-90 triangles, there are

po, i1 € P([0, 1]%) such that lim supjry_0 Wr(Prpo, Pryn) < W(po, ).
In fact, this happens whenever mass is transported in cardinal directions.

Une
—

A 0p) = sUp(01p. 0) ~ 33 K L)L) — oK)

K~L



@ Lower bound exists for cubic mesh.

@ No lower bound for right isosceles triangular mesh.

@ What is a geometric condition on the mesh to guarantee
convergence?
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@ Lower bound exists for cubic mesh.

@ No lower bound for right isosceles triangular mesh.

@ What is a geometric condition on the mesh to guarantee
convergence?

@ (COM) Center-of-mass condition: For all K ~ L,

][ xdHI " = (xk + x1)/2.
(KIL)

@ (ISO) Isometry condition: For all K,

> i ® nicdic|[(K|L)| = 2|K]id.

L~K
@ COM = ISO:
> ke ® nede (KIL)| oy > ke ® (x = x)|(KIL)|
L~K L~K

= 2/ n® (x — xg) dH"
oK
— 2|K|/d.



Theorem (G-Kopfer-Maas 2018)

Under ISO condition, for uniformly regular admissible meshes on convex
closed full-dimensional Q c R, (P(T),Wr)) — (P(Q), W)
Gromov-Hausdorff with near-isometry Pr.




Proof of lower bound

First show that for ¢ € C'(Q) with V¢ - n = 0 on 99, the discretized
version ¢7 (K) = ¢(xk) satisfies lim supjrq_,0 A7(p",¢7) < [ IVo[? du
whenever p7 = .

o7 (K, L)(6(x1) — ¢(xk))?

I(K\L)I
dke

INA
=

(07 (K) + o7 (L) (é(x) — &(xK))?

GO
dkL

— 0(xk))?

LNK

T (K)Vo(xx) ® V(xx) : Y (KIL)|dkenke © e
L~K

ST (K)IKIVO(x)E = (o7, [VoP2) — / Vol dp.
K Q

Q

N = l\)\

*M *M 2 M



Less symmetric meshes

@ We can treat some meshes without the isotropy condition by using
weighted means

@ In A*, use weighted mean (K, L) ~ Axep(K) + (1 — Mk )p(L)
@ (WCOM) Weighted center-of-mass condition: For all K ~ L,

][ xdHe ! = AkiXk + (1 — Ak Xe.
(KIL)

@ (WISO) Weighted isometry condition: For all K € T,

Z nkL @ nrLdke|(K|L)[Ake = |K]|Id.
LK

@ WCOM = WISO.



Theorem (G-Kopfer-Mass 2018)

Under WISO condition, for uniformly regular admissible meshes on convex
closed full-dimensional Q c R, (P(T),Wr)) — (P(Q), W)
Gromov-Hausdorff with near-isometry Pr.




