Introduction F-Convergence for the Cahn–Hilliard Functional Higher-Order F-Convergence Regularity of \mathcal{I}_{Ω} One Application: Slow Motion Results

Cahn-Hilliard Energies: Second-Order Γ-convergence and metastable states

Ryan Murray

Joint work with Giovanni Leoni and Matteo Rinaldi NSF PIRE Grant No. OISE-0967140, DMS 1515400

May 23, 2018

Cahn-Hilliard Theory of Phase Transitions

Introduced by Van der Walls (1893), Cahn and Hilliard (1958)

$$u:\Omega o \mathbb{R} \quad \hookrightarrow \quad ext{"phase"}$$
 $E_{arepsilon}(u):= egin{cases} \int_{\Omega} W(u) + arepsilon^2 |
abla u|^2 \, dx & ext{if } \int_{\Omega} u \, dx = m \ \infty & ext{otherwise.} \end{cases}$

Figure: $W(u) = (u^2 - 1)^2$, a typical choice of double-well potential

Liquid-liquid (phase = density). Toy Model

Understanding the Cahn-Hilliard Energy

$$E_{\varepsilon}(u) := \begin{cases} \int_{\Omega} W(u) + \varepsilon^2 |\nabla u|^2 \, dx & \text{if } \int_{\Omega} u \, dx = m \\ \infty & \text{otherwise.} \end{cases}$$

The two terms dictate that

- Energetically favored phases a, b
- "Simpler" interfaces energetically favored

We note that

- $\varepsilon \hookrightarrow$ "length scale"
- u "order parameter".
- Mass Constraint ⇒ phase transition

Goal: Understanding Limiting Behavior

One Application: Slow Motion Results

$$E_{\varepsilon}(u) := \begin{cases} \int_{\Omega} W(u) + \varepsilon^2 |\nabla u|^2 \, dx & \text{if } \int_{\Omega} u \, dx = m \\ \infty & \text{otherwise.} \end{cases}$$

$$\varepsilon \hookrightarrow \mathsf{Atomic} \ \mathsf{Scale}$$

- Static problem: Minima and minimizers
- Dyanmics: Gradient flows and metastable states

Γ-Convergence for the Cahn-Hilliard Functional

$$E_{\varepsilon}(u) := egin{cases} \int_{\Omega} W(u) + arepsilon^2 |
abla u|^2 \, dx & ext{if } \int_{\Omega} u \, dx = m \\ \infty & ext{otherwise.} \end{cases}$$

- Fatou $\implies E_{\varepsilon} \xrightarrow{\Gamma} E_0(u) = \int_{\Omega} W(u)$.
- Scaling ignores $|\nabla u|^2$
- Rescale: $F_{\varepsilon}:=\varepsilon^{-1}E_{\varepsilon}=rac{E_{\varepsilon}-\min E_{0}}{\varepsilon}$.

Properly Scaled Γ-Convergence

Modica Mortola, Gurtin, Modica, Sternberg, Kohn Sternberg, Fonseca Tartar, Baldo ...

$$F_{\varepsilon} \xrightarrow{\Gamma} F_0$$
 with

$$F_0(u) := \begin{cases} c_0 P(\{u = a\}; \Omega) & \text{if } u \in BV(\Omega; \{a, b\}), \int_{\Omega} u \, dx = m \\ \infty & \text{otherwise.} \end{cases}$$

The basic proof idea:

- lim inf inequality: Young's inequality, chain rule and BV lsc.
- lim sup inequality: signed distance function
- Compactness: Young's inequality, and BV compactness

Minimizers of F_0

$$F_0(u) := \begin{cases} c_0 P(\{u = a\}; \Omega) & \text{if } u \in BV(\Omega; \{a, b\}), \int_{\Omega} u \, dx = m \\ \infty & \text{otherwise.} \end{cases}$$

- Partition Problem: mass-constrained perimeter minimizers
- Minimizing sets are smooth (in dimension $n \le 7$), are surfaces of constant mean curvature and intersect the boundary orthogonally **Gonzalez Massari Tamanini** (1983), **Gruter** (1986)

$$\min F_0 = c_0 \mathcal{I}_\Omega \left(\frac{b|\Omega| - m}{b - a} \right), \quad \mathcal{I}_\Omega(s) := \min \{ P(E;\Omega) : |E| = s \}.$$

"Isoperimetric Function"

Higher-Order Γ-Limits

Suppose that $F_{\varepsilon} \xrightarrow{\Gamma} F_0$. Define

$$G_{\varepsilon}(u) := \frac{F_{\varepsilon}(u) - \min F_0}{\varepsilon}$$

Question: Does
$$G_{\varepsilon} \xrightarrow{\Gamma} \dots$$
?

$$A := minimizers of F_0$$

Anzellotti Baldo (1993)

Energy Asymptotics in Dimension n=1

Suppose that $u_{\varepsilon} \to u$ then

$$F_{\varepsilon}(u_{\varepsilon}) \geq F_0(u) + O(e^{-C_u \varepsilon^{-1}})$$

- Carr Gurtin Slemrod (1984), 1 jump scaling
- Bronsard Kohn (1990) polynomial scaling
- Grant (1995)
- Bellettini Nayam Novaga (2015) tight bounds

Higher-Order Γ -Limit for Dimension n > 1

$$F_{\varepsilon}(u) := \begin{cases} \int_{\Omega} \varepsilon^{-1} W(u) + \varepsilon |\nabla u|^2 dx & \text{if } \int_{\Omega} u dx = m \\ \infty & \text{otherwise.} \end{cases}$$

Theorem (Dal Maso Fonseca Leoni (2014))

Suppose that W(s) = W(-s) and that $W(s) = |s-1|^{1+\alpha}$ near s = 1, for $0 < \alpha < 1$. Then if we define

$$G_{\varepsilon}(u) := egin{cases} rac{F_{\varepsilon}(u) - \min F_0}{arepsilon} & ext{ if } u = 1 ext{ on } \partial \Omega \\ \infty & ext{ otherwise}, \end{cases}$$

then we have that G_{ε} will Γ -converge to 0.

Note: Valid for anisotropic energies.

lim inf uses reduction to 1D problem.

Theorem (Pólya Szegő)

Suppose that $u \in H_0^1(\Omega)$, $u \ge 0$. Let u^* be the symmetric decreasing rearrangement of u. Then

$$\int_{\Omega^*} |\nabla u^*|^p \, dx \le \int_{\Omega} |\nabla u|^p \, dx$$

Dirichlet Condition u = 1 on $\partial \Omega \implies$ Pólya Szegő

Main Results

Theorem (Leoni Murray (2015))

Suppose that W(s) = W(-s) and that $W(s) = |s-1|^{1+\alpha}$ near s=1, for $0<\alpha<1$. Furthermore suppose that \mathcal{I}_{Ω} is twice differentiable at $\frac{b|\Omega|-m}{b-a}$. Then if we define

$$G_{\varepsilon}(u) := \frac{F_{\varepsilon}(u) - \min F_0}{\varepsilon}$$

then we have that G_{ε} will Γ -converge to 0.

Non-symmetric
$$W \implies G_0(u) = p(\kappa_u), \kappa_u = \text{mean curvature}$$

$$u = 1 \text{ on } \partial \Omega$$

$$F_{\varepsilon}(u) := \begin{cases} \int_{\Omega} \varepsilon^{-1} W(u) + \varepsilon |\nabla u|^2 \, dx & \text{if } \int_{\Omega} u \, dx = m \\ \infty & \text{otherwise.} \end{cases}$$

Theorem (Leoni Murray (2015))

Suppose that $\Omega \in C^3$, with $|\Omega|=1$ and that $W=(u^2-1)^2$. Furthermore suppose that \mathcal{I}_{Ω} is twice differentiable at $\frac{b|\Omega|-m}{b-a}$. Then the functional $G_{\varepsilon}:=\frac{F_{\varepsilon}-\min F_0}{\varepsilon}$ satisfies

$$G_{arepsilon} \stackrel{\mathsf{\Gamma}}{ o} G_0(u) := egin{cases} -rac{(n-1)^2}{9} \kappa_u^2 & \textit{if } u \in \mathcal{A} \ \infty & \textit{otherwise}, \end{cases}$$

Pólya-Szegő in bounded domains

Consider the *Isoperimetric Function* of the domain Ω :

$$\mathcal{I}_{\Omega}(s) := \min\{P(E;\Omega) : |E| = s\}.$$

We then define V_{Ω} via the differential equation

$$V_{\Omega}'(t) = \mathcal{I}_{\Omega}(V_{\Omega}(t)), \quad V_{\Omega}(0) = \frac{|\Omega|}{2},$$

and define
$$g_u(t) := \sup\{s : |\{u > s\}| > V_{\Omega}(t)\}.$$

$$V_{\mathbb{R}^n}(t) = Ct^n$$

Extending the Pólya Szegő Inequality

Lemma (Leoni Murray 2015, Cianchi 1996)

For any open, connected, Lipschitz, bounded domain Ω ,

$$\int |g'_u(t)|^p \mathcal{I}_{\Omega}(V_{\Omega}(t)) dt \leq \int_{\Omega} |\nabla u|^p dx$$

$$\int W(g_u) \mathcal{I}_{\Omega}(V_{\Omega}(t)) dt = \int_{\Omega} W(u) dx$$

- Note that $\mathcal{I}_{\mathbb{R}^n}(V_{\mathbb{R}^n}(t)) = Ct^{n-1}$.
- Equality may not always be attained (loss of symmetry)
- Still useful for phase transitions (esp. related to sharp interface limits)

Some remarks on proof of Main Result

$$H_{\varepsilon}(g_u) := \int \left(\varepsilon^{-1} W(g_u) + \varepsilon |g_u'|^2 \right) \mathcal{I}_{\Omega}(V_{\Omega}(t)) dt \leq F_{\varepsilon}(u)$$

- Rescale and use weak convergence
- We use a Taylor formula of order 2 on $\mathcal{I}_{\Omega}(V_{\Omega}(t))$
- Careful tail estimates use barrier methods
- lim sup is straightforward

Regularity of \mathcal{I}_{Ω}

Why should \mathcal{I}_{Ω} be twice differentiable?

$$\mathcal{I}_{\Omega}(s) := \min\{P(E;\Omega) : |E| = s\}.$$

- Ω Convex $\implies \mathcal{I}_{\Omega}$ concave **Sternberg Zumbrun (2000)**
- For C^2 domains the function is actually semi-concave **Murray** Rinaldi (2015)

Proof Idea: Vary minimizers along normals \hookrightarrow supporting hyperplanes for \mathcal{I}_{Ω} Assumption \implies no new selection criteria . . .

Competing Minimizers

Problem: Competing minimizers and rearrangement

Figure: \mathcal{I}_{Ω} for the domain $\Omega = Q_2$, the cube in \mathbb{R}^2 . When \mathcal{I}_{Ω} is not differentiable there are two competing sets minimizing the perimeter, as shown.

Localized isoperimetric functions

- \mathcal{I}_{Ω} does not respect "locality"
- However, converging sequence do (L^1 convergence)
- L¹ localized isoperimetric functions needed

$$\mathcal{I}_{\Omega}^{E_0,\delta}(t) := \inf\{P(E;\Omega) : |E| = t, \alpha(E,E_0) \le \delta\}$$

$$\alpha(E_1,E_2) := \min\{|E_1 \setminus E_2|, |E_2 \setminus E_1|\}$$

Localized rearrangement inequalities

Proposition

If $||u - u_0|| \le (b - a)\delta$, $u_0 = a\chi_{E_0} + b\chi_{E_0^c}$, then the Pólya-Szegő inequality holds with $\mathcal{I}_{\Omega}^{E_0,\delta}(t)$ in place of \mathcal{I}_{Ω} .

- "Local" Pólya-Szegő inequality
- Permits us to rule out competing minimizers (for liminf inequalities)

Complete Γ-limit result

Theorem (Leoni Murray (2017))

Suppose that $\Omega \in C^3$, with $|\Omega| = 1$ and that $W = (u^2 - 1)^2$. Then the functional $G_{\varepsilon} := \frac{F_{\varepsilon} - \min F_0}{\varepsilon}$ satisfies

$$G_arepsilon \overset{\mathsf{\Gamma}}{
ightarrow} G_0(u) := egin{cases} -rac{(n-1)^2}{9} \kappa_u^2 & \textit{if } u \in \mathcal{A} \ \infty & \textit{otherwise}, \end{cases}$$

No regularity requirement on \mathcal{I}_{Ω} .

- Utilizes "local" Pólya-Szegő inequality
- Uses non-smooth analysis $(\mathcal{I}_{\Omega}^{E_0,\delta}(t)$ still may be only semi-concave)

Application: Slow Motion of Gradient Flows

Gradient Flow of E_{ε} gives Allen–Cahn, non-local Allen–Cahn or Cahn–Hilliard

$$\partial_t u = arepsilon^2 \Delta u - W'(u) + |\Omega|^{-1} \int_\Omega W'(u) \, dx$$
 NL Allen–Cahn $\partial_t u = -\Delta(arepsilon^2 \Delta u - W'(u))$ Cahn–Hilliard

Slow Dynamics Approaching Perimeter Minimizers

"Slow Manifolds" and Slow Motion

- Fusco Hale (1989), Carr Pego (1989) 1D interface speed $\sim e^{-K\varepsilon^{-1}}$.
- Alikakos, Fusco, Bates, Chen, Hale, Bronsard 90's special solutions in n-D.

More general framework: Otto Reznikoff (2007)

Energetic Approach (n = 1)

$$F_{\varepsilon}(u) := \begin{cases} \int_{\Omega} \varepsilon^{-1} W(u) + \varepsilon |\nabla u|^2 \, dx & \text{if } \int_{\Omega} u \, dx = m \\ \infty & \text{otherwise.} \end{cases}$$

Theorem (Bronsard Kohn (1990), (n=1), Grant (1995))

Let u_{ε} be a solution to the Allen-Cahn equation with n=1, and fix k>0. Let $u=a\chi_E+b\chi_{E^c}$ with $E\subset (-1,1)$ a set of finite perimeter. Let $u_{\varepsilon}(0)\stackrel{L^1}{\longrightarrow} u$ and let $F_{\varepsilon}(u_{\varepsilon})\leq F_0(u)+C\varepsilon^k$. Then for any fixed M>0 we have that

$$\sup_{0 \le t \le M\varepsilon^{-k}} \|u_{\varepsilon}(t) - u\|_{L^{1}(\Omega)} \to 0$$

Theorem (Murray Rinaldi 2016, Leoni Murray 2017)

Let $u=a\chi_E+b\chi_{E^c}$, with E a local minimizer of relative isoperimetric problem. Let $u_\varepsilon(0)\stackrel{L^1}{\longrightarrow} u$ and let $F_\varepsilon(u_\varepsilon) \leq F_0(u) + C\varepsilon$, and let $u_\varepsilon(t)$ be a solution to the non-local Allen–Cahn Equation. Then as $\varepsilon \to 0$, for any fixed M>0,

$$\sup_{0 \le t \le M\varepsilon^{-1}} \|u_{\varepsilon}(t) - u\|_{L^{1}(\Omega)} \to 0$$

Ansatz-Free Slow Motion in n-D, $\sim \varepsilon^{-1}$.

Possible Extensions:

- Boundary conditions?
- Extend to anisotropic energies?
- Contact energies?
- Other sharp interface problems?