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A classical geometric evolution

Motion by mean curvature: t 7→ Et ⊂ Rd

V = −H∂Et on ∂Et (MCM)

H∂E = ∂Per(E) is the “gradient” of the perimeter  gradient flow structure

• Proposed by Mullins (1956) to describe the evolution of solid phases

• Singularities may appear even from smooth initial data:

Figure: An example of pinching singularity (Grayson ’89).

Question: How to define a global-in-time solution? How to define

a solution starting from irregular initial sets?
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The level set approach

• The level set approach: Describe Et as Et = {u(·, t) ≥ 0}

ut = |∇u| div ∇u|∇u|

u(·, 0) = u0

(LS)

• Proposed by Osher & Sethian (1988) for numerical purposes, as a method to deal

with topological changes.

• Global existence and uniqueness for (LS) by Evans-Spruck (1991) and

Chen-Giga-Goto (1991) with the machinery of viscosity solutions

.
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Non uniqueness by fattening

If one fixes the level set, uniqueness can only hold up to fattening:

Generic Uniqueness : For all but countably many s, no fattening

occurs and the evolution Es is unique.
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The minimizing movements approach

Minimizing movements: En−1 7→ En

min

(
Per(F ) +

1

h

∫
F∆En−1

d(x , ∂En−1) dx

)
(ATW)

Let Eh(t) be the piecewise interpolation with time step h. Then

Eh(t)→ E (t) for all t > 0, up to subsequences

E (t) is called a flat flow

• F. Almgren, J. E. Taylor, and L.-H. Wang, SIAM J. Control Optim. (1993)

• S. Luckhaus and T. Sturzenhecker, Calc. Var. Partial Differential Equations (1995)
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Anisotropic Flows

Consider a norm φ and the corresponding anisotropic perimeter

Pφ(E ) =

∫
∂E
φ(νE ) dHd−1

The curvature κEφ is the the first variation of Pφ. If φ is smooth,

then κEφ = divτ
(
∇φ(νE )

)

We are interested in

V = −m(νEt )κEt
φ

where the norm m is a mobility

• If φ is smooth we apply classical theory

• If φ is non-smooth (e.g. crystalline), then the Cahn-Hoffmann

field ∇φ(νE ) and hence κEφ are not well defined in a classical

way
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The crystalline case

The unit ball Bφ The Wulff shape Wφ

• Lack of differentiability: the Cahn-Hoffmann field ∇φ(νE ) is

not uniquely defined for some directions

• look at admissible selections z of x 7→ ∂φ(νE (x))

• the crystalline curvature is given by divτz , where divτz has

minimal L2-norm among all admissible fields

• The curvature becomes nonlocal!
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Known results

• The case d = 2: settled by Giga & Giga (2001), by developing

a “crystalline” viscosity approach

• The case d ≥ 3: investigated by many authors, only partial
results were available prior to ours:

• Convex initial data: Bellettini, Caselles, Chambolle & Novaga

(2008)

• Polyhedral initial data: Giga, Gurtin & Matias (1998)

• the well-posedness and the validity of a comparison principle in

the general case has been a long-standing open problem as

well as the uniqueness of the crystalline flat flow
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Latest developments

Chambolle-M.-Ponsiglione 2016

Let φ be any (possibly crystalline) anisotropy. Then, the

anisotropic mean curvature equation

V = −φ(νE(t))κ
E(t)
φ

admits a weak formulation that yields global existence and a

comparison principle in all dimensions and for arbitrary (possibly

unbounded) initial sets

• Our result holds for the “natural” mobility m = φ



Latest developments

Chambolle-M.-Ponsiglione 2016

Let φ be any (possibly crystalline) anisotropy. Then, the

anisotropic mean curvature equation

V = −φ(νE(t))κ
E(t)
φ

admits a weak formulation that yields global existence and a

comparison principle in all dimensions and for arbitrary (possibly

unbounded) initial sets

• Our result holds for the “natural” mobility m = φ



Soner’s distance formulation: heuristics

Let t 7→ E (t) be a smooth flow and assume φ to be smooth.

• Set d(·, t) := distφ
◦
(·,E (t)), where distφ

◦
is the distance

induced by φ◦. Then ∂td = −V /φ(νE(t)) on ∂E (t). Thus,

V = −φ(νE(t))κ
E(t)
φ reads

∂td = div(∇φ(∇d)) on ∂E (t) = ∂{d(·, t) = 0}.

• Since the curvatures of the s-level sets of d are non-increasing

in s, we have

∂td ≥ div(∇φ(∇d)) in {d > 0}.

• Analogously, setting dc(·, t) := dist(·,E c(t)), we have

∂td
c ≥ div(∇φ(∇dc)) in {dc > 0}.
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Our new weak formulation of V = −φ(νE (t))κ
E (t)
φ

Definition

Let E := (E (t))t≥0 be a closed tube. We say that E is a weak

superflow if

(a) E (s)
K−→ E (t) as s ↗ t for all t > 0 (left-continuity);

(b) For all t ≥ 0 if E (t) = ∅, then E (s) = ∅ for all s > t;

(c) setting d(x , t) := distφ
◦
(x ,E (t)), then

∂td ≥ divz in RN × (0,T ∗) \ E

in the distributional sense for a suitable z s.t. z ∈ ∂φ(∇d) a.e

and (divz)+ ∈ L∞({d ≥ δ}) for every δ > 0.

• Comparison Principle: exploits the distributional formulation

• Existence: via minimizing movements
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Comparison

Let F (0) ⊂ E (0) and let ∆ > 0 be the distance of their

boundaries. Let F be a weak superflow, and E a weak subflow.

Claim: We want to prove that ∆(t) ≥ ∆

∆

∆ + ρ

∆ + ρ

V ≤ −‖div zE‖∞

V ≥ ‖div zF‖∞

Parabolic maximum principle: In a strip S ⊂⊂ F \ E , we want to

prove that ∆(t) ≥ ∆ (at least for short time).

Distances are “rigid”: ∆(t) ≥ ∆ everywhere

Iteration: ∆(t) ≥ ∆ for all times (before T ∗).
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Existence and uniqueness up to fattening

Theorem (Chambolle-M.-Ponsiglione, CPAM 2016)

Let φ be any anisotropy and u0 be a uniformly continuous function

in RN . Then, for all but countably many s ∈ R there exists a

unique weak solution Es of V = −φ(νE(t))κ
E(t)
φ with initial datum

E 0
s := {u0 ≥ s}. Moreover, such a solution is the limit of the

minimizing movements scheme.

• Generic existence and uniqueness; the bad (countable) set is

the set of levels for which fattening occurs.

• Uniqueness of the level set flow.

After our preprint appeared, Giga-Pozar (preprint 2016): viscosity approach in

three-dimensions for

V = −m(νE(t))(κ
E(t)
φ + 1) ,

for bounded initial sets and when φ is purely crystalline.
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φ-regular mobilities

Definition (φ-regular mobilities)

We say that the mobility m is φ-regular if the m-Wulff shape

satisfies a uniform inner φ-Wulff shape condition.

Remark: if φ is crystalline, then m ≡ 1 is never φ-regular
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The techniques of Chambolle-M.-Ponsiglione can be pushed to

treat V = −m(νE(t))(κ
E(t)
φ + g(x , t)), when m is φ-regular and g

is bounded forcing term with spatial Lipschitz continuity
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General mobilities

Theorem (Chambolle-M.-Novaga-Ponsiglione 2017)

For any φ and m there exists a unique level set flow u with initial

datum u0 corresponding to V = −m(νE(t))(κ
E(t)
φ + g(x , t)).

Moreover, for all but countably many s ∈ R, the set flow

t 7→ {x : u(t, x) ≥ s} is the unique limit of the ATW scheme with

initial set {u0 ≥ s}. Finally, the flow obeys the the comparison

principle

• Idea: Let mn → m, where mn is φ-regular. Then, by delicate

stability estimates on the ATW scheme one can show that the

corresponding level set flows {un} admit a unique limit.

• The long-standing problem of the uniqueness of the flat flow,

up to fattening, is settled in the general case.
Shortly after our preprint appeared, Giga-Pozar (preprint 2017): viscosity approach in

N-dimensions for V = −m(νE(t))(κ
E(t)
φ + 1) , for bounded initial sets and when φ is

purely crystalline.
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Thank you for your attention!


