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A classical geometric evolution

Motion by mean curvature: t — E, C RY

V =—Hpg,  onOE (MCM)

Hpe = OPer(E) is the “gradient” of the perimeter ~~ gradient flow structure J

® Proposed by Mullins (1956) to describe the evolution of solid phases

® Singularities may appear even from smooth initial data:
Figure: An example of pinching singularity (Grayson '89).

Question: How to define a global-in-time solution? How to define
a solution starting from irregular initial sets?
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e The level set approach: Describe E; as E; = {u(-,t) > 0}

ur = |Vu| divgl

[Vul (LS)
u(-,0) = uo
® Proposed by Osher & Sethian (1988) for numerical purposes, as a method to deal

with topological changes.

® Global existence and uniqueness for (LS) by Evans-Spruck (1991) and
Chen-Giga-Goto (1991) with the machinery of viscosity solutions.
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Generic Uniqueness : For all but countably many s, no fattening

Fattening {u = 0}

occurs and the evolution E; is unique.
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Minimizing movements: E,_1 — E,

min (Per(F)+il7 /F ol 8En_1)dx> (ATW)

Let Ex(t) be the piecewise interpolation with time step h. Then
En(t) — E(t) for all t > 0, up to subsequences

E(t) is called a flat flow |

® F. Almgren, J. E. Taylor, and L.-H. Wang, SIAM J. Control Optim. (1993)

® S. Luckhaus and T. Sturzenhecker, Calc. Var. Partial Differential Equations (1995)
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Anisotropic Flows

Consider a norm ¢ and the corresponding anisotropic perimeter
Po(E)= | o(F)dH
OE

The curvature /ig is the the first variation of Py. If ¢ is smooth,
then /@('/j_ = div, (Vé(vF)) We are interested in

— E:y, Et
V =-—m™)k;

where the norm m is a mobility
e If ¢ is smooth we apply classical theory

e If ¢ is non-smooth (e.g. crystalline), then the Cahn-Hoffmann
field V¢(v5) and hence x5 are not well defined in a classical
way
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The crystalline case

The unit ball B, The Wulff shape W,

Lack of differentiability: the Cahn-Hoffmann field Vo (vF) is
not uniquely defined for some directions

look at admissible selections z of x +— d¢(vE(x))

the crystalline curvature is given by div,z, where div;z has
minimal L?-norm among all admissible fields

The curvature becomes nonlocall
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Known results

e The case d = 2: settled by Giga & Giga (2001), by developing
a “crystalline” viscosity approach

e The case d > 3: investigated by many authors, only partial
results were available prior to ours:

e Convex initial data: Bellettini, Caselles, Chambolle & Novaga
(2008)

o Polyhedral initial data: Giga, Gurtin & Matias (1998)

e the well-posedness and the validity of a comparison principle in
the general case has been a long-standing open problem as
well as the uniqueness of the crystalline flat flow
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Latest developments

Chambolle-M.-Ponsiglione 2016

Let ¢ be any (possibly crystalline) anisotropy. Then, the
anisotropic mean curvature equation

admits a weak formulation that yields global existence and a
comparison principle in all dimensions and for arbitrary (possibly
unbounded) initial sets

e QOur result holds for the “natural” mobility m = ¢
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Soner's distance formulation: heuristics
Let t — E(t) be a smooth flow and assume ¢ to be smooth.
o Set d(-, t) := dist®’ (-, E(t)), where dist®’ is the distance
induced by ¢°. Then 9;d = —V//$(vE®)) on DE(t). Thus,
V= —gb(yE(t))/@g(t) reads

0ed = div(Vé(Vd))  on DE(t) = {d(-,t) = O}.

e Since the curvatures of the s-level sets of d are non-increasing

in s, we have
Ord > div(Vp(Vd)) in {d > 0}.
e Analogously, setting d°(-, t) := dist(-, E(t)), we have

0:d® > div(Vp(Vde))  in {d° > 0}.
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Definition
Let E := (E(t))r>0 be a closed tube. We say that E is a weak
superflow if

(a) E(s) LN E(t) ass /'t for all t > 0 (left-continuity);
(b) Forallt >0 if E(t) =0, then E(s) =0 for all s > t;
(c) setting d(x,t) := dist” (x, E(t)), then

Ord >divz inRN x (0, T*)\ E

in the distributional sense for a suitable z s.t. z € dp(Vd) a.e
and (divz)™ € L>°({d > ¢&}) for every 6 > 0.

e Comparison Principle: exploits the distributional formulation

e Existence: via minimizing movements
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Comparison

Let F(0) C E(0) and let A > 0 be the distance of their
boundaries. Let F be a weak superflow, and E a weak subflow.
Claim: We want to prove that A(t) > A

V > ||div zp| Atp

A+p

V < —Jdiv ]l

Parabolic maximum principle: In a strip S CC F \ E, we want to
prove that A(t) > A (at least for short time).

Distances are "rigid": A(t) > A everywhere

Iteration: A(t) > A for all times (before T*).
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Existence and uniqueness up to fattening

Theorem (Chambolle-M.-Ponsiglione, CPAM 2016)

Let ¢ be any anisotropy and u® be a uniformly continuous function
in RN. Then, for all but countably many s € R there exists a
unique weak solution Es of V = —d)(VE(t))Iig(t) with initial datum
EO := {u® > s}. Moreover, such a solution is the limit of the

minimizing movements scheme.

e Generic existence and uniqueness; the bad (countable) set is
the set of levels for which fattening occurs.
e Uniqueness of the level set flow.

After our preprint appeared, : viscosity approach in
three-dimensions for
V= —mEO) (5 + 1),

for bounded initial sets and when ¢ is purely crystalline.
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Definition (¢-regular mobilities)

We say that the mobility m is ¢-regular if the m-Wulff shape
satisfies a uniform inner ¢-Wulff shape condition.

Remark: if ¢ is crystalline, then m =1 is never ¢-regular

Chambolle-M.-Novaga-Ponsiglione 2017

The techniques of Chambolle-M.-Ponsiglione can be pushed to
treat V = —m(VE(t))(/Qg(t) + g(x,t)), when m is ¢-regular and g
is bounded forcing term with spatial Lipschitz continuity
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Theorem (Chambolle-M.-Novaga-Ponsiglione 2017)

For any ¢ and m there exists a unique level set flow u with initial

datum u°

corresponding to V = —m(yE(t))(H,s(t) + g(x, t)).
Moreover, for all but countably many s € R, the set flow

t— {x: u(t,x) > s} is the unique limit of the ATW scheme with
initial set {u® > s}. Finally, the flow obeys the the comparison

principle

e |dea: Let m, — m, where m, is ¢-regular. Then, by delicate
stability estimates on the ATW scheme one can show that the
corresponding level set flows {u,} admit a unique limit.

e The long-standing problem of the uniqueness of the flat flow,
up to fattening, is settled in the general case.

Shortly after our preprint appeared, : viscosity approach in
N-dimensions for V = —m(yE(t))(Hg(t) + 1), for bounded initial sets and when ¢ is
purely crystalline.



Thank you for your attention!



