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A nice piece of technology...

Lots of silicon

Liquid Crystal Display
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Epitaxy models:

with elastic forces on vicinal surfaces: the 1 + 1 dimensional
case,

with elastic forces on vicinal surfaces: the 2 + 1 dimensional
case,

with wetting,

attachment-detachment regime, and many, many others...

Nematic Liquid Crystals:

Landau-De Gennes model.

Q: What do they have in common?
A1: All of these are governed by highly irregular PDEs...
A2: All these are variational.
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Gradient flows in non reflexive spaces
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Burton-Cabrera-Frank (BCF) type models

ẋi =
D

ka2

(
µi+1 − µi

xi+1 − xi + D
k

− µi − µi−1

xi − xi−1 + D
k

)
, for 1 ≤ i ≤ N.

where

D is the terrace diffusion constant,

k is the hopping rate of an adatom to the upward or
downward step,

µ is the chemical potential
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Attachment-detachment-limited (ADL) regime

the diffusion across the terraces is fast, i.e. D
k � xi+1 − xi , so the

dominated processes are the exchange of atoms at steps edges,
i.e., attachment and detachment. The step-flow ODE in ADL
regime becomes

ẋi =
1

a2

(
µi+1 − 2µi + µi−1

)
, for 1 ≤ i ≤ N.

step slope as a new variable is a convenient way to derive the
continuum PDE model (Al Hajj Shehadeh, Kohn and Weare,
2011)
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Evolution equation

ut = −u2(u3)hhhh, u(0) = u0.

If we take whh + c0 = 1/u:

wt = (whh + c0)−3
hh ,

with proper, convex, lower semicontinuous energy

φ(w) :=
1

2

∫ 1

0
(whh + c0)−2dh.

So far, so good... except???
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the “natural” functional space is W 2,1(0, 1)′′... not H2(0, 1)
(or any W 2,p(0, 1) with p ≥ 1)... otherwise lack of coercivity
means

J + εξ, ξ ∈ ∂φ

is not surjective...

the “natural” convergence on whh is the weak-* convergence
of Radon measures...

Also...

Subdifferential of

φ(w) =
1

2

∫ 1

0
(whh + c0)−2dh...

what does this even mean?

φ does not charge very large whh...
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So

φ(w) =
1

2

∫ 1

0
(whh + c0)−2dh

is more like

φ(w) =
1

2

∫ 1

0
(whh‖ + c0)−2dh...

And
∂φ(w) = −(whh‖ + c0)−3 + singular measures

9 / 25



ADL regime
Nematic Liquid Crystals

Set

E (w) :=
1

2

∫ 1

0
[(whh + c0)−3]2hhdh =

∫ 1

0
w2
t dh

and note:

dE (w)

dt
=

∫ 1

0
[(whh + c0)−3]hh[(whh + c0)−3]hhtdh

=

∫ 1

0
−3

[(whh + c0)t ]
2

(whh + c0)4
dh ≤ 0,

and

d

dt

∫ 1

0
(whh + c0)dh =

∫ 1

0
[(whh + c0)−3]hhhhdh = 0,
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And note there is bound on∫ 1

0
[whh + c0]dh

hence there is an invariant ball of the form {‖wh‖BV ≤ C}...

So consider the evolution equation

wt ∈ −∂φ(w)− ∂ψ(w), ψ(w) := χ{‖wh‖BV≤C}

and we can recover coercivity via ψ...
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Gao, Liu, L., Xu, 2018

Given T > 0, initial data w0 ∈ D(B), there exists a strong solution
w of

wt = (ηhh + c0)−3
hh ,

for a.e. (t, h) ∈ [0,T ]× [0, 1]. Besides, we have
((ηhh + c0)−3)hh ∈ L∞([0,T ]; L2(0, 1)) and the dissipation
inequality

E (t) :=
1

2

∫ 1

0

[
((ηhh + c0)−3)hh

]2
dh ≤ E (0),

where ηhh is the absolutely continuous part of whh.

However, whh might have singular parts... (Liu and Xu, Ji and
Witelski)
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Similarly, the multidimensional model

ut = ∆e−∆u

can be treated with the same techniques:

Gao, Liu, L., 2017

Given T > 0, initial data u0, there exists a strong solution w of

ut = ∆e−∆u,

for a.e. (t, h) ∈ [0,T ]× Ω. Moreover,

(∆e−∆u)‖ ∈ L2(0,T ; L2(Ω)).

However, ∆u might have singular parts... (Ji and Witelski)
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Nematic Liquid Crystals
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Liquid crystals (LC): a state of the matter between crystalline and
liquid...
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Different states of LC:
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Landau-De Gennes theory for nematic liquid crystals: the evolution
is driven by the energy of the form

E [Q] :=

∫
F (∇Q(x),Q(x))dx − κ‖Q‖2

L2(Ω), , κ > 0

Q varies in the Q-tensor space

S (d) := {symmetric, trace free matrices of Rd×d}.

Interesting case d = 3.
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Energy
F = Fel + FBM ,

where

Fel(∇Q) :=
d∑

i ,j ,k=1

[
L1|Q ij

xk
|2 + L2Q

ik
xj
Q ij

xk
+ L3Q

ij
xj
Q ik

xk

]
, L1 � L2, L3

FBM(Q) := inf
ρ∈AQ

∫
S2

ρ(p) log ρ(p)dp (Ball & Majumdar, 2009)

AQ :=

{
ρ : S2 −→ R : ρ ≥ 0,

∫
S2

ρdx = 1,∫
S2

ρ(x)
[
x ⊗ x − id/3

]
dx = Q

}
.
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About FBM(Q):

well defined

convex and isotropic

log speed asymptote if any eigenvalue of Q approaches
−1/3, 2/3

smooth in its effective domain
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Energy

E [Q] =

∫
Fel(∇Q) + FBM(Q)dx − κ‖Q‖2

L2(Ω), κ > 0

satisfies

Boundedness from below: inf E > −∞ since convex functions
are bounded from below, and ‖Q‖2

L2(Ω) is also bounded due to

requirement that all eigenvalues of Q are in (−1/3, 2/3).

Lower semicontinuity: consider a sequence Qn → Q strongly:
we have then

lim inf
n→+∞

E (Qn) ≥ E (Q).

λ-convexity along segments, with λ = −2κ: we have indeed

E ((1− t)Q + tP)

≤ (1− t)E (Q) + tE (P) + κt(1− t)‖Q − P‖2
L2(Ω).
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Existence and regularity

For any initial datum Q0 ∈ D(E ) there exists a unique function Q
such that:

Regularizing effect: Q is locally Lipschitz regular, and
Q(t) ∈ D(|∂E |) ⊆ D(E ) for all t > 0. In particular, all
eigenvalues of Q stay in (−1/3, 2/3) for a.e. x and all t > 0.

Variational inequality: Q is the unique solution of the
evolution variational inequality

1

2

d

dt
‖Q(t)− P‖2

L2(Ω) − κ‖Q(t)− P‖2
L2(Ω) + E (Q(t)) ≤ E (P)

among all the locally absolutely continuous curves such that
Q(t)→ Q0 as t ↓ 0+.
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More properties:

Exponential semigroup formula: Q(t) = limn→+∞ Jnt/n(Q0),
with J denoting the resolvent

X ∈ Jτ (Y )⇐⇒ X ∈ argmin

(
E (·) +

1

2τ
‖Y − ·‖2

L2(Ω)

)
.

Contraction semigroup: for initial data Q0,P0 ∈ D(E ), the
corresponding solutions Q,P satisfy

‖Q(t)− P(t)‖L2(Ω) ≤ e2κt‖Q0 − P0‖L2(Ω).

This is not enough... Physicality fails if eigenvalues reach
−1/3, 2/3 anywhere...
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Main result (Liu, L. and Xu, 2018)

There exists some time T0 > 0 such that all eigenvalues of Q(t)
are uniformly bounded away from −1/3, 2/3 for all t > T0.

AGS gives more or less

−∆Q(t) + F ′BM(Q(t)) + ξ(Q(t)) ∈ L2(0,T ; L2(Ω)).

Issues:

∆Q(t) + F ′BM(Q(t)) ∈ L2(Ω) does not give ∆Q(t) ∈ L2(Ω)...
(Not enough regularity)

ξ(Q(t)) perturbation of Laplacian destroys any
comparison/maximum principle... (So no way to follow
L1 → L∞ arguments from [Constantin, Kiselev, Ryzhik,
Zlatoš, 2008])
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Main arguments:

1 Approximate FBM with Fn, and analyze the gradient flow of
En := Fel + Fn.

2 Use the Γ-convergence to infer convergence of gradient flows.

3 Achieve ∆Q(t) ∈ L2(0,T ; L2(Ω)).

4 Upgrade to ∆Q(t) ∈ L∞(t0,T ; L2(Ω)).
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Thank you for your attention!
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