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Cracks ONLY inR™ x {0}. Displacementv:R" x (-4, A4) — R.

V] :=Vgpr — Vir Ky :={z eR": |v](z) #0}
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Cohesive Zone Model
Total Energy

For a displacement v € H'(R™ x (—A, A) \ {y = 0}) the total energy is

B = [ wvds + [ gl
2 Jrrx(—A,A)0\ {y=0} Rn
—_———

Stored Elastic Energy Fracture Energy

where
(g1) g concave

(g2) g strictly increasing and bounded
(93) 9(0)=0
(94) ¢'(0%) € (0, +00)

(95) g:1[0,+00) — [0,+00) is of class g € C?[0,00) N C3(0, 0)
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Assume BC odd w.rt. {y =0} u_,(z) = —ua(z) VaeR™

We focus on solutions which are odd w.r.t. {y = 0}:

Au=0 in R™ x (0, A),
U= Uy on {y = A}v
|0yul < g'(0%) on {y =0},

Oyu = ¢'(2|ul)sgn(u) on K.
QUESTIONS:

» Regularity of u?

» Is the crack set K, = {(x,0) : x € R", u(z,0) # 0} regular?
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0yu discontinuous at (z,0)
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Assumptions on BC
(A1) u, € C%8(R™) for some 3 € (0,1)
(A2) lim w,(xz)=0

|| —o00

Preliminary result on the crack set K,:

Let (g1)—(g5) and (A1)—(A2) be satisfied. Then, K,, is compact.






Fromu, € C%>#(R"™), we have



Fromu, € C%>#(R"™), we have

» uy Lipschitz continuous (Lipschitz constant L4 := ||Vual L)



Fromu, € C*8(R™), we have

» w4 Lipschitz continuous (Lipschitz constant L 4 := ||Vua|| 1)

> u 4 Semiconvex (with some semiconvexity constant D4 > 0):



Fromu, € C*8(R™), we have
» w4 Lipschitz continuous (Lipschitz constant L 4 := ||Vua|| 1)
> u 4 Semiconvex (with some semiconvexity constant D4 > 0):

ua(z+h) +ua(x —h) — 2ua(x) > —Dalh|*> Vaz,h € R™



Preliminary results on u

Remark
Fromu, € C*8(R™), we have

» u, Lipschitz continuous (Lipschitz constant L s := ||Vua| )
» u 4 Semiconvex (with some semiconvexity constant D4 > 0):

ua(x +h) +ua(x — h) — 2ua(z) > —Dyalh|? Va,h eR”

» u4 Semiconcave (with some semiconcavity constant C4 > 0):



Preliminary results on u

Remark
Fromu, € C*8(R™), we have

» u, Lipschitz continuous (Lipschitz constant L := ||Vua| )

» u 4 Semiconvex (with some semiconvexity constant D4 > 0):
ua(x +h) +ua(x — h) — 2ua(z) > —Dyalh|? Va,h eR”

» u4 Semiconcave (with some semiconcavity constant C4 > 0):

ug(z+h) +us(z —h) —2us(z) < Calh|? Va,h eR™
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Preliminary results on u

Lemma (Caffarelli, C., Figalli)

Let (g1)—(g5) and (A1)—(A2) be satisfied. In addition, assume (g6).
Then, for every y € [0, A], the function (-, y) is Lipschitz continuous,
with Lipschitz constant

La
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Remark
We need

1
" -
) 9"~ < 5






An example from fracture evolution

|

s> R

(=




An example from fracture evolution

s> R

|

(=

R
Example from C., Math. Models Methods Appl. Sci. (2008)






p 1

An example from fracture evolution




3 Solutions of the Euler equation:



3 Solutions of the Euler equation:



3 Solutions of the Euler equation:




3 Solutions of the Euler equation:

(t) = 1 (R=2y+R(t—A) y>0
U R Ry - R(t-4) y<0

—t y<O0

t 0
uz(t) := { Lr
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Let (g1)—(g5) and (A1)—(A2) be satisfied. Suppose, in addition, that

1
2 1 -~ .
Iz < =

Then, there exists a unique solution u. In particular, there is a unique
critical point of the energy, that coincides with the global minimizer.
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Lemma (Caffarelli, C., Figalli)
Let (g1)—(g6) and (A1)—(A2) be satisfied. Then,
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In particular, for every y € [0, A]

u~ (-, y) is semiconcave.
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Combining the previous two results

[u(z + h,y) +u(z — h,y) + §|h|2]+ > 2uT(z,y) > 2u(z,y)
> 2u(z,y) > [u(z + h,y) + u(z — h,y) = C|h|?]

for every (z,y) € R™ x [0, 4], and h € R™.
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Optimal Regularity of u: Phases separation

In the following:  (0,0) € 0K,
NOTATION: for r > 0

Boi={:eR"™: |z <r} and Bl :=Bn{y=0)

Proposition (Caffarelli, C., Figalli)
Let (g1)—(g6) and (A1)—(A2) be satisfied. Then 31y > 0 such that

B n{z' e R" : u(2’,0) > 0} N {2’ € R" : u(a',0) < 0} = 0.
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Then, if z € {u < 0} and x — 0 we have |V, u(z,0)| — o



Step 2:



Step 2: By Step 1,

|u(z,0)] < o(|z])|z] for some modulus of continuity o



Step 2: By Step 1,

|u(z,0)] < o(|z])|z] for some modulus of continuity o

» We can construct suitable barriers



Step 2: By Step 1,

|u(z,0)] < o(|z])|z] for some modulus of continuity o

» We can construct suitable barriers = contradiction
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Regularity of u near 9K, ?
In the following:
» (0,0) € 0K,
> u(x,0) > 0 forevery z € B,

Define v: R" x [-A, A] > R as

o, y) = u(z,y) — g’ (0M)y  forevery (z,y) € R" x (0, A),
T (e, —y) for every (z,y) € R x (—A,0).
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Then, v solves

Av=0 in By, \ {y =0}
v>0 on By
Oyv <0 on B

v[dyv+g¢'(0%) —¢'(20)] =0 on B}

NOTE:



Optimal Regularity of «

Then, v solves

Av =0 in By, \ {y =0}
v>0 on B
0yv <0 on B

v[dyv+g¢'(0%) —¢'(20)] =0 on B}
NOTE: this is a “perturbation” of Signorini Problem:

Av =0 in By, \ {y =0}
v>0 on B}

Oyv <0 on B

vdyv=0 on By
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We can now adapt the arguments of

» Athanasopoulos-Caffarelli (2004) Signorini problem
» Caffarelli-Figalli (2013) parabolic fractional obstacle problem

Theorem (Caffarelli, C., Figalli)
Let (g1)—(g6) and (A1)—(A2) be satisfied. Then,

ue CHY2(R™ x [0, A))
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Proposition (Caffarelli, C., Figalli)
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Regularity properties of 0K, ?

Proposition (Caffarelli, C., Figalli)
Let (g1)—(g6) and (A1)—(A2) be satisfied. Assume that

(0,0) belongs to the “regular part” of OK,,.

Then the free boundary is C near (0,0), for some a € (0, 1).



THANK YOU!
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Free Boundary Regularity

Regularity properties of 0K, ?
In the following:
» (0,0) € 0K,
> u(z,0) > 0 for every z € B

Recall: v : R™ x [—A, A] — R defined as

o(,y) = u(z,y) —¢g'(07)y forevery (z,y) € R* x (0, A),
T vl —y) for every (z,y) € R" x (—A4,0).
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(Variant of) Almgren’s Monotonicity Formula:

D, (r) = ri log (max{F,(r),r"**}) where F,(r):= / v dH".
dT' OB,

» Inspired by Caffarelli-Salsa-Silvestre, Invent. Math. (2008)

Proposition (Caffarelli, C., Figalli)
Let (g1)—(g6) and (A1)—(A2) be satisfied. Then 37y, C > 0 such that

r—s @, (T)ecr

is monotone nondecreasing in (0,7).
In particular, there exists

®,(07) = lim ®,(r).

r—0t+






Let (g1)—(g6) and (A1)—(A2) be satisfied.



Let (g1)—(g6) and (A1)—(A2) be satisfied. Then

either ®,(0")=n+3



Let (g1)—(g6) and (A1)—(A2) be satisfied. Then

either ®,(0")=n+3 or ®,(0")>n+4.



Let (g1)—(g6) and (A1)—(A2) be satisfied. Then

either ®,(0")=n+3 or ®,(0")>n+4.

Blow up profiles:



Let (g1)—(g6) and (A1)—(A2) be satisfied. Then

either ®,(0")=n+3 or ®,(0")>n+4.

Blow up profiles:

For r € (0,7) define v, : By — R as



Let (g1)—(g6) and (A1)—(A2) be satisfied. Then

either ®,(0")=n+3 or ®,(0")>n+4.

Blow up profiles:

For r € (0,7) define v, : By — R as




Let (g1)—(g6) and (A1)—(A2) be satisfied. Then

either ®,(0")=n+3 or ®,(0")>n+4.

Blow up profiles:

For r € (0,7) define v, : By — R as

or(z) = L2, 0, = (F—())/




Free Boundary Regularity: Blow up

Proposition (Caffarelli, C., Figalli)
Let (g1)—(g6) and (A1)—(A2) be satisfied. Then

either ®,(0")=n+3 or ®,00")>n+4.

Blow up profiles:

Forr € (0,7) define v, : By — R as

Now send  — 0T and use
Athanasopoulos-Caffarelli-Salsa, Amer. J. Math. (2008)
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Free Boundary Regularity: Blow up

Proposition (Caffarelli, C., Figalli)
Let (g1)—(¢6) and (A1)—(A2) be satisfied. Assume
®,(0%) =n+3.
Then 3r, — 0 and v, : B; — R homogeneous (degree 3/2) s.t.
> U, — Voo Weakly in W12(By)
> v, — Vs INCYY on compacts of By N {y > 0} fory € (0,1/2)
> v, Satisfies the classical Signorini problem in By

» up to change of variables
— 32 cos >
Voo (2, y) = p”/~ cos 5%

where p? = 22 +y* and tanf = y/xz,,.
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Let (g1)—(g6) and (A1)—(A2) be satisfied. Assume
®,(0%) =n+3.

Then the free boundary is C* near (0,0), for some o € (0,1).



THANK YOU!



