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Cracks ONLY in R
n × {0}. Displacement v : Rn × (−A,A) → R.

[v] := vRT − vLT Kv := {x ∈ R
n : [v](x) 6= 0}
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For a displacement v ∈ H1(Rn × (−A,A) \ {y = 0}) the total energy is

E(v) =
1

2

∫

Rn×(−A,A)\{y=0}

|∇v|2dz

︸ ︷︷ ︸

Stored Elastic Energy

+

∫

Rn

g(|[v]|) dx

︸ ︷︷ ︸

Fracture Energy

where

(g1) g concave

(g2) g strictly increasing and bounded

(g3) g(0) = 0

(g4) g′(0+) ∈ (0,+∞)

(g5) g : [0,+∞) → [0,+∞) is of class g ∈ C2[0,∞) ∩ C3(0,∞)
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◮ Regularity of u?

◮ Is the crack set Ku = {(x, 0) : x ∈ R
n, u(x, 0) 6= 0} regular?
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∆u = 0 in R
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u = uA on {y = A},

|∂yu| ≤ g′(0+) on {y = 0},

∂yu = g′(2|u|) sgn(u) on Ku.

MAJOR PROBLEM:

Suppose ∃ (x, 0) ∈ ∂Ku where u changes sign

⇓

∂yu discontinuous at (x, 0)
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Assumptions on BC

(A1) uA ∈ C2,β(Rn) for some β ∈ (0, 1)

(A2) lim
|x|→∞

uA(x) = 0

Preliminary result on the crack set Ku:

Lemma (Caffarelli, C., Figalli)

Let (g1)–(g5) and (A1)–(A2) be satisfied. Then, Ku is compact.
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Lemma (Caffarelli, C., Figalli)

Let (g1)–(g5) and (A1)–(A2) be satisfied. In addition, assume (g6).
Then, for every y ∈ [0, A], the function u(·, y) is Lipschitz continuous,

with Lipschitz constant

L :=
LA

1− 2A‖g′′‖L∞

.

Remark

We need

(g6) ‖g′′‖L∞ <
1

2A
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Example from C., Math. Models Methods Appl. Sci. (2008)
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y

x1

A

B

uA ≡ tu−A ≡ −t

n = 3
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3 Solutions of the Euler equation:

u1(t) :=
t

A
y

u2(t) :=
1

R − 2A







(R− 2t)y +R(t−A) y > 0

(R− 2t)y −R(t−A) y < 0

u3(t) :=







t y > 0

−t y < 0
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Uniqueness

Lemma

Let (g1)–(g5) and (A1)–(A2) be satisfied. Suppose, in addition, that

2‖g′′‖L∞ <
1

A
.

Then, there exists a unique solution u. In particular, there is a unique
critical point of the energy, that coincides with the global minimizer.
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Let (g1)–(g6) and (A1)–(A2) be satisfied. Then,

[
u(x+ h, y) + u(x− h, y) +D|h|2

]+
≥ 2u+(x, y)

for every x, h ∈ R
n and y ∈ [0, A], where
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1

1− 2A‖g′′‖L∞

[

DA +
4AL2

A‖g
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]

.
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Lemma (Caffarelli, C., Figalli)

Let (g1)–(g6) and (A1)–(A2) be satisfied. Then,

[
u(x+ h, y) + u(x− h, y)− C|h|2

]−
≤ 2u−(x, y)

for every x, h ∈ R
n and y ∈ [0, A], where

C :=
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[
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Remark (u+ and u− are “connected”)

Combining the previous two results

[
u(x+ h, y) + u(x− h, y) +D|h|2

]+
≥ 2u+(x, y) ≥ 2u(x, y)

≥ 2u−(x, y) ≥
[
u(x+ h, y) + u(x− h, y)− C|h|2

]−

for every (x, y) ∈ R
n × [0, A], and h ∈ R

n.
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Sketch of the proof

Suppose, by contradiction, that

Bn
r ∩ {u(·, 0) > 0} ∩ {u(·, 0) < 0} 6= ∅ for every r > 0.

Step 1: Show that u(·, 0) is differentiable at x = 0 with ∇xu(0, 0) = 0

◮ Note: u+(·, 0) semiconvex with 0 ∈ ∂−
x u+(0, 0)

◮ Note: u−(·, 0) semiconcave with 0 ∈ ∂+
x u−(0, 0)

◮ Suppose u(·, 0) not differentiable at x = 0.

◮ Then, either ∂−
x u+(0, 0) 6= {0} or ∂+

x u−(0, 0) 6= {0}

◮ Say ∂−
x u+(0, 0) 6= {0}

◮ u+(·, 0) and u−(·, 0) are “connected” ⇒ ∂+
x u−(0, 0) 6= {0}

◮ Then, if x ∈ {u < 0} and x → 0 we have |∇xu(x, 0)| → ∞
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Step 2: By Step 1,

|u(x, 0)| ≤ σ(|x|)|x| for some modulus of continuity σ

◮ We can construct suitable barriers =⇒ contradiction

�
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Then, v solves







∆v = 0 in Br0 \ {y = 0}

v ≥ 0 on Bn
r0

∂yv ≤ 0 on Bn
r0

v[∂yv + g′(0+)− g′(2v)] = 0 on Bn
r0

NOTE: this is a “perturbation” of Signorini Problem:







∆v = 0 in Br0 \ {y = 0}

v ≥ 0 on Bn
r0

∂yv ≤ 0 on Bn
r0

v ∂yv = 0 on Bn
r0
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We can now adapt the arguments of

◮ Athanasopoulos-Caffarelli (2004) Signorini problem

◮ Caffarelli-Figalli (2013) parabolic fractional obstacle problem

Theorem (Caffarelli, C., Figalli)

Let (g1)–(g6) and (A1)–(A2) be satisfied. Then,

u ∈ C1,1/2(Rn × [0, A])
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Regularity properties of ∂Ku?

Proposition (Caffarelli, C., Figalli)

Let (g1)–(g6) and (A1)–(A2) be satisfied. Assume that

(0, 0) belongs to the “regular part” of ∂Ku.

Then the free boundary is C1,α near (0, 0), for some α ∈ (0, 1).



THANK YOU!



Free Boundary Regularity



Free Boundary Regularity

Regularity properties of ∂Ku?



Free Boundary Regularity

Regularity properties of ∂Ku?

In the following:



Free Boundary Regularity

Regularity properties of ∂Ku?

In the following:

◮ (0, 0) ∈ ∂Ku

◮ u(x, 0) ≥ 0 for every x ∈ Bn
r0



Free Boundary Regularity

Regularity properties of ∂Ku?

In the following:

◮ (0, 0) ∈ ∂Ku

◮ u(x, 0) ≥ 0 for every x ∈ Bn
r0

Recall: v : Rn × [−A,A] → R defined as



Free Boundary Regularity

Regularity properties of ∂Ku?

In the following:

◮ (0, 0) ∈ ∂Ku

◮ u(x, 0) ≥ 0 for every x ∈ Bn
r0

Recall: v : Rn × [−A,A] → R defined as

v(x, y) :=

{

u(x, y)− g′(0+)y for every (x, y) ∈ R
n × (0, A),

v(x,−y) for every (x, y) ∈ R
n × (−A, 0).



Free Boundary Regularity

(Variant of) Almgren’s Monotonicity Formula:



Free Boundary Regularity

(Variant of) Almgren’s Monotonicity Formula:

Φv(r) := r
d

dr
log

(
max{Fv(r), r

n+4}
)



Free Boundary Regularity

(Variant of) Almgren’s Monotonicity Formula:

Φv(r) := r
d

dr
log

(
max{Fv(r), r

n+4}
)

where Fv(r) :=

∫

∂Br

v2dHn.



Free Boundary Regularity

(Variant of) Almgren’s Monotonicity Formula:

Φv(r) := r
d

dr
log

(
max{Fv(r), r

n+4}
)

where Fv(r) :=

∫

∂Br

v2dHn.

◮ Inspired by Caffarelli-Salsa-Silvestre, Invent. Math. (2008)



Free Boundary Regularity

(Variant of) Almgren’s Monotonicity Formula:

Φv(r) := r
d

dr
log

(
max{Fv(r), r

n+4}
)

where Fv(r) :=

∫

∂Br

v2dHn.

◮ Inspired by Caffarelli-Salsa-Silvestre, Invent. Math. (2008)

Proposition (Caffarelli, C., Figalli)

Let (g1)–(g6) and (A1)–(A2) be satisfied.



Free Boundary Regularity

(Variant of) Almgren’s Monotonicity Formula:

Φv(r) := r
d

dr
log

(
max{Fv(r), r

n+4}
)

where Fv(r) :=

∫

∂Br

v2dHn.

◮ Inspired by Caffarelli-Salsa-Silvestre, Invent. Math. (2008)

Proposition (Caffarelli, C., Figalli)

Let (g1)–(g6) and (A1)–(A2) be satisfied. Then ∃ r0, C > 0 such that

r 7−→ Φv(r)e
Cr is monotone nondecreasing in (0, r0).



Free Boundary Regularity

(Variant of) Almgren’s Monotonicity Formula:

Φv(r) := r
d

dr
log

(
max{Fv(r), r

n+4}
)

where Fv(r) :=

∫

∂Br

v2dHn.

◮ Inspired by Caffarelli-Salsa-Silvestre, Invent. Math. (2008)

Proposition (Caffarelli, C., Figalli)

Let (g1)–(g6) and (A1)–(A2) be satisfied. Then ∃ r0, C > 0 such that

r 7−→ Φv(r)e
Cr is monotone nondecreasing in (0, r0).

In particular,



Free Boundary Regularity

(Variant of) Almgren’s Monotonicity Formula:

Φv(r) := r
d

dr
log

(
max{Fv(r), r

n+4}
)

where Fv(r) :=

∫

∂Br

v2dHn.

◮ Inspired by Caffarelli-Salsa-Silvestre, Invent. Math. (2008)

Proposition (Caffarelli, C., Figalli)

Let (g1)–(g6) and (A1)–(A2) be satisfied. Then ∃ r0, C > 0 such that

r 7−→ Φv(r)e
Cr is monotone nondecreasing in (0, r0).

In particular, there exists

Φv(0
+) = lim

r→0+
Φv(r).
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Free Boundary Regularity: Blow up

Proposition (Caffarelli, C., Figalli)

Let (g1)–(g6) and (A1)–(A2) be satisfied. Then

either Φv(0
+) = n+ 3 or Φv(0

+) ≥ n+ 4.

Blow up profiles:

For r ∈ (0, r0) define vr : B1 → R as

vr(z) :=
v(rz)

dr
, dr :=

(
Fv(r)

rn

)1/2

.

Now send r → 0+ and use

Athanasopoulos-Caffarelli-Salsa, Amer. J. Math. (2008)
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Proposition (Caffarelli, C., Figalli)
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Then ∃ rk → 0 and v∞ : B1 → R homogeneous (degree 3/2) s.t.

◮ vrk ⇀ v∞ weakly in W 1,2(B1)

◮ vrk → v∞ in C1,γ on compacts of B1 ∩ {y ≥ 0} for γ ∈ (0, 1/2)

◮ v∞ satisfies the classical Signorini problem in B1

◮ up to change of variables

v∞(x, y) = ρ3/2 cos
3

2
θ,

where ρ2 = x2
n + y2 and tan θ = y/xn.
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Proposition (Caffarelli, C., Figalli)

Let (g1)–(g6) and (A1)–(A2) be satisfied. Assume

Φv(0
+) = n+ 3.

Then the free boundary is C1,α near (0, 0), for some α ∈ (0, 1).



THANK YOU!


