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@ Computing exactly the partition function of the
Sherrington-Kirkpatrick (SK) spin glass model with Gaussian
couplings. The algorithmic hardness result.

@ Explicit construction of matrices satisfying the Restricted
Isometry Property (RIP) is "TRamsey”-hard.
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o Input: J = (J;, 1 <i<j<n),BeR J; < N(O,1),iid.
@ Computational goal: construct an algorithm A for computing the
partition function

Z(J) £ Z exp (% ZJ,']'(T,'JJ') .

ce{-1,1}n i<f
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Computing the partition function of the SK model

@ The problem of computing Z(J) for arbitrary J is known to be
#P-hard, Valiant [80s].

@ Requirement:
P(Z4(d) = Z(J)) =1 —0o(1).

The probability is with respect to randomness of J.
@ Thus our goal is average case hardness.

@ Average case hardness if of interest in Cryptography and TCS in
general.

@ Examples of average case hard problems: Permanent, Shortest
Lattice Vector



Reformulation in terms of cuts

Let H(O') = Zi<j:0/7éo.j JU Then

> Jjoioj +2H(o ZJ,,

i<j

Thus we focus on computing

=" exp(8n~2H(o)).
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Finite precision version of the problem

The problem is not algorithmically sound since the input Jj is irrational
(unless Blum-Shub-Smale model of computation is used)
Finite precision version:

o Let X; = exp(An~2Jj), so that Z(d) = X, T, 4, X
o Fix N € Zandlet X'l = 2-N|2VX;| € Q. Let

o =3 T[ %"

Note: Aj; = 2NX,-I[-N] = |2NX;]| are integers. Let /(o) be the
cardinality of the set {i < j: 0; # o;}. Then

Z N n 1) —Ni(o) H All (1)
i<j:oi#0;

2N Z(xIM),
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Finite precision version of the problem

Goal: Compute

Z(A) = 2NN TT A

oiF0]

exactly.
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Main result

Theorem

Suppose the precision value N satisfies 18logn < N < n®, for any
constant o > 0. Namely the number of bits in the precision is at least
logarithmic and at most polynomial in n. If there exists a polynomial in
n time algorithm A which on input A produces a value Z,(A) satisfying

1

P(Z4(A)=Z(A)) >1— 32

for all sufficiently large n, then P = #P.
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Main result

Suppose the precision value N satisfies 18logn < N < n®, for any
constant o > 0. Namely the number of bits in the precision is at least
logarithmic and at most polynomial in n. If there exists a polynomial in
n time algorithm A which on input A produces a value Z,(A) satisfying

1

P(Z4(A)=Z(A)) >1— 32

for all sufficiently large n, then P = #P.

Comments:

@ The proof uses Lipton’s [91] mod prime computation in Z, and
hardness of computing the permanent of a matrix on average.

@ Some strengthening of 1 — n°(") assumption was obtained later
by Feige & Lund [92] using the communication complexity theory.
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@ Fix a prime n? < p, = O(n?log n) (possible using the density of
primes property). Compute Z(A) mod (pp) instead.

@ Suppose U = (Uj, i < j) are generated uniformly at random from
[0, pn — 1].

@ Claim: computing Z(U) is hard on average by worst-case to
average case reduction.

@ Key observation (Lipton’s trick): for every deterministic aj,
aj + tU; mod (pp) isu.a.r. in [0,pp — 1] forall 1 <t < p, — 1.
o

P(t) 2 Z(a + tU) = 2” N TT (ay + tUy)
I i

0i#0j

is a polynomial in t with degree M = max; i(n — i) < n? < pp.
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@ If we can compute Z(A) with probability at at least 1 — O(n~2) we
can compute P(t) forall t =1,2,..., M+ 1 with probability at least
1/2.

@ Inverting, we can compute P(0) = Z(a), which is #P-hard. O
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Proof sketch. Step Il

In the regime 18log n < N < n?, the distribution of
Aj = [2Nexp(Bn~2J;)] in [0, pn — 1] is O(n~2) close to uniform. O
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Some comments

@ Some immediate generalizations

e 2-spin assumption of the SK is non-essential. The method extends
to the p-spin models.

e Gaussianity of the couplings is non-essential. Well behaved
distributions with sufficiently smooth density should be enough.

e n? in exp(8n~2) is non-essential. Any constant power of n is ok.

@ Limitations

e The trick of mod(p,) computation is too "fragile” to survive the
approximate computation. It seems this method is hopeless to
establish the approximation hardness of computing Z(J).

e The problem of computing the ground state min,, Jjoio; is
’non-algebraic” so the trick of mod(p,) computation again appears
useless.
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Explicit construction of RIP matrices

@ A matrix ¢ € R"*P satisfies the (4, s) Restricted Isometry Property
(RIP) for 6 € (0,1), s < pif for every s-sparse vector 5 (||5]lo < 8)

@513 — [1Bll2] < 31813

@ Importance: compressive sensing: if ¢ is 2s-RIP with 6 < 2/3,
then every s-sparse 5* is the unique solution of

min [|3]4
Subject to : P = dS*,

and thus can be uniquely recovered by solving this linear
programming problem.
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Random matrices are RIP

@ If entries of ® are i.i.d. zero mean sub-Gaussian with variance
1/n, then @ is RIP w.h.p. provided

n=Q(slog(p/s)).

@ For example, if s = log® p, then n = Q(log®™" p) suffices.

@ Thus one obtains a simple randomized algorithm for constructing
RIP matrices.

@ ... But certifying RIP is hard in the worst-case Bandeira, Dobriban,
Mixon & Sawin [13] and on average Koiran & Zouzias [14].

@ Challenge: explicit (deterministic) construction.
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Square Root bottleneck for explicit constructions

@ Many explicit constructions were known but all were hitting the
barrier s = O(v/n). Bandeira, Fickus, Mixon & Wong [13]

@ Beating the "Square Root” barrier became a major challenge,
popularized in Terry Tao’s blog in [07], and Joel Moreira’s blog in
[13].

@ Breakthrough: Bourgain, Dilworth, Ford, Konyagin & Kutzarova
[11]. n = s27 for small constant e in the regime n = pO("),

@ No improvements since then.
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Explicit construction of Ramsey graphs

@ Given m, a complete graph on p nodes with edges colored by
1,...,qis called R(m; g)-Ramsey if the largest monochromatic
clique has size at most m.

@ Random g-coloring of a p-node complete graph gives
m = O(log p), Erdos, [1947].

@ Challenge: explicit construction of Ramsey graphs. Construct
explicitly a graph on p nodes with m = O(log p). Applications in
cryptography.

@ Huge literature and gradual improvements from p°(), to

(logp)9o9es®’p g _p

Cohen [17]. Survey by Conlon, Fox & Sudakov [15]. There are
results for general g, but weaker than the above.
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Constructing RIP matrices is Ramsey-hard

Given a matrix ® € R"™P, suppose it is RIP with s > 2\/n+ 1 and
= O(log p). Then one can construct a R(m; 3) graph with
m = O(log? p).

Proof
Construction. Given & = [uy, ..., Up), color (i, )

o redif [(u;, up)| < 2\[,

@ Dblue if (uj;, u;) >

§\
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Constructing RIP matrices is Ramsey-hard

Given a matrix ® € R"™P, suppose it is RIP with s > 2\/n+ 1 and
= O(log p). Then one can construct a R(m; 3) graph with
m = O(log? p).

Proof
Construction. Given & = [uy, ..., Up), color (i, )

o redif [(u;, up)| < 2\[,

@ blue if (uj, u;) > %ﬁ

° it (i, u) < —51%
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Proof

@ Claim: If ¢ is s-RIP, then the largest monochromatic clique in this
graph is at most 2n.

@ Assume claim holds. Take RIP matrix with s = O(log p).

@ From s > 2/n+ 1, the Ramsey value of this graph is
n< ((s—1)/2)? = O(log® p). =
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Proof of claim

Proposition

For any set of unit norm vectors uy, . .., Us, € R”,
1

maxi<ixzj<en [(Uj, Uj)| > 2n"

Special case of Kabatyanski & Levenstein [78] bound, also discussed
in Terry Tao’s (different) blog in [13]

Proof (from this blog).

Consider the symmetric matrix U = ((u;, u;), 1 < i,j < 2n) € R2M2N of
inner products. This is a rank-n matrix in R27<2" and as such

U £ U — bpyon has an eigenvalue —1 with multiplicity at least n. Thus
the trace of U? which is > 1<izj<on({Ui; u;))? is at least n, implying

U U 1

v
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Proof of claim

@ Thus the largest red clique in our graph is at most 2n — 1.
@ Suppose C C [p] is a blue clique with |C| = 2/n + 1.
@ Define x € RP by x; = 1/4/|C|,i € C and x; = 0 otherwise. This
vector is |C| < s-sparse.
@ But
Jox13 -~ IxI8 = g 3 (o) = 15 -

’ ’ i#£jeC

1,

which contradicts RIP.

@ Same proof for green cliques.
Thus the largest monochromatic clique in this graph is
max(2n,2+/n) = 2n. O



Comments

e September, 2018 22/23



Comments

@ If ® consists of non-negative entries (as it is in many
constructions), then our construction implies 2-Ramsey graph.



Comments

@ If ® consists of non-negative entries (as it is in many
constructions), then our construction implies 2-Ramsey graph.

@ The result does not contradict Bourgain et al [11] construction,
which requires n = p°(1),



Comments

@ If ® consists of non-negative entries (as it is in many
constructions), then our construction implies 2-Ramsey graph.

@ The result does not contradict Bourgain et al [11] construction,
which requires n = p°(1),

@ Question: Can one use Ramsey graph to construct RIP matrices?
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