Two Algorithmic Hardness Results in Random Combinatorial Structures

David Gamarnik

MIT

Spin Glasses and Related Topics. Banff 2018

September, 2018

Two algorithmic challenges

Two algorithmic challenges

 Computing *exactly* the partition function of the Sherrington-Kirkpatrick (SK) spin glass model with Gaussian couplings. The algorithmic hardness result.

Two algorithmic challenges

- Computing *exactly* the partition function of the Sherrington-Kirkpatrick (SK) spin glass model with Gaussian couplings. The algorithmic hardness result.
- Explicit construction of matrices satisfying the **Restricted Isometry Property (RIP)** is "**Ramsey**"-hard.

• Input:
$$\mathbf{J} = (J_{ij}, 1 \le i < j \le n), \, \beta \in \mathbb{R}. \, J_{ij} \stackrel{d}{=} N(0, 1), \, \text{i.i.d.}$$

- Input: $\mathbf{J} = (J_{ij}, 1 \le i < j \le n), \beta \in \mathbb{R}$. $J_{ij} \stackrel{d}{=} N(0, 1)$, i.i.d.
- Computational goal: construct an algorithm A for computing the partition function

$$Z(\mathbf{J}) \triangleq \sum_{\sigma \in \{-1,1\}^n} \exp\left(\frac{\beta}{\sqrt{n}} \sum_{i < j} J_{ij} \sigma_i \sigma_j\right)$$

 The problem of computing Z(J) for arbitrary J is known to be #P-hard, Valiant [80s].

- The problem of computing Z(J) for arbitrary J is known to be #P-hard, Valiant [80s].
- Requirement:

$$\mathbb{P}\left(Z_{\mathcal{A}}(\mathbf{J})=Z(\mathbf{J})\right)=1-o(1).$$

The probability is with respect to randomness of J.

- The problem of computing Z(J) for arbitrary J is known to be #P-hard, Valiant [80s].
- Requirement:

$$\mathbb{P}\left(Z_{\mathcal{A}}(\mathbf{J})=Z(\mathbf{J})\right)=1-o(1).$$

The probability is with respect to randomness of J.

• Thus our goal is *average* case hardness.

- The problem of computing Z(J) for arbitrary J is known to be #P-hard, Valiant [80s].
- Requirement:

$$\mathbb{P}\left(Z_{\mathcal{A}}(\mathbf{J})=Z(\mathbf{J})\right)=1-o(1).$$

The probability is with respect to randomness of J.

- Thus our goal is *average* case hardness.
- Average case hardness if of interest in Cryptography and TCS in general.
- Examples of average case hard problems: Permanent, Shortest Lattice Vector

Reformulation in terms of cuts

Let $H(\sigma) = \sum_{i < j: \sigma_i \neq \sigma_i} J_{ij}$. Then

$$\sum_{i < j} J_{ij} \sigma_i \sigma_j + 2H(\sigma) = \sum_{ij} J_{ij}.$$

Thus we focus on computing

$$Z(\mathbf{J}) = \sum_{\sigma} \exp(\beta n^{-\frac{1}{2}} H(\sigma)).$$

The problem is not algorithmically sound since the input J_{ij} is irrational (unless Blum-Shub-Smale model of computation is used).

The problem is not algorithmically sound since the input J_{ij} is irrational (unless Blum-Shub-Smale model of computation is used). Finite precision version:

The problem is not algorithmically sound since the input J_{ij} is irrational (unless Blum-Shub-Smale model of computation is used). Finite precision version:

• Let
$$X_{ij} = \exp(\beta n^{-\frac{1}{2}} J_{ij})$$
, so that $Z(\mathbf{J}) = \sum_{\sigma} \prod_{\sigma_i \neq \sigma_j} X_{ij}$

The problem is not algorithmically sound since the input J_{ij} is irrational (unless Blum-Shub-Smale model of computation is used). Finite precision version:

 $\sigma \quad \sigma_i \neq \sigma_i$

• Let $X_{ij} = \exp(\beta n^{-\frac{1}{2}} J_{ij})$, so that $Z(\mathbf{J}) = \sum_{\sigma} \prod_{\sigma_i \neq \sigma_j} X_{ij}$

• Fix $N \in \mathbb{Z}$ and let $X_{ij}^{[N]} = 2^{-N} \lfloor 2^N X_{ij} \rfloor \in \mathbb{Q}$. Let $Z(\mathbf{X}^{[N]}) = \sum \prod X_{ij}^{[N]}$

The problem is not algorithmically sound since the input J_{ij} is irrational (unless Blum-Shub-Smale model of computation is used). Finite precision version:

- Let $X_{ij} = \exp(\beta n^{-\frac{1}{2}} J_{ij})$, so that $Z(\mathbf{J}) = \sum_{\sigma} \prod_{\sigma_i \neq \sigma_i} X_{ij}$
- Fix $N \in \mathbb{Z}$ and let $X_{ij}^{[N]} = 2^{-N} \lfloor 2^N X_{ij} \rfloor \in \mathbb{Q}$. Let $Z(\mathbf{X}^{[N]}) = \sum_{\sigma} \prod_{\sigma_i \neq \sigma_i} X_{ij}^{[N]}$

Note: $A_{ij} = 2^N X_{ij}^{[N]} = \lfloor 2^N X_{ij} \rfloor$ are integers. Let $I(\sigma)$ be the cardinality of the set $\{i < j : \sigma_i \neq \sigma_j\}$. Then

$$Z(\mathbf{A}) \triangleq \sum_{\sigma} 2^{N\frac{n(n-1)}{2} - NI(\sigma)} \prod_{i < j: \sigma_i \neq \sigma_j} A_{ij}$$
(1)
= $2^{N\frac{n(n-1)}{2}} Z(\mathbf{X}^{[N]}),$

Goal: Compute

$$Z(\mathbf{A}) = \sum_{\sigma} 2^{Nrac{n(n-1)}{2} - NI(\sigma)} \prod_{\sigma_i
eq \sigma_j} A_{ij}$$

exactly.

Theorem

Suppose the precision value N satisfies $18 \log n \le N \le n^{\alpha}$, for any constant $\alpha > 0$. Namely the number of bits in the precision is at least logarithmic and at most polynomial in n. If there exists a polynomial in n time algorithm A which on input **A** produces a value $Z_A(\mathbf{A})$ satisfying

$$\mathbb{P}\left(Z_{\mathcal{A}}(\mathbf{A})=Z(\mathbf{A})
ight)\geq 1-rac{1}{3n^2},$$

for all sufficiently large n, then P = #P.

Theorem

Suppose the precision value N satisfies $18 \log n \le N \le n^{\alpha}$, for any constant $\alpha > 0$. Namely the number of bits in the precision is at least logarithmic and at most polynomial in n. If there exists a polynomial in n time algorithm A which on input **A** produces a value $Z_A(\mathbf{A})$ satisfying

$$\mathbb{P}\left(Z_{\mathcal{A}}(\mathbf{A})=Z(\mathbf{A})
ight)\geq 1-rac{1}{3n^2},$$

for all sufficiently large n, then P = #P.

Comments:

Theorem

Suppose the precision value N satisfies $18 \log n \le N \le n^{\alpha}$, for any constant $\alpha > 0$. Namely the number of bits in the precision is at least logarithmic and at most polynomial in n. If there exists a polynomial in n time algorithm A which on input **A** produces a value $Z_A(\mathbf{A})$ satisfying

$$\mathbb{P}\left(Z_{\mathcal{A}}(\mathbf{A})=Z(\mathbf{A})
ight)\geq 1-rac{1}{3n^2},$$

for all sufficiently large n, then P = #P.

Comments:

 The proof uses Lipton's [91] mod prime computation in Z_p and hardness of computing the permanent of a matrix on average.

Theorem

Suppose the precision value N satisfies $18 \log n \le N \le n^{\alpha}$, for any constant $\alpha > 0$. Namely the number of bits in the precision is at least logarithmic and at most polynomial in n. If there exists a polynomial in n time algorithm A which on input **A** produces a value $Z_A(\mathbf{A})$ satisfying

$$\mathbb{P}\left(Z_{\mathcal{A}}(\mathbf{A})=Z(\mathbf{A})
ight)\geq 1-rac{1}{3n^2},$$

for all sufficiently large n, then P = #P.

Comments:

- The proof uses Lipton's [91] mod prime computation in Z_p and hardness of computing the permanent of a matrix on average.
- Some strengthening of 1 n^{O(1)} assumption was obtained later by Feige & Lund [92] using the communication complexity theory.

Fix a prime n² < p_n = O(n² log n) (possible using the density of primes property). Compute Z(A) mod (p_n) instead.

- Fix a prime n² < p_n = O(n² log n) (possible using the density of primes property). Compute Z(A) mod (p_n) instead.
- Suppose $\mathbf{U} = (U_{ij}, i < j)$ are generated uniformly at random from $[0, p_n 1]$.

- Fix a prime n² < p_n = O(n² log n) (possible using the density of primes property). Compute Z(A) mod (p_n) instead.
- Suppose $\mathbf{U} = (U_{ij}, i < j)$ are generated uniformly at random from $[0, p_n 1]$.
- Claim: computing Z(U) is hard on average by worst-case to average case reduction.

- Fix a prime n² < p_n = O(n² log n) (possible using the density of primes property). Compute Z(A) mod (p_n) instead.
- Suppose $\mathbf{U} = (U_{ij}, i < j)$ are generated uniformly at random from $[0, p_n 1]$.
- Claim: computing Z(U) is hard on average by worst-case to average case reduction.
- Key observation (Lipton's trick): for every deterministic a_{ij} , $a_{ij} + tU_{ij} \mod (p_n)$ is u.a.r. in $[0, p_n 1]$ for all $1 \le t \le p_n 1$.

- Fix a prime n² < p_n = O(n² log n) (possible using the density of primes property). Compute Z(A) mod (p_n) instead.
- Suppose $\mathbf{U} = (U_{ij}, i < j)$ are generated uniformly at random from $[0, p_n 1]$.
- Claim: computing Z(U) is hard on average by worst-case to average case reduction.
- Key observation (Lipton's trick): for every deterministic a_{ij} , $a_{ij} + tU_{ij} \mod (p_n)$ is u.a.r. in $[0, p_n 1]$ for all $1 \le t \le p_n 1$.

$$P(t) \triangleq Z(\mathbf{a} + t\mathbf{U}) = \sum_{\sigma} 2^{N\frac{n(n-1)}{2} - NI(\sigma)} \prod_{\sigma_i \neq \sigma_j} (a_{ij} + tU_{ij})$$

is a polynomial in *t* with degree $M = \max_i i(n-i) < n^2 < p_n$.

• If we can compute $Z(\mathbf{A})$ with probability at at least $1 - O(n^{-2})$ we can compute P(t) for all t = 1, 2, ..., M + 1 with probability at least 1/2.

- If we can compute $Z(\mathbf{A})$ with probability at at least $1 O(n^{-2})$ we can compute P(t) for all t = 1, 2, ..., M + 1 with probability at least 1/2.
- Inverting, we can compute $P(0) = Z(\mathbf{a})$, which is #P-hard.
In the regime $18 \log n \le N \le n^{\alpha}$, the distribution of $A_{ij} = \lfloor 2^N \exp(\beta n^{-\frac{1}{2}} J_{ij}) \rfloor$ in $[0, p_n - 1]$ is $O(n^{-3})$ close to uniform.

• Some immediate generalizations

- Some immediate generalizations
 - 2-spin assumption of the SK is non-essential. The method extends to the *p*-spin models.

- Some immediate generalizations
 - 2-spin assumption of the SK is non-essential. The method extends to the *p*-spin models.
 - Gaussianity of the couplings is non-essential. Well behaved distributions with sufficiently smooth density should be enough.

- Some immediate generalizations
 - 2-spin assumption of the SK is non-essential. The method extends to the p-spin models.
 - Gaussianity of the couplings is non-essential. Well behaved distributions with sufficiently smooth density should be enough.
 - $n^{\frac{1}{2}}$ in exp $(\beta n^{-\frac{1}{2}})$ is non-essential. Any constant power of *n* is ok.

- Some immediate generalizations
 - 2-spin assumption of the SK is non-essential. The method extends to the p-spin models.
 - Gaussianity of the couplings is non-essential. Well behaved distributions with sufficiently smooth density should be enough.
 - $n^{\frac{1}{2}}$ in exp $(\beta n^{-\frac{1}{2}})$ is non-essential. Any constant power of *n* is ok.
- Limitations

- Some immediate generalizations
 - 2-spin assumption of the SK is non-essential. The method extends to the p-spin models.
 - Gaussianity of the couplings is non-essential. Well behaved distributions with sufficiently smooth density should be enough.
 - $n^{\frac{1}{2}}$ in exp $(\beta n^{-\frac{1}{2}})$ is non-essential. Any constant power of *n* is ok.
- Limitations
 - The trick of $mod(p_n)$ computation is too "fragile" to survive the approximate computation. It seems this method is hopeless to establish the approximation hardness of computing Z(J).

Some immediate generalizations

- 2-spin assumption of the SK is non-essential. The method extends to the p-spin models.
- Gaussianity of the couplings is non-essential. Well behaved distributions with sufficiently smooth density should be enough.
- $n^{\frac{1}{2}}$ in exp $(\beta n^{-\frac{1}{2}})$ is non-essential. Any constant power of *n* is ok.
- Limitations
 - The trick of $mod(p_n)$ computation is too "fragile" to survive the approximate computation. It seems this method is hopeless to establish the approximation hardness of computing Z(J).
 - The problem of computing the ground state min_σ J_{ij}σ_iσ_j is "non-algebraic" so the trick of mod(p_n) computation again appears useless.

Part II

Explicit construction of RIP matrices

Explicit construction of RIP matrices

A matrix Φ ∈ ℝ^{n×p} satisfies the (δ, s) Restricted Isometry Property (RIP) for δ ∈ (0, 1), s ≤ p if for every s-sparse vector β (||β||₀ ≤ s)

$$|\|\Phi\beta\|_{2}^{2} - \|\beta\|_{2}| \le \delta \|\beta\|_{2}^{2}.$$

Explicit construction of RIP matrices

 A matrix Φ ∈ ℝ^{n×p} satisfies the (δ, s) Restricted Isometry Property (RIP) for δ ∈ (0, 1), s ≤ p if for every s-sparse vector β (||β||₀ ≤ s)

$$|\|\Phi\beta\|_{2}^{2} - \|\beta\|_{2}| \le \delta \|\beta\|_{2}^{2}.$$

 Importance: compressive sensing: if Φ is 2*s*-RIP with δ < 2/3, then every *s*-sparse β* is the unique solution of

> $\min \|\beta\|_1$ Subject to $:\Phi\beta = \Phi\beta^*$,

and thus can be uniquely recovered by solving this linear programming problem.

If entries of Φ are i.i.d. zero mean sub-Gaussian with variance 1/n, then Φ is RIP w.h.p. provided

If entries of Φ are i.i.d. zero mean sub-Gaussian with variance 1/n, then Φ is RIP w.h.p. provided

 $n = \Omega\left(s\log(p/s)\right).$

• For example, if $s = \log^{\alpha} p$, then $n = \Omega(\log^{\alpha+1} p)$ suffices.

If entries of Φ are i.i.d. zero mean sub-Gaussian with variance 1/n, then Φ is RIP w.h.p. provided

- For example, if $s = \log^{\alpha} p$, then $n = \Omega(\log^{\alpha+1} p)$ suffices.
- Thus one obtains a simple randomized algorithm for constructing RIP matrices.

If entries of Φ are i.i.d. zero mean sub-Gaussian with variance 1/n, then Φ is RIP w.h.p. provided

- For example, if $s = \log^{\alpha} p$, then $n = \Omega(\log^{\alpha+1} p)$ suffices.
- Thus one obtains a simple randomized algorithm for constructing RIP matrices.
- ... But certifying RIP is hard in the worst-case Bandeira, Dobriban, Mixon & Sawin [13] and on average Koiran & Zouzias [14].

If entries of Φ are i.i.d. zero mean sub-Gaussian with variance 1/n, then Φ is RIP w.h.p. provided

- For example, if $s = \log^{\alpha} p$, then $n = \Omega(\log^{\alpha+1} p)$ suffices.
- Thus one obtains a simple randomized algorithm for constructing RIP matrices.
- ... But certifying RIP is hard in the worst-case Bandeira, Dobriban, Mixon & Sawin [13] and on average Koiran & Zouzias [14].
- Challenge: explicit (deterministic) construction.

• Many explicit constructions were known but all were hitting the barrier $s = O(\sqrt{n})$. Bandeira, Fickus, Mixon & Wong [13]

- Many explicit constructions were known but all were hitting the barrier $s = O(\sqrt{n})$. Bandeira, Fickus, Mixon & Wong [13]
- Beating the "Square Root" barrier became a major challenge, popularized in Terry Tao's blog in [07], and Joel Moreira's blog in [13].

- Many explicit constructions were known but all were hitting the barrier $s = O(\sqrt{n})$. Bandeira, Fickus, Mixon & Wong [13]
- Beating the "Square Root" barrier became a major challenge, popularized in Terry Tao's blog in [07], and Joel Moreira's blog in [13].
- Breakthrough: Bourgain, Dilworth, Ford, Konyagin & Kutzarova [11]. $n = s^{\frac{1}{2}+\epsilon}$ for small constant ϵ in the regime $n = p^{O(1)}$.

- Many explicit constructions were known but all were hitting the barrier $s = O(\sqrt{n})$. Bandeira, Fickus, Mixon & Wong [13]
- Beating the "Square Root" barrier became a major challenge, popularized in Terry Tao's blog in [07], and Joel Moreira's blog in [13].
- Breakthrough: Bourgain, Dilworth, Ford, Konyagin & Kutzarova [11]. $n = s^{\frac{1}{2}+\epsilon}$ for small constant ϵ in the regime $n = p^{O(1)}$.
- No improvements since then.

Given m, a complete graph on p nodes with edges colored by 1,..., q is called R(m; q)-Ramsey if the largest monochromatic clique has size at most m.

- Given m, a complete graph on p nodes with edges colored by 1,..., q is called R(m; q)-Ramsey if the largest monochromatic clique has size at most m.
- Random *q*-coloring of a *p*-node complete graph gives m = O(log *p*), Erdös, [1947].

- Given m, a complete graph on p nodes with edges colored by 1,..., q is called R(m; q)-Ramsey if the largest monochromatic clique has size at most m.
- Random *q*-coloring of a *p*-node complete graph gives m = O(log *p*), Erdös, [1947].
- **Challenge:** explicit construction of Ramsey graphs. Construct explicitly a graph on p nodes with $m = O(\log p)$. Applications in cryptography.

- Given m, a complete graph on p nodes with edges colored by 1,..., q is called R(m; q)-Ramsey if the largest monochromatic clique has size at most m.
- Random *q*-coloring of a *p*-node complete graph gives m = O(log *p*), Erdös, [1947].
- **Challenge:** explicit construction of Ramsey graphs. Construct explicitly a graph on p nodes with $m = O(\log p)$. Applications in cryptography.
- Huge literature and gradual improvements from $p^{O(1)}$, to

$$(\log p)^{\log \log \log \log^{O(1)} p}, \qquad q=2,$$

Cohen [17]. Survey by Conlon, Fox & Sudakov [15]. There are results for general q, but weaker than the above.

Theorem

Given a matrix $\Phi \in \mathbb{R}^{n \times p}$, suppose it is RIP with $s \ge 2\sqrt{n} + 1$ and $s = O(\log p)$. Then one can construct a R(m; 3) graph with $m = O(\log^2 p)$.

Theorem

Given a matrix $\Phi \in \mathbb{R}^{n \times p}$, suppose it is RIP with $s \ge 2\sqrt{n} + 1$ and $s = O(\log p)$. Then one can construct a R(m; 3) graph with $m = O(\log^2 p)$.

Proof

Theorem

Given a matrix $\Phi \in \mathbb{R}^{n \times p}$, suppose it is RIP with $s \ge 2\sqrt{n} + 1$ and $s = O(\log p)$. Then one can construct a R(m; 3) graph with $m = O(\log^2 p)$.

Proof

Construction. Given $\Phi = [u_1, \ldots, u_p]$, color (i, j)

Theorem

Given a matrix $\Phi \in \mathbb{R}^{n \times p}$, suppose it is RIP with $s \ge 2\sqrt{n} + 1$ and $s = O(\log p)$. Then one can construct a R(m; 3) graph with $m = O(\log^2 p)$.

Proof

Construction. Given $\Phi = [u_1, \ldots, u_p]$, color (i, j)

• red if
$$|\langle u_i, u_j \rangle| \leq \frac{1}{2\sqrt{n}}$$
;

Theorem

Given a matrix $\Phi \in \mathbb{R}^{n \times p}$, suppose it is RIP with $s \ge 2\sqrt{n} + 1$ and $s = O(\log p)$. Then one can construct a R(m; 3) graph with $m = O(\log^2 p)$.

Proof

Construction. Given $\Phi = [u_1, \ldots, u_p]$, color (i, j)

• red if
$$|\langle u_i, u_j \rangle| \leq \frac{1}{2\sqrt{n}}$$
;

• blue if
$$\langle u_i, u_j \rangle > \frac{1}{2\sqrt{n}}$$

Theorem

Given a matrix $\Phi \in \mathbb{R}^{n \times p}$, suppose it is RIP with $s \ge 2\sqrt{n} + 1$ and $s = O(\log p)$. Then one can construct a R(m; 3) graph with $m = O(\log^2 p)$.

Proof

Construction. Given $\Phi = [u_1, \ldots, u_p]$, color (i, j)

• red if
$$|\langle u_i, u_j \rangle| \leq \frac{1}{2\sqrt{n}}$$
;

• blue if $\langle u_i, u_j \rangle > \frac{1}{2\sqrt{n}}$

• green if
$$\langle u_i, u_j \rangle < -\frac{1}{2\sqrt{n}}$$
Proof

 Claim: If Φ is s-RIP, then the largest monochromatic clique in this graph is at most 2n.

- Claim: If Φ is s-RIP, then the largest monochromatic clique in this graph is at most 2n.
- Assume claim holds. Take RIP matrix with $s = O(\log p)$.

- Claim: If Φ is s-RIP, then the largest monochromatic clique in this graph is at most 2n.
- Assume claim holds. Take RIP matrix with $s = O(\log p)$.
- From $s \ge 2\sqrt{n} + 1$, the Ramsey value of this graph is $n \le ((s-1)/2)^2 = O(\log^2 p)$.

Proposition

For any set of unit norm vectors $u_1, \ldots, u_{2n} \in \mathbb{R}^n$, $\max_{1 \le i \ne j \le 2n} |\langle u_i, u_j \rangle| > \frac{1}{2\sqrt{n}}$.

Proposition

For any set of unit norm vectors $u_1, \ldots, u_{2n} \in \mathbb{R}^n$, $\max_{1 \le i \ne j \le 2n} |\langle u_i, u_j \rangle| > \frac{1}{2\sqrt{n}}$.

Special case of Kabatyanski & Levenstein [78] bound, also discussed in Terry Tao's (different) blog in [13]

Proof (from this blog).

Consider the symmetric matrix $U = (\langle u_i, u_j \rangle, 1 \le i, j \le 2n) \in \mathbb{R}^{2n \times 2n}$ of inner products. This is a rank-*n* matrix in $\mathbb{R}^{2n \times 2n}$ and as such $\overline{U} \triangleq U - I_{2n \times 2n}$ has an eigenvalue -1 with multiplicity at least *n*. Thus the trace of \overline{U}^2 which is $\sum_{1 \le i \ne j \le 2n} (\langle u_i, u_j \rangle)^2$ is at least *n*, implying $\max_{i \ne j} |\langle u_i, u_j \rangle| \ge \frac{1}{\sqrt{2(2n-1)}}$.

• Thus the largest red clique in our graph is at most 2n - 1.

- Thus the largest red clique in our graph is at most 2n 1.
- Suppose $C \subset [p]$ is a blue clique with $|C| = 2\sqrt{n} + 1$.

- Thus the largest red clique in our graph is at most 2n − 1.
- Suppose $C \subset [p]$ is a blue clique with $|C| = 2\sqrt{n} + 1$.
- Define $x \in \mathbb{R}^p$ by $x_i = 1/\sqrt{|C|}, i \in C$ and $x_i = 0$ otherwise. This vector is $|C| \leq s$ -sparse.

- Thus the largest red clique in our graph is at most 2n 1.
- Suppose $C \subset [p]$ is a blue clique with $|C| = 2\sqrt{n} + 1$.
- Define $x \in \mathbb{R}^p$ by $x_i = 1/\sqrt{|C|}, i \in C$ and $x_i = 0$ otherwise. This vector is $|C| \leq s$ -sparse.

But

$$\|\Phi x\|_{2}^{2} - \|x\|_{2}^{2} = \frac{1}{|C|} \sum_{i \neq j \in C} \langle u_{i}, u_{j} \rangle \geq \frac{|C| - 1}{2\sqrt{n}} = 1,$$

which contradicts RIP.

- Thus the largest red clique in our graph is at most 2n − 1.
- Suppose $C \subset [p]$ is a blue clique with $|C| = 2\sqrt{n} + 1$.
- Define $x \in \mathbb{R}^p$ by $x_i = 1/\sqrt{|C|}, i \in C$ and $x_i = 0$ otherwise. This vector is $|C| \leq s$ -sparse.

But

$$\|\Phi x\|_{2}^{2} - \|x\|_{2}^{2} = \frac{1}{|C|} \sum_{i \neq j \in C} \langle u_{i}, u_{j} \rangle \geq \frac{|C| - 1}{2\sqrt{n}} = 1,$$

which contradicts RIP.

• Same proof for green cliques. Thus the largest monochromatic clique in this graph is $max(2n, 2\sqrt{n}) = 2n$.

 If Φ consists of non-negative entries (as it is in many constructions), then our construction implies 2-Ramsey graph.

- If Φ consists of non-negative entries (as it is in many constructions), then our construction implies 2-Ramsey graph.
- The result does not contradict Bourgain et al [11] construction, which requires $n = p^{O(1)}$.

- If Φ consists of non-negative entries (as it is in many constructions), then our construction implies 2-Ramsey graph.
- The result does not contradict Bourgain et al [11] construction, which requires $n = p^{O(1)}$.
- Question: Can one use Ramsey graph to construct RIP matrices?

Thank you