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Two algorithmic challenges

Computing exactly the partition function of the
Sherrington-Kirkpatrick (SK) spin glass model with Gaussian
couplings. The algorithmic hardness result.
Explicit construction of matrices satisfying the Restricted
Isometry Property (RIP) is ”Ramsey”-hard.
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PART I: Computing the partition function of the SK model

Input: J = (Jij ,1 ≤ i < j ≤ n), β ∈ R. Jij
d
= N(0,1), i.i.d.

Computational goal: construct an algorithm A for computing the
partition function

Z (J) ,
∑

σ∈{−1,1}n

exp

 β√
n

∑
i<j

Jijσiσj

 .
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Computing the partition function of the SK model

The problem of computing Z (J) for arbitrary J is known to be
#P-hard, Valiant [80s].
Requirement:

P (ZA(J) = Z (J)) = 1− o(1).

The probability is with respect to randomness of J.
Thus our goal is average case hardness.
Average case hardness if of interest in Cryptography and TCS in
general.
Examples of average case hard problems: Permanent, Shortest
Lattice Vector
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Reformulation in terms of cuts

Let H(σ) =
∑

i<j:σi 6=σj
Jij . Then

∑
i<j

Jijσiσj + 2H(σ) =
∑

ij

Jij .

Thus we focus on computing

Z (J) =
∑
σ

exp(βn−
1
2 H(σ)).
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Finite precision version of the problem

The problem is not algorithmically sound since the input Jij is irrational
(unless Blum-Shub-Smale model of computation is used).
Finite precision version:

Let Xij = exp(βn−
1
2 Jij), so that Z (J) =

∑
σ

∏
σi 6=σj

Xij

Fix N ∈ Z and let X [N]
ij = 2−Nb2NXijc ∈ Q. Let

Z (X[N]) =
∑
σ

∏
σi 6=σj

X [N]
ij

Note: Aij = 2NX [N]
ij = b2NXijc are integers. Let I(σ) be the

cardinality of the set {i < j : σi 6= σj}. Then

Z (A) ,
∑
σ

2N n(n−1)
2 −NI(σ)

∏
i<j:σi 6=σj

Aij (1)

= 2N n(n−1)
2 Z (X[N]),
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Finite precision version of the problem

Goal: Compute

Z (A) =
∑
σ

2N n(n−1)
2 −NI(σ)

∏
σi 6=σj

Aij

exactly.
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Main result

Theorem
Suppose the precision value N satisfies 18 log n ≤ N ≤ nα, for any
constant α > 0. Namely the number of bits in the precision is at least
logarithmic and at most polynomial in n. If there exists a polynomial in
n time algorithm A which on input A produces a value ZA(A) satisfying

P (ZA(A) = Z (A)) ≥ 1− 1
3n2 ,

for all sufficiently large n, then P = #P.

Comments:

The proof uses Lipton’s [91] mod prime computation in Zp and
hardness of computing the permanent of a matrix on average.
Some strengthening of 1− nO(1) assumption was obtained later
by Feige & Lund [92] using the communication complexity theory.
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Proof sketch. Step I

Fix a prime n2 < pn = O(n2 log n) (possible using the density of
primes property). Compute Z (A) mod (pn) instead.
Suppose U = (Uij , i < j) are generated uniformly at random from
[0,pn − 1].
Claim: computing Z (U) is hard on average by worst-case to
average case reduction.
Key observation (Lipton’s trick): for every deterministic aij ,
aij + tUij mod (pn) is u.a.r. in [0,pn − 1] for all 1 ≤ t ≤ pn − 1.

P(t) , Z (a + tU) =
∑
σ

2N n(n−1)
2 −NI(σ)

∏
σi 6=σj

(aij + tUij)

is a polynomial in t with degree M = maxi i(n − i) < n2 < pn.
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Proof sketch. Step I

If we can compute Z (A) with probability at at least 1−O(n−2) we
can compute P(t) for all t = 1,2, . . . ,M + 1 with probability at least
1/2.
Inverting, we can compute P(0) = Z (a), which is #P-hard.
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Proof sketch. Step II

In the regime 18 log n ≤ N ≤ nα, the distribution of
Aij = b2N exp(βn−

1
2 Jij)c in [0,pn − 1] is O(n−3) close to uniform.
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Some comments

Some immediate generalizations

2-spin assumption of the SK is non-essential. The method extends
to the p-spin models.
Gaussianity of the couplings is non-essential. Well behaved
distributions with sufficiently smooth density should be enough.
n

1
2 in exp(βn− 1

2 ) is non-essential. Any constant power of n is ok.

Limitations

The trick of mod(pn) computation is too ”fragile” to survive the
approximate computation. It seems this method is hopeless to
establish the approximation hardness of computing Z (J).
The problem of computing the ground state minσ Jijσiσj is
”non-algebraic” so the trick of mod(pn) computation again appears
useless.
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Part II
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Explicit construction of RIP matrices

A matrix Φ ∈ Rn×p satisfies the (δ, s) Restricted Isometry Property
(RIP) for δ ∈ (0,1), s ≤ p if for every s-sparse vector β (‖β‖0 ≤ s)

|‖Φβ‖22 − ‖β‖2| ≤ δ‖β‖22.

Importance: compressive sensing: if Φ is 2s-RIP with δ < 2/3,
then every s-sparse β∗ is the unique solution of

min ‖β‖1
Subject to :Φβ = Φβ∗,

and thus can be uniquely recovered by solving this linear
programming problem.
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min ‖β‖1
Subject to :Φβ = Φβ∗,

and thus can be uniquely recovered by solving this linear
programming problem.
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Random matrices are RIP

If entries of Φ are i.i.d. zero mean sub-Gaussian with variance
1/n, then Φ is RIP w.h.p. provided

n = Ω (s log(p/s)) .

For example, if s = logα p, then n = Ω(logα+1 p) suffices.
Thus one obtains a simple randomized algorithm for constructing
RIP matrices.
... But certifying RIP is hard in the worst-case Bandeira, Dobriban,
Mixon & Sawin [13] and on average Koiran & Zouzias [14].
Challenge: explicit (deterministic) construction.
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Square Root bottleneck for explicit constructions

Many explicit constructions were known but all were hitting the
barrier s = O(

√
n). Bandeira, Fickus, Mixon & Wong [13]

Beating the ”Square Root” barrier became a major challenge,
popularized in Terry Tao’s blog in [07], and Joel Moreira’s blog in
[13].
Breakthrough: Bourgain, Dilworth, Ford, Konyagin & Kutzarova
[11]. n = s

1
2+ε for small constant ε in the regime n = pO(1).

No improvements since then.
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Explicit construction of Ramsey graphs

Given m, a complete graph on p nodes with edges colored by
1, . . . ,q is called R(m; q)-Ramsey if the largest monochromatic
clique has size at most m.
Random q-coloring of a p-node complete graph gives
m = O(log p), Erdös, [1947].
Challenge: explicit construction of Ramsey graphs. Construct
explicitly a graph on p nodes with m = O(log p). Applications in
cryptography.
Huge literature and gradual improvements from pO(1), to

(log p)log log logO(1) p , q = 2,

Cohen [17]. Survey by Conlon, Fox & Sudakov [15]. There are
results for general q, but weaker than the above.
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Constructing RIP matrices is Ramsey-hard

Theorem

Given a matrix Φ ∈ Rn×p, suppose it is RIP with s ≥ 2
√

n + 1 and
s = O(log p). Then one can construct a R(m; 3) graph with
m = O(log2 p).

Proof
Construction. Given Φ = [u1, . . . ,up], color (i , j)

red if |〈ui ,uj〉| ≤ 1
2
√

n ;

blue if 〈ui ,uj〉 > 1
2
√

n

green if 〈ui ,uj〉 < − 1
2
√

n
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Proof

Claim: If Φ is s-RIP, then the largest monochromatic clique in this
graph is at most 2n.
Assume claim holds. Take RIP matrix with s = O(log p).
From s ≥ 2

√
n + 1, the Ramsey value of this graph is

n ≤ ((s − 1)/2)2 = O(log2 p).

September, 2018 19 / 23



Proof

Claim: If Φ is s-RIP, then the largest monochromatic clique in this
graph is at most 2n.

Assume claim holds. Take RIP matrix with s = O(log p).
From s ≥ 2

√
n + 1, the Ramsey value of this graph is

n ≤ ((s − 1)/2)2 = O(log2 p).

September, 2018 19 / 23



Proof

Claim: If Φ is s-RIP, then the largest monochromatic clique in this
graph is at most 2n.
Assume claim holds. Take RIP matrix with s = O(log p).

From s ≥ 2
√

n + 1, the Ramsey value of this graph is
n ≤ ((s − 1)/2)2 = O(log2 p).

September, 2018 19 / 23



Proof

Claim: If Φ is s-RIP, then the largest monochromatic clique in this
graph is at most 2n.
Assume claim holds. Take RIP matrix with s = O(log p).
From s ≥ 2

√
n + 1, the Ramsey value of this graph is

n ≤ ((s − 1)/2)2 = O(log2 p).

September, 2018 19 / 23



Proof of claim

Proposition

For any set of unit norm vectors u1, . . . ,u2n ∈ Rn,
max1≤i 6=j≤2n |〈ui ,uj〉| > 1

2
√

n .

Special case of Kabatyanski & Levenstein [78] bound, also discussed
in Terry Tao’s (different) blog in [13]

Proof (from this blog).

Consider the symmetric matrix U = (〈ui ,uj〉,1 ≤ i , j ≤ 2n) ∈ R2n×2n of
inner products. This is a rank-n matrix in R2n×2n and as such
Ū , U − I2n×2n has an eigenvalue −1 with multiplicity at least n. Thus
the trace of Ū2 which is

∑
1≤i 6=j≤2n(〈ui ,uj〉)2 is at least n, implying

maxi 6=j |〈ui ,uj〉| ≥ 1√
2(2n−1)

.
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Proof of claim

Thus the largest red clique in our graph is at most 2n − 1.
Suppose C ⊂ [p] is a blue clique with |C| = 2

√
n + 1.

Define x ∈ Rp by xi = 1/
√
|C|, i ∈ C and xi = 0 otherwise. This

vector is |C| ≤ s-sparse.
But

‖Φx‖22 − ‖x‖22 =
1
|C|

∑
i 6=j∈C

〈ui ,uj〉 ≥
|C| − 1

2
√

n
= 1,

which contradicts RIP.
Same proof for green cliques.
Thus the largest monochromatic clique in this graph is
max(2n,2

√
n) = 2n.
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Comments

If Φ consists of non-negative entries (as it is in many
constructions), then our construction implies 2-Ramsey graph.
The result does not contradict Bourgain et al [11] construction,
which requires n = pO(1).
Question: Can one use Ramsey graph to construct RIP matrices?
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Thank you
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