Two Algorithmic Hardness Results in Random Combinatorial Structures

David Gamarnik

MIT

Spin Glasses and Related Topics. Banff 2018

September, 2018

Two algorithmic challenges

Two algorithmic challenges

- Computing exactly the partition function of the Sherrington-Kirkpatrick (SK) spin glass model with Gaussian couplings. The algorithmic hardness result.

Two algorithmic challenges

- Computing exactly the partition function of the Sherrington-Kirkpatrick (SK) spin glass model with Gaussian couplings. The algorithmic hardness result.
- Explicit construction of matrices satisfying the Restricted Isometry Property (RIP) is "Ramsey"-hard.

PART I: Computing the partition function of the SK model

PART I: Computing the partition function of the SK model

- Input: $\mathbf{J}=\left(J_{i j}, 1 \leq i<j \leq n\right), \beta \in \mathbb{R} . J_{i j} \stackrel{d}{=} N(0,1)$, i.i.d.

PART I: Computing the partition function of the SK model

- Input: $\mathbf{J}=\left(J_{i j}, 1 \leq i<j \leq n\right), \beta \in \mathbb{R} . J_{i j} \stackrel{d}{=} N(0,1)$, i.i.d.
- Computational goal: construct an algorithm \mathcal{A} for computing the partition function

$$
Z(\mathbf{J}) \triangleq \sum_{\sigma \in\{-1,1\}^{n}} \exp \left(\frac{\beta}{\sqrt{n}} \sum_{i<j} J_{i j} \sigma_{i} \sigma_{j}\right) .
$$

Computing the partition function of the SK model

Computing the partition function of the SK model

- The problem of computing $Z(\mathbf{J})$ for arbitrary \mathbf{J} is known to be \#P-hard, Valiant [80s].

Computing the partition function of the SK model

- The problem of computing $Z(\mathbf{J})$ for arbitrary \mathbf{J} is known to be \#P-hard, Valiant [80s].
- Requirement:

$$
\mathbb{P}\left(Z_{\mathcal{A}}(\mathbf{J})=Z(\mathbf{J})\right)=1-o(1)
$$

The probability is with respect to randomness of \mathbf{J}.

Computing the partition function of the SK model

- The problem of computing $Z(\mathbf{J})$ for arbitrary \mathbf{J} is known to be \#P-hard, Valiant [80s].
- Requirement:

$$
\mathbb{P}\left(Z_{\mathcal{A}}(\mathbf{J})=Z(\mathbf{J})\right)=1-o(1)
$$

The probability is with respect to randomness of \mathbf{J}.

- Thus our goal is average case hardness.

Computing the partition function of the SK model

- The problem of computing $Z(\mathbf{J})$ for arbitrary \mathbf{J} is known to be \#P-hard, Valiant [80s].
- Requirement:

$$
\mathbb{P}\left(Z_{\mathcal{A}}(\mathbf{J})=Z(\mathbf{J})\right)=1-o(1) .
$$

The probability is with respect to randomness of \mathbf{J}.

- Thus our goal is average case hardness.
- Average case hardness if of interest in Cryptography and TCS in general.
- Examples of average case hard problems: Permanent, Shortest Lattice Vector

Reformulation in terms of cuts

Let $H(\sigma)=\sum_{i<j: \sigma_{i} \neq \sigma_{j}} J_{i j}$. Then

$$
\sum_{i<j} J_{i j} \sigma_{i} \sigma_{j}+2 H(\sigma)=\sum_{i j} J_{i j} .
$$

Thus we focus on computing

$$
Z(\mathbf{J})=\sum_{\sigma} \exp \left(\beta n^{-\frac{1}{2}} H(\sigma)\right) .
$$

Finite precision version of the problem

Finite precision version of the problem
The problem is not algorithmically sound since the input $J_{i j}$ is irrational (unless Blum-Shub-Smale model of computation is used).

Finite precision version of the problem
The problem is not algorithmically sound since the input $J_{i j}$ is irrational (unless Blum-Shub-Smale model of computation is used).
Finite precision version:

Finite precision version of the problem
The problem is not algorithmically sound since the input $J_{i j}$ is irrational (unless Blum-Shub-Smale model of computation is used).
Finite precision version:

- Let $X_{i j}=\exp \left(\beta n^{-\frac{1}{2}} J_{i j}\right)$, so that $Z(\mathbf{J})=\sum_{\sigma} \prod_{\sigma_{i} \neq \sigma_{j}} X_{i j}$

Finite precision version of the problem

The problem is not algorithmically sound since the input $J_{i j}$ is irrational (unless Blum-Shub-Smale model of computation is used).
Finite precision version:

- Let $X_{i j}=\exp \left(\beta n^{-\frac{1}{2}} J_{i j}\right)$, so that $Z(\mathbf{J})=\sum_{\sigma} \prod_{\sigma_{i} \neq \sigma_{j}} X_{i j}$
- Fix $N \in \mathbb{Z}$ and let $X_{i j}^{[N]}=2^{-N}\left\lfloor 2^{N} X_{i j}\right\rfloor \in \mathbb{Q}$. Let

$$
Z\left(\mathbf{X}^{[N]}\right)=\sum_{\sigma} \prod_{\sigma_{i} \neq \sigma_{j}} X_{i j}^{[N]}
$$

Finite precision version of the problem

The problem is not algorithmically sound since the input $J_{i j}$ is irrational (unless Blum-Shub-Smale model of computation is used).
Finite precision version:

- Let $X_{i j}=\exp \left(\beta n^{-\frac{1}{2}} J_{i j}\right)$, so that $Z(\mathbf{J})=\sum_{\sigma} \prod_{\sigma_{i} \neq \sigma_{j}} X_{i j}$
- Fix $N \in \mathbb{Z}$ and let $X_{i j}^{[N]}=2^{-N}\left\lfloor 2^{N} X_{i j}\right\rfloor \in \mathbb{Q}$. Let

$$
Z\left(\mathbf{X}^{[N]}\right)=\sum_{\sigma} \prod_{\sigma_{i} \neq \sigma_{j}} X_{i j}^{[N]}
$$

Note: $A_{i j}=2^{N} X_{i j}^{[N]}=\left\lfloor 2^{N} X_{i j}\right\rfloor$ are integers. Let $I(\sigma)$ be the cardinality of the set $\left\{i<j: \sigma_{i} \neq \sigma_{j}\right\}$. Then

$$
\begin{align*}
Z(\mathbf{A}) & \triangleq \sum_{\sigma} 2^{N \frac{n(n-1)}{2}-N I(\sigma)} \prod_{i<j: \sigma_{i} \neq \sigma_{j}} A_{i j} \tag{1}\\
& =2^{N \frac{n(n-1)}{2}} Z\left(\mathbf{X}^{[N]}\right)
\end{align*}
$$

Finite precision version of the problem

Finite precision version of the problem

Goal: Compute

$$
Z(\mathbf{A})=\sum_{\sigma} 2^{N \frac{n(n-1)}{2}-N /(\sigma)} \prod_{\sigma_{i} \neq \sigma_{j}} A_{i j}
$$

exactly.

Main result

Main result

Theorem

Suppose the precision value N satisfies $18 \log n \leq N \leq n^{\alpha}$, for any constant $\alpha>0$. Namely the number of bits in the precision is at least logarithmic and at most polynomial in n. If there exists a polynomial in n time algorithm \mathcal{A} which on input \mathbf{A} produces a value $Z_{\mathcal{A}}(\mathbf{A})$ satisfying

$$
\mathbb{P}\left(Z_{\mathcal{A}}(\mathbf{A})=Z(\mathbf{A})\right) \geq 1-\frac{1}{3 n^{2}}
$$

for all sufficiently large n, then $P=\# P$.

Main result

Theorem

Suppose the precision value N satisfies $18 \log n \leq N \leq n^{\alpha}$, for any constant $\alpha>0$. Namely the number of bits in the precision is at least logarithmic and at most polynomial in n. If there exists a polynomial in n time algorithm \mathcal{A} which on input \mathbf{A} produces a value $Z_{\mathcal{A}}(\mathbf{A})$ satisfying

$$
\mathbb{P}\left(Z_{\mathcal{A}}(\mathbf{A})=Z(\mathbf{A})\right) \geq 1-\frac{1}{3 n^{2}}
$$

for all sufficiently large n, then $P=\# P$.

Comments:

Main result

Theorem

Suppose the precision value N satisfies $18 \log n \leq N \leq n^{\alpha}$, for any constant $\alpha>0$. Namely the number of bits in the precision is at least logarithmic and at most polynomial in n. If there exists a polynomial in n time algorithm \mathcal{A} which on input \mathbf{A} produces a value $Z_{\mathcal{A}}(\mathbf{A})$ satisfying

$$
\mathbb{P}\left(Z_{\mathcal{A}}(\mathbf{A})=Z(\mathbf{A})\right) \geq 1-\frac{1}{3 n^{2}}
$$

for all sufficiently large n, then $P=\# P$.

Comments:

- The proof uses Lipton's [91] mod prime computation in \mathbb{Z}_{p} and hardness of computing the permanent of a matrix on average.

Main result

Theorem

Suppose the precision value N satisfies $18 \log n \leq N \leq n^{\alpha}$, for any constant $\alpha>0$. Namely the number of bits in the precision is at least logarithmic and at most polynomial in n. If there exists a polynomial in n time algorithm \mathcal{A} which on input \mathbf{A} produces a value $Z_{\mathcal{A}}(\mathbf{A})$ satisfying

$$
\mathbb{P}\left(Z_{\mathcal{A}}(\mathbf{A})=Z(\mathbf{A})\right) \geq 1-\frac{1}{3 n^{2}}
$$

for all sufficiently large n, then $P=\# P$.

Comments:

- The proof uses Lipton's [91] mod prime computation in \mathbb{Z}_{p} and hardness of computing the permanent of a matrix on average.
- Some strengthening of $1-n^{O(1)}$ assumption was obtained later by Feige \& Lund [92] using the communication complexity theory.

Proof sketch. Step I

Proof sketch. Step I

- Fix a prime $n^{2}<p_{n}=O\left(n^{2} \log n\right)$ (possible using the density of primes property). Compute $Z(\mathbf{A}) \bmod \left(p_{n}\right)$ instead.

Proof sketch. Step I

- Fix a prime $n^{2}<p_{n}=O\left(n^{2} \log n\right)$ (possible using the density of primes property). Compute $Z(\mathbf{A}) \bmod \left(p_{n}\right)$ instead.
- Suppose $\mathbf{U}=\left(U_{i j}, i<j\right)$ are generated uniformly at random from [0, $\left.p_{n}-1\right]$.

Proof sketch. Step I

- Fix a prime $n^{2}<p_{n}=O\left(n^{2} \log n\right)$ (possible using the density of primes property). Compute $Z(\mathbf{A}) \bmod \left(p_{n}\right)$ instead.
- Suppose $\mathbf{U}=\left(U_{i j}, i<j\right)$ are generated uniformly at random from [0, $\left.p_{n}-1\right]$.
- Claim: computing $Z(\mathbf{U})$ is hard on average by worst-case to average case reduction.

Proof sketch. Step I

- Fix a prime $n^{2}<p_{n}=O\left(n^{2} \log n\right)$ (possible using the density of primes property). Compute $Z(\mathbf{A}) \bmod \left(p_{n}\right)$ instead.
- Suppose $\mathbf{U}=\left(U_{i j}, i<j\right)$ are generated uniformly at random from [0, $\left.p_{n}-1\right]$.
- Claim: computing $Z(\mathbf{U})$ is hard on average by worst-case to average case reduction.
- Key observation (Lipton's trick): for every deterministic $a_{i j}$, $a_{i j}+t U_{i j} \bmod \left(p_{n}\right)$ is u.a.r. in $\left[0, p_{n}-1\right]$ for all $1 \leq t \leq p_{n}-1$.

Proof sketch. Step I

- Fix a prime $n^{2}<p_{n}=O\left(n^{2} \log n\right)$ (possible using the density of primes property). Compute $Z(\mathbf{A}) \bmod \left(p_{n}\right)$ instead.
- Suppose $\mathbf{U}=\left(U_{i j}, i<j\right)$ are generated uniformly at random from [$\left.0, p_{n}-1\right]$.
- Claim: computing $Z(\mathbf{U})$ is hard on average by worst-case to average case reduction.
- Key observation (Lipton's trick): for every deterministic $a_{i j}$, $a_{i j}+t U_{i j} \bmod \left(p_{n}\right)$ is u.a.r. in $\left[0, p_{n}-1\right]$ for all $1 \leq t \leq p_{n}-1$.

$$
P(t) \triangleq Z(\mathbf{a}+t \mathbf{U})=\sum_{\sigma} 2^{N \frac{n(n-1)}{2}-N /(\sigma)} \prod_{\sigma_{i} \neq \sigma_{j}}\left(a_{i j}+t U_{i j}\right)
$$

is a polynomial in t with degree $M=\max _{i} i(n-i)<n^{2}<p_{n}$.

Proof sketch. Step I

Proof sketch. Step I

- If we can compute $Z(\mathbf{A})$ with probability at at least $1-O\left(n^{-2}\right)$ we can compute $P(t)$ for all $t=1,2, \ldots, M+1$ with probability at least 1/2.

Proof sketch. Step I

- If we can compute $Z(\mathbf{A})$ with probability at at least $1-O\left(n^{-2}\right)$ we can compute $P(t)$ for all $t=1,2, \ldots, M+1$ with probability at least 1/2.
- Inverting, we can compute $P(0)=Z(\mathbf{a})$, which is \#P-hard.

Proof sketch. Step II

Proof sketch. Step II

In the regime $18 \log n \leq N \leq n^{\alpha}$, the distribution of $A_{i j}=\left\lfloor 2^{N} \exp \left(\beta n^{-\frac{1}{2}} J_{i j}\right)\right\rfloor$ in $\left[0, p_{n}-1\right]$ is $O\left(n^{-3}\right)$ close to uniform.

Some comments

Some comments

- Some immediate generalizations

Some comments

- Some immediate generalizations
- 2-spin assumption of the SK is non-essential. The method extends to the p-spin models.

Some comments

- Some immediate generalizations
- 2-spin assumption of the SK is non-essential. The method extends to the p-spin models.
- Gaussianity of the couplings is non-essential. Well behaved distributions with sufficiently smooth density should be enough.

Some comments

- Some immediate generalizations
- 2-spin assumption of the SK is non-essential. The method extends to the p-spin models.
- Gaussianity of the couplings is non-essential. Well behaved distributions with sufficiently smooth density should be enough.
- $n^{\frac{1}{2}}$ in $\exp \left(\beta n^{-\frac{1}{2}}\right)$ is non-essential. Any constant power of n is ok.

Some comments

- Some immediate generalizations
- 2-spin assumption of the SK is non-essential. The method extends to the p-spin models.
- Gaussianity of the couplings is non-essential. Well behaved distributions with sufficiently smooth density should be enough.
- $n^{\frac{1}{2}}$ in $\exp \left(\beta n^{-\frac{1}{2}}\right)$ is non-essential. Any constant power of n is ok.
- Limitations

Some comments

- Some immediate generalizations
- 2-spin assumption of the SK is non-essential. The method extends to the p-spin models.
- Gaussianity of the couplings is non-essential. Well behaved distributions with sufficiently smooth density should be enough.
- $n^{\frac{1}{2}}$ in $\exp \left(\beta n^{-\frac{1}{2}}\right)$ is non-essential. Any constant power of n is ok.
- Limitations
- The trick of $\bmod \left(p_{n}\right)$ computation is too "fragile" to survive the approximate computation. It seems this method is hopeless to establish the approximation hardness of computing $Z(\mathbf{J})$.

Some comments

- Some immediate generalizations
- 2-spin assumption of the SK is non-essential. The method extends to the p-spin models.
- Gaussianity of the couplings is non-essential. Well behaved distributions with sufficiently smooth density should be enough.
- $n^{\frac{1}{2}}$ in $\exp \left(\beta n^{-\frac{1}{2}}\right)$ is non-essential. Any constant power of n is ok.
- Limitations
- The trick of $\bmod \left(p_{n}\right)$ computation is too "fragile" to survive the approximate computation. It seems this method is hopeless to establish the approximation hardness of computing $Z(\mathbf{J})$.
- The problem of computing the ground state $\min _{\sigma} J_{i j} \sigma_{i} \sigma_{j}$ is "non-algebraic" so the trick of $\bmod \left(p_{n}\right)$ computation again appears useless.

Part II

Explicit construction of RIP matrices

Explicit construction of RIP matrices

- A matrix $\Phi \in \mathbb{R}^{n \times p}$ satisfies the (δ, s) Restricted Isometry Property (RIP) for $\delta \in(0,1), s \leq p$ if for every s-sparse vector $\beta\left(\|\beta\|_{0} \leq s\right)$

$$
\left|\|\Phi \beta\|_{2}^{2}-\|\beta\|_{2}\right| \leq \delta\|\beta\|_{2}^{2} .
$$

Explicit construction of RIP matrices

- A matrix $\Phi \in \mathbb{R}^{n \times p}$ satisfies the (δ, s) Restricted Isometry Property (RIP) for $\delta \in(0,1), s \leq p$ if for every s-sparse vector $\beta\left(\|\beta\|_{0} \leq s\right)$

$$
\left|\|\Phi \beta\|_{2}^{2}-\|\beta\|_{2}\right| \leq \delta\|\beta\|_{2}^{2}
$$

- Importance: compressive sensing: if Φ is $2 s$-RIP with $\delta<2 / 3$, then every s-sparse β^{*} is the unique solution of

$$
\begin{aligned}
& \min \|\beta\|_{1} \\
& \text { Subject to : } \Phi \beta=\Phi \beta^{*},
\end{aligned}
$$

and thus can be uniquely recovered by solving this linear programming problem.

Random matrices are RIP

Random matrices are RIP

- If entries of Φ are i.i.d. zero mean sub-Gaussian with variance $1 / n$, then Φ is RIP w.h.p. provided

$$
n=\Omega(s \log (p / s))
$$

Random matrices are RIP

- If entries of Φ are i.i.d. zero mean sub-Gaussian with variance $1 / n$, then Φ is RIP w.h.p. provided

$$
n=\Omega(s \log (p / s))
$$

- For example, if $s=\log ^{\alpha} p$, then $n=\Omega\left(\log ^{\alpha+1} p\right)$ suffices.

Random matrices are RIP

- If entries of Φ are i.i.d. zero mean sub-Gaussian with variance $1 / n$, then Φ is RIP w.h.p. provided

$$
n=\Omega(s \log (p / s))
$$

- For example, if $s=\log ^{\alpha} p$, then $n=\Omega\left(\log ^{\alpha+1} p\right)$ suffices.
- Thus one obtains a simple randomized algorithm for constructing RIP matrices.

Random matrices are RIP

- If entries of Φ are i.i.d. zero mean sub-Gaussian with variance $1 / n$, then Φ is RIP w.h.p. provided

$$
n=\Omega(s \log (p / s))
$$

- For example, if $s=\log ^{\alpha} p$, then $n=\Omega\left(\log ^{\alpha+1} p\right)$ suffices.
- Thus one obtains a simple randomized algorithm for constructing RIP matrices.
- ... But certifying RIP is hard in the worst-case Bandeira, Dobriban, Mixon \& Sawin [13] and on average Koiran \& Zouzias [14].

Random matrices are RIP

- If entries of Φ are i.i.d. zero mean sub-Gaussian with variance $1 / n$, then Φ is RIP w.h.p. provided

$$
n=\Omega(s \log (p / s))
$$

- For example, if $s=\log ^{\alpha} p$, then $n=\Omega\left(\log ^{\alpha+1} p\right)$ suffices.
- Thus one obtains a simple randomized algorithm for constructing RIP matrices.
- ... But certifying RIP is hard in the worst-case Bandeira, Dobriban, Mixon \& Sawin [13] and on average Koiran \& Zouzias [14].
- Challenge: explicit (deterministic) construction.

Square Root bottleneck for explicit constructions

Square Root bottleneck for explicit constructions

- Many explicit constructions were known but all were hitting the barrier $s=O(\sqrt{n})$. Bandeira, Fickus, Mixon \& Wong [13]

Square Root bottleneck for explicit constructions

- Many explicit constructions were known but all were hitting the barrier $s=O(\sqrt{n})$. Bandeira, Fickus, Mixon \& Wong [13]
- Beating the "Square Root" barrier became a major challenge, popularized in Terry Tao's blog in [07], and Joel Moreira's blog in [13].

Square Root bottleneck for explicit constructions

- Many explicit constructions were known but all were hitting the barrier $s=O(\sqrt{n})$. Bandeira, Fickus, Mixon \& Wong [13]
- Beating the "Square Root" barrier became a major challenge, popularized in Terry Tao's blog in [07], and Joel Moreira's blog in [13].
- Breakthrough: Bourgain, Dilworth, Ford, Konyagin \& Kutzarova [11]. $n=s^{\frac{1}{2}+\epsilon}$ for small constant ϵ in the regime $n=p^{O(1)}$.

Square Root bottleneck for explicit constructions

- Many explicit constructions were known but all were hitting the barrier $s=O(\sqrt{n})$. Bandeira, Fickus, Mixon \& Wong [13]
- Beating the "Square Root" barrier became a major challenge, popularized in Terry Tao's blog in [07], and Joel Moreira's blog in [13].
- Breakthrough: Bourgain, Dilworth, Ford, Konyagin \& Kutzarova [11]. $n=s^{\frac{1}{2}+\epsilon}$ for small constant ϵ in the regime $n=p^{O(1)}$.
- No improvements since then.

Explicit construction of Ramsey graphs

Explicit construction of Ramsey graphs

- Given m, a complete graph on p nodes with edges colored by $1, \ldots, q$ is called $R(m ; q)$-Ramsey if the largest monochromatic clique has size at most m.

Explicit construction of Ramsey graphs

- Given m, a complete graph on p nodes with edges colored by $1, \ldots, q$ is called $R(m ; q)$-Ramsey if the largest monochromatic clique has size at most m.
- Random q-coloring of a p-node complete graph gives $m=O(\log p)$, Erdös, [1947].

Explicit construction of Ramsey graphs

- Given m, a complete graph on p nodes with edges colored by $1, \ldots, q$ is called $R(m ; q)$-Ramsey if the largest monochromatic clique has size at most m.
- Random q-coloring of a p-node complete graph gives $m=O(\log p)$, Erdös, [1947].
- Challenge: explicit construction of Ramsey graphs. Construct explicitly a graph on p nodes with $m=O(\log p)$. Applications in cryptography.

Explicit construction of Ramsey graphs

- Given m, a complete graph on p nodes with edges colored by $1, \ldots, q$ is called $R(m ; q)$-Ramsey if the largest monochromatic clique has size at most m.
- Random q-coloring of a p-node complete graph gives $m=O(\log p)$, Erdös, [1947].
- Challenge: explicit construction of Ramsey graphs. Construct explicitly a graph on p nodes with $m=O(\log p)$. Applications in cryptography.
- Huge literature and gradual improvements from $p^{O(1)}$, to

$$
(\log p)^{\log \log \log O^{O(1)}} p, \quad q=2
$$

Cohen [17]. Survey by Conlon, Fox \& Sudakov [15]. There are results for general q, but weaker than the above.

Constructing RIP matrices is Ramsey-hard

Constructing RIP matrices is Ramsey-hard

Theorem

Given a matrix $\Phi \in \mathbb{R}^{n \times p}$, suppose it is RIP with $s \geq 2 \sqrt{n}+1$ and $s=O(\log p)$. Then one can construct a $R(m ; 3)$ graph with $m=O\left(\log ^{2} p\right)$.

Constructing RIP matrices is Ramsey-hard

Theorem

Given a matrix $\Phi \in \mathbb{R}^{n \times p}$, suppose it is RIP with $s \geq 2 \sqrt{n}+1$ and $s=O(\log p)$. Then one can construct a $R(m ; 3)$ graph with $m=O\left(\log ^{2} p\right)$.

Proof

Constructing RIP matrices is Ramsey-hard

Theorem

Given a matrix $\Phi \in \mathbb{R}^{n \times p}$, suppose it is RIP with $s \geq 2 \sqrt{n}+1$ and $s=O(\log p)$. Then one can construct a $R(m ; 3)$ graph with $m=O\left(\log ^{2} p\right)$.

Proof
Construction. Given $\Phi=\left[u_{1}, \ldots, u_{p}\right]$, color (i, j)

Constructing RIP matrices is Ramsey-hard

Theorem

Given a matrix $\Phi \in \mathbb{R}^{n \times p}$, suppose it is RIP with $s \geq 2 \sqrt{n}+1$ and $s=O(\log p)$. Then one can construct a $R(m ; 3)$ graph with $m=O\left(\log ^{2} p\right)$.

Proof
Construction. Given $\Phi=\left[u_{1}, \ldots, u_{p}\right]$, color (i, j)

- red if $\left|\left\langle u_{i}, u_{j}\right\rangle\right| \leq \frac{1}{2 \sqrt{n}} ;$

Constructing RIP matrices is Ramsey-hard

Theorem

Given a matrix $\Phi \in \mathbb{R}^{n \times p}$, suppose it is RIP with $s \geq 2 \sqrt{n}+1$ and $s=O(\log p)$. Then one can construct a $R(m ; 3)$ graph with $m=O\left(\log ^{2} p\right)$.

Proof
Construction. Given $\Phi=\left[u_{1}, \ldots, u_{p}\right]$, color (i, j)

- red if $\left|\left\langle u_{i}, u_{j}\right\rangle\right| \leq \frac{1}{2 \sqrt{n}}$;
- blue if $\left\langle u_{i}, u_{j}\right\rangle>\frac{1}{2 \sqrt{n}}$

Constructing RIP matrices is Ramsey-hard

Theorem

Given a matrix $\Phi \in \mathbb{R}^{n \times p}$, suppose it is RIP with $s \geq 2 \sqrt{n}+1$ and $s=O(\log p)$. Then one can construct a $R(m ; 3)$ graph with $m=O\left(\log ^{2} p\right)$.

Proof
Construction. Given $\Phi=\left[u_{1}, \ldots, u_{p}\right]$, color (i, j)

- red if $\left|\left\langle u_{i}, u_{j}\right\rangle\right| \leq \frac{1}{2 \sqrt{n}}$;
- blue if $\left\langle u_{i}, u_{j}\right\rangle>\frac{1}{2 \sqrt{n}}$
- green if $\left\langle u_{i}, u_{j}\right\rangle<-\frac{1}{2 \sqrt{n}}$

Proof

Proof

- Claim: If Φ is s-RIP, then the largest monochromatic clique in this graph is at most $2 n$.

Proof

- Claim: If Φ is s-RIP, then the largest monochromatic clique in this graph is at most $2 n$.
- Assume claim holds. Take RIP matrix with $s=O(\log p)$.

Proof

- Claim: If Φ is s-RIP, then the largest monochromatic clique in this graph is at most $2 n$.
- Assume claim holds. Take RIP matrix with $s=O(\log p)$.
- From $s \geq 2 \sqrt{n}+1$, the Ramsey value of this graph is $n \leq((s-1) / 2)^{2}=O\left(\log ^{2} p\right)$.

Proof of claim

Proof of claim

Proposition

For any set of unit norm vectors $u_{1}, \ldots, u_{2 n} \in \mathbb{R}^{n}$, $\max _{1 \leq i \neq j \leq 2 n}\left|\left\langle u_{i}, u_{j}\right\rangle\right|>\frac{1}{2 \sqrt{n}}$.

Proof of claim

Proposition

For any set of unit norm vectors $u_{1}, \ldots, u_{2 n} \in \mathbb{R}^{n}$, $\max _{1 \leq i \neq j \leq 2 n}\left|\left\langle u_{i}, u_{j}\right\rangle\right|>\frac{1}{2 \sqrt{n}}$.

Special case of Kabatyanski \& Levenstein [78] bound, also discussed in Terry Tao's (different) blog in [13]

Proof (from this blog).

Consider the symmetric matrix $U=\left(\left\langle u_{i}, u_{j}\right\rangle, 1 \leq i, j \leq 2 n\right) \in \mathbb{R}^{2 n \times 2 n}$ of inner products. This is a rank- n matrix in $\mathbb{R}^{2 n \times 2 n}$ and as such $\bar{U} \triangleq U-I_{2 n \times 2 n}$ has an eigenvalue -1 with multiplicity at least n. Thus the trace of \bar{U}^{2} which is $\sum_{1 \leq i \neq j \leq 2 n}\left(\left\langle u_{i}, u_{j}\right\rangle\right)^{2}$ is at least n, implying $\max _{i \neq j}\left|\left\langle u_{i}, u_{j}\right\rangle\right| \geq \frac{1}{\sqrt{2(2 n-1)}}$.

Proof of claim

Proof of claim

- Thus the largest red clique in our graph is at most $2 n-1$.

Proof of claim

- Thus the largest red clique in our graph is at most $2 n-1$.
- Suppose $C \subset[p]$ is a blue clique with $|C|=2 \sqrt{n}+1$.

Proof of claim

- Thus the largest red clique in our graph is at most $2 n-1$.
- Suppose $C \subset[p]$ is a blue clique with $|C|=2 \sqrt{n}+1$.
- Define $x \in \mathbb{R}^{p}$ by $x_{i}=1 / \sqrt{|C|}, i \in C$ and $x_{i}=0$ otherwise. This vector is $|C| \leq s$-sparse.

Proof of claim

- Thus the largest red clique in our graph is at most $2 n-1$.
- Suppose $C \subset[p]$ is a blue clique with $|C|=2 \sqrt{n}+1$.
- Define $x \in \mathbb{R}^{p}$ by $x_{i}=1 / \sqrt{|C|}, i \in C$ and $x_{i}=0$ otherwise. This vector is $|C| \leq s$-sparse.
- But

$$
\|\Phi x\|_{2}^{2}-\|x\|_{2}^{2}=\frac{1}{|C|} \sum_{i \neq j \in C}\left\langle u_{i}, u_{j}\right\rangle \geq \frac{|C|-1}{2 \sqrt{n}}=1
$$

which contradicts RIP.

Proof of claim

- Thus the largest red clique in our graph is at most $2 n-1$.
- Suppose $C \subset[p]$ is a blue clique with $|C|=2 \sqrt{n}+1$.
- Define $x \in \mathbb{R}^{p}$ by $x_{i}=1 / \sqrt{|C|}, i \in C$ and $x_{i}=0$ otherwise. This vector is $|C| \leq s$-sparse.
- But

$$
\|\Phi x\|_{2}^{2}-\|x\|_{2}^{2}=\frac{1}{|C|} \sum_{i \neq j \in C}\left\langle u_{i}, u_{j}\right\rangle \geq \frac{|C|-1}{2 \sqrt{n}}=1
$$

which contradicts RIP.

- Same proof for green cliques.

Thus the largest monochromatic clique in this graph is $\max (2 n, 2 \sqrt{n})=2 n$.

Comments

Comments

- If Φ consists of non-negative entries (as it is in many constructions), then our construction implies 2-Ramsey graph.

Comments

- If Φ consists of non-negative entries (as it is in many constructions), then our construction implies 2-Ramsey graph.
- The result does not contradict Bourgain et al [11] construction, which requires $n=p^{O(1)}$.

Comments

- If Φ consists of non-negative entries (as it is in many constructions), then our construction implies 2-Ramsey graph.
- The result does not contradict Bourgain et al [11] construction, which requires $n=p^{O(1)}$.
- Question: Can one use Ramsey graph to construct RIP matrices?

Thank you

