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Spherical spin glasses models

• Given a “mixture” ν(x) =
∑∞

p=1 γ
2
px

p, define

HN : SN → R, ∀N ≥ 1

HN(x) =
∑
p

γp

N∑
i1,...,ip=1

Ji1,...,ipxi1xi2 · · · xip , x ∈ SN ,

where Ji1,...,ip ∼ Normal(0,N) i.i.d.

• HN(x) is the Gaussian process that satisfies

EHN(x) = 0, EHN(x)HN(y) = Nν(〈x, y〉).

• Models with ‘Ising spins’: replace SN with ΣN = {±1}N (and

normalize).
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The free energy and Parisi’s formula

• Free energy (at inverse-temperature β > 0):

FN,β =
1

N
logZN,β =

1

N
log

∫
SN

eβHN(x)dx.

Parisi’s formula (Parisi ‘79 [cube], Crisanti-Sommers ‘92 [sphere])

lim
N→∞

EFN,β = min
µ∈M1([0,1])

Pν,β(µ).

• Upper bound proved by Guerra ‘03, lower bound by Talagrand ‘06

for even models (γp = 0 for odd p);

following Panchenko’s ‘13 proof of ultrametricity, the formula was

extended by Panchenko ‘14 [cube] and Chen ‘13 [sphere] to general

mixed models.
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The free energy and Parisi’s formula

• Gibbs measure (at inverse temperature β > 0):

GN(A) = GN,β(A) =
1

ZN,β

∫
A
eβHN(x)dx, A ⊂ SN .

• For “generic” models,1 the overlap distribution converges

µP(·) = lim
N→∞

EG⊗2N

(
〈x1, x2〉 ∈ ·

)
,

and the limit is the minimizer in Parisi’s formula

lim
N→∞

EFN,β = Pν,β(µP) = min
µ∈M1([0,1])

Pν,β(µ).

1

∑
p odd p

−11{γp 6= 0} =
∑

p even p
−11{γp 6= 0} =∞
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TAP approach I: the TAP equations

• Thouless-Anderson-Palmer ‘77 consider, for the SK model

(ν(x) = x2, Ising spins), the local magnetizations m = (mi )i≤N ,

m := 〈x〉 =

∫
xdGN,β,

and derived self-consistency equations of the form

mi ≈ tanh
( 2β√

N

∑
j

Jijmj + h − β2(1− q2)mi

)
, i = 1, . . . ,N.

• This was proved rigorously:

- Talagrand ‘03 and Chatterjee ‘10 – high-temp. SK,

- Auffinger-Jagannath ‘16 – generic Ising models, at any temp.

restricted to pure-states.

- Bolthausen ‘14 proved that in the high-temp. SK model, the unique

solution can be obtained as the limit of certain iterative equations.
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TAP approach II: the TAP free energy

• TAP ‘77 also associate to the magnetization a free energy of the from

FTAP(m) =
β

N
HN(m) + f (m),

which under a certain convergence condition on ‖m‖ should give

FN,β ≈ FTAP(m).

• They also note that for any m,

∂

∂m
FTAP(m) = 0 ⇐⇒ m = solution of TAP eqns.

• At low temp., there are exp. many solutions (‘complexity’> 0).

For spherical pure p-spin (ν(x) = xp) this is rigorous:

Auffinger-Ben Arous-Cerny ‘12, Auffinger-Ben Arous ‘13 – annealed,

1st moment; S. ‘17, Ben Arous-S-Zeitouni ‘18 – quenched, 2nd mom.
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TAP approach II: the TAP free energy

The general idea in physics about the low temp phase:

think of FTAP(m) as a TAP-free-energy on the space of magnetizations;

crt. pts. of FTAP(m) ! TAP solutions ! ‘TAP states’

weight of state mα ! eNFTAP(m
α)

ZN,β = eNFN,β ≈
∑
α≤ecN

eNFTAP(m
α)

Focus of the talk: introduce and analyze a free energy landscape

{x : ‖x‖ < 1} → R,

x 7→ Band(x) ⊂ SN 7→ F (x) =
1

N
log

∫
Band(x)

eβHN(y)dy.

(In fact, we’ll need to define another free energy

Band(x) 7→ F̃ (x) to get the full picture...)
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TAP formula for the free energy



TAP formula

Take q ∈ (0, 1) and some ‖x‖ =
√
q.

Define

Band(x) =
{

y ∈ SN : |〈y−x, x〉| < δN
}
.

1
√
q

The restriction of HN(·) to Band(x) is roughly a spherical model of

dimension N − 1, let νq be the corresponding mixture, after we

remove the 1-spin component.

Notation: E?(q) := lim
N→∞

1

N
max

x∈√q·SN
HN(x).
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TAP formula

Theorem (S. ‘18)

For any spherical model and β > 0:

1. lim
N→∞

EFN,β = max
q∈[0,1]

(
βE?(q) +

1

2
log(1− q) + lim

N→∞
EFN,β(νq)

)
.

2. Any q ∈ Supp(µP) attains the max.

3. For some explicit Q ⊂ [0, 1]:

q ∈ Q ⇐⇒ lim
N→∞

EFN,β(νq) =
1

2
β2
(
ν(1)− ν(q)− (1− q)ν ′(q)

)
.

4. q? := maxSupp(µP) ∈ Q

=⇒ can maximize over Q in (1) and substitute (3).
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TAP formula

Corollary (S. ‘18)

For any spherical model and β > 0:

lim
N→∞

EFN,β

= max
q∈Q

[
βE?(q) +

1

2
log(1− q)+

1

2
β2
(
ν(1)− ν(q)− (1− q)ν ′(q)

)]
.

9



TAP formula

• S. ‘17: for pure p-spin with p ≥ 3 (ν(x) = xp) and β � 1, the

same formula (as the last corollary) was proved with q = q?.

• Ben Arous-S.-Zeitouni ‘18: same as above, for mixed models

‘close’ to pure.

• Chen-Panchenko ‘17: work with general mixed models, Ising

spins, get a similar, but more complicated (due to

inhomogeneity), formula with for q ≥ q? or q = q?.

• Belius-Kistler ‘18: spherical pure 2-spin (ν(x) = x2), prove the

same result as the corollary.
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Free energy landscapes I

Fix q ∈ (0, 1) and some δN = o(1).

For x ∈ √q · SN =
{

x : ‖x‖ =
√
q
}
,

Band(x) =
{

y ∈ SN : |〈y−x, x〉| < δN
}
.

1
√
q

We introduce a free energy landscape on
√
q · SN :

FN,β(x) =
1

N
log

∫
Band(x)

eβHN(y)dy.
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Free energy landscapes I

• Problem: the region where FN,β(x) is maximal is too large...

• We’ll require more than a heavy band, and penalize otherwise.

• The additional requirement will be based on:

Lemma: q ∈ Supp(µP) =⇒ w.h.p. there exists a heavy band

with
1

N
logG⊗kN,β

{
xi · xj ≈ q, ∀i 6= j

∣∣Band(x)
}
≮ 0.

Proof. [ kindly communicated to me by D. Panchenko ]

If generic, by ultrametricity, can sample many points with

xi · xj ≈ q; their average is the center x of a good band.

Otherwise, approximate the model by a sequence of generic

models and notice that this property survives the limit, due to

continuity properties of µP in ν.
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Free energy landscapes II

FN,β(x) =
1

N
log

∫
Band(x)

eβHN(y)dy

=
1

kN
log

∫
(Band(x))k

eβ
∑

i≤k HN(yi )dy1 · · · dyk

≥ 1

kN
log

∫
Band(x,k,ρ)

eβ
∑

i≤k HN(yi )dy1 · · · dyk

=: FN,β(x, k, ρ)

= FN,β(x) +
1

N
logG⊗kN,β

{
Band(x, k , ρ)

∣∣Band(x)
}

Band(x, k , ρ) :=
{

(y1, . . . , yk) ∈ Band(x)k :

∀i 6= j , |(yi − x) · (yj − x)| < ρ
}

Fix some sequences kN →∞, ρN → 0 slowly.

FN,β(x, kN , ρN) is the second free energy landscape we consider.
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}

Fix some sequences kN →∞, ρN → 0 slowly.

FN,β(x, kN , ρN) is the second free energy landscape we consider. 13



Free energy landscapes

Define the centered versions by replacing HN(y) by HN(y)−HN(x):

F c
N,β(x) =

1

N
log

∫
Band(x)

eβ(HN(y)−HN(x))dy,

and similarly define F c
N,β(x, kN , ρN),

so that

FN,β(x) =
β

N
HN(x) + F c

N,β(x),

FN,β(x, kN , ρN) =
β

N
HN(x) + F c

N,β(x, kN , ρN).
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Free energy landscapes

The two most important properties of the landscapes are:

Theorem (S. ‘18)

For q ∈ Supp(µP), w.p. going to 1: for all x ∈ √q · SN ,

FN,β(x, kN , ρN) ≈ FN,β(x) ≈ FN,β ⇐⇒
1

N
HN(x) ≈ E?(q).

Proposition (S. ‘18)

Uniform concentration of the centered free energy:

sup
x∈√q·SN

∣∣F c
N,β(x, kN , ρN)− EF c

N,β(x, kN , ρN)
∣∣→ 0 a.s.
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Free energy landscapes

β
NHN(x)

FN,β

√
q · SN

β

N
HN(x) + EF c

N,β(x, kN , ρN)

≈

FN,β(x, kN , ρN)

≤

FN,β(x) ≤ FN,β

FN,β(x, kN , ρN) ≈ FN,β(x) ≈ FN,β ⇐⇒
1

N
HN(x) ≈ E?(q).

? Essentially, N−1∇HN(x) ≈ 0 ⇐⇒ FN,β(x, kN , ρN) ≈ FN,β(x).

Recall that TAP solutions ! ∂
∂m

FTAP(m)...
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Proof – concentration

Proposition (S. ‘18)

W.p. going to 1, uniform concentration of the centered free energy:

sup
x∈√q·SN

∣∣F c
N,β(x, kN , ρN)− EF c

N,β(x, kN , ρN)
∣∣ = o(1).

Proof.

By computation, with ∇J denoting the gradient of w.r.t. the

(Normal(0,N)) Gaussian disorder coefficients Ji1,...,ip ,

‖∇JF
c
N,β(x, k, ρ)‖ ≤ C

N

√
ρ+ 1

k .

=⇒ For fixed x: probability of δ deviation < e
− CNδ2

ρ+1/k

[concentration of Lipschitz functions of Gaussian variables].

Discretize by continuity and use union bound to get uniformity.
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Proof – equality of free energies ⇐⇒ maximality

Denoting equality/inequality up to o(1) w.h.p. by ≈/.,

1)
β

N
HN(x) + EF c

N,β(x, kN , ρN) ≈ FN,β(x, kN , ρN) ≤ FN,β(x) ≤ FN,β.

Maximizing over
√
q · SN we have that =

2) βE?(q) + EF c
N,β(x, kN , ρN) . FN,β.

3) FN,β(x, kN , ρN) ≈ FN,β(x) ≈ FN,β =⇒ 1

N
HN(x) ≈ E?(q).

For q ∈ Supp(µP), ∃x0 as in 3)

=⇒ FN,β ≈ βE?(q) + EF c
N,β(x0, kN , ρN).

Thus,
1

N
HN(x) ≈ E?(q) =⇒ FN,β(x, kN , ρN) ≈ FN,β(x) ≈ FN,β.
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Talagrand’s pure states

decomposition



Pure states decomposition

• Reminder: µP denotes the minimizer in Parisi’s formula.

• And for generic models3

µP(·) = lim
N→∞

EG⊗2N

(
〈x1, x2〉 ∈ ·

)
.

• Denote

q? = maxSupp(µP) < 1.

3∑
p p

−11{γp 6= 0} =∞.
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Pure states decomposition

Theorem (Talagrand ‘10)

Assume HN(σ) is generic and µP({q?}) = α? ∈ (0, 1).

Then there exist (random) disjoint Ak = AN,k ⊂ SN , k ≥ 1, s.t.:

1.
(
GN(Ak)

)
k≥1 → PD(1− α?).

2. lim
N→∞

EG⊗2N

({
∃k : x, y ∈ Ak

}
4
{
|〈x, y〉 − q?| < εN

})
= 0.

? This decomposition can also be directly derived from the ultrametricity

property proved by Panchenko ‘13; and a similar one was derived by

Jagannath ‘17 even when α? = 0.

20
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Pure states decomposition

mk =
1

GN(Ak)

∫
Ak

xdGN(x),

Band(m) =
{

x ∈ SN : |〈x− x?, x?〉| ≤ δN
}
.

1

(easy) Lemma

Ak as in Talagrand’s decomposition.

lim
N→∞

E
∣∣‖mk‖ − √q?

∣∣ = 0,

lim
N→∞

GN,β(Ak 4 Band(mk)) = 0.
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Pure states decomposition

mk =
1

GN(Ak)

∫
Ak

xdGN(x),

Band(m) =
{

x ∈ SN : |〈x− x?, x?〉| ≤ δN
}
.

1
√
q?

Theorem (S. ‘18)

Ak as in Talagrand’s decomposition.

lim
N→∞

1

N
HN(mk) = lim

N→∞

1

N
E max

x∈√q?SN
HN(x).

21



Thank You!
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