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Spherical spin glasses models

o Given a “mixture” v(x) =32, YpxP, define

Hy:SN - R, VYN>1
nyp Z Jq ..... i Xiy Xiy =+ Xips X € SN,
i1,..ip=1
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Spherical spin glasses models

e Given a “mixture” v(x) = > 7, YpxP, define

Hy:SN - R, VYN>1
nyp Z Jq ..... i Xiy Xiy =+ Xips X € SN,
i1,..ip=1

where J;, ~ Normal(0, N) i.i.d.

..... ip

e Hpy(x) is the Gaussian process that satisfies
EHy(x) =0, EHy(x)Hn(y) = Nv({x,y)).

e Models with ‘Ising spins’: replace SN with ¥ = {£1}V (and
normalize).



The free energy and Parisi’s formula

e Free energy (at inverse-temperature 5 > 0):

1 1
FN»B = N |Og ZN,ﬁ = N |Og /SN GBHN(X)dX.



The free energy and Parisi’s formula

e Free energy (at inverse-temperature 5 > 0):

1 1
Fng = N log Zy g = N log /N ePHN () gy,
S

Parisi’s formula (Parisi ‘79 [cube], Crisanti-Sommers ‘92 [sphere])

lim EFyg= min 7P, .
NI—>C>0 N, ;LEI\/hE[O,l]) ’/B(M)

e Upper bound proved by Guerra ‘03, lower bound by Talagrand ‘06

for even models (v, = 0 for odd p);
following Panchenko’s ‘13 proof of ultrametricity, the formula was

extended by Panchenko ‘14 [cube] and Chen ‘13 [sphere] to general

mixed models.
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e Gibbs measure (at inverse temperature 5 > 0):
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The free energy and Parisi’s formula

e Gibbs measure (at inverse temperature 5 > 0):

Gn(A) = Gy g(A) = Z,\I,g ) P gy, Ac sV,

e For “generic’ models,! the overlap distribution converges
p() = lim EGE2({x1,x3) € -
wp(-) Jim EGy ((x1,x2) € -),

and the limit is the minimizer in Parisi’'s formula

lim EFy s =P, — i  5(10).
Jim EFw g Pus(ip) MGA’EE[}M])P,B(M)

lzp odd Pill{“/p #0} = Zp even pill{% #0} =0



TAP approach I: the TAP equations

e Thouless-Anderson-Palmer ‘77 consider, for the SK model
(v(x) = x?, Ising spins), the local magnetizations m = (m;)i<p,

m:= (x) = /xdGN’B,

and derived self-consistency equations of the form

25 2 2 .
m,-%tanh(—g J,'-m'—f—h—ﬁ(l—q)m,-), i=1,...,N.
VN ST



TAP approach I: the TAP equations

e Thouless-Anderson-Palmer ‘77 consider, for the SK model
(v(x) = x?, Ising spins), the local magnetizations m = (m;)i<p,

m:= (x) = /xdGNﬂ7

and derived self-consistency equations of the form
m; ~ tanh(jéZJ;jmj +h—B%(1— q2)m,->, i=1,...,N.
Y J

e This was proved rigorously:
- Talagrand ‘03 and Chatterjee ‘10 — high-temp. SK,
- Auffinger-Jagannath ‘16 — generic Ising models, at any temp.
restricted to pure-states.
- Bolthausen ‘14 proved that in the high-temp. SK model, the unique
solution can be obtained as the limit of certain iterative equations. 4
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e TAP ‘77 also associate to the magnetization a free energy of the from
_B
Frap(m) = NHN(””') + f(m),
which under a certain convergence condition on ||m|| should give

FNﬂ ~ FTAp(m).
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TAP approach Il: the TAP free energy

e TAP ‘77 also associate to the magnetization a free energy of the from

Frap(m) = & H(m) + f(m)
which under a certain convergence condition on ||m|| should give

FNﬂ ~ FTAp(m).

e They also note that for any m,

aiFTAp(m) =0 <= m = solution of TAP eqns.
m

e At low temp., there are exp. many solutions (‘complexity’> 0).
For spherical pure p-spin (v(x) = xP) this is rigorous:
Auffinger-Ben Arous-Cerny ‘12, Auffinger-Ben Arous ‘13 — annealed,
1st moment; S. ‘17, Ben Arous-S-Zeitouni ‘18 — quenched, 2nd mong



TAP approach Il: the TAP free energy

The general idea in physics about the low temp phase:
think of Frap(m) as a TAP-free-energy on the space of magnetizations;

crt. pts. of Fpap(m) «~ TAP solutions «~ ‘TAP states’

weight of state m® a~s eVfrar(m®)

{e3
Zng = eNfwo x Y~ eNFrar(m®)

aSeCN



TAP approach Il: the TAP free energy

The general idea in physics about the low temp phase:
think of Frap(m) as a TAP-free-energy on the space of magnetizations;

crt. pts. of Frap(m) «~ TAP solutions «~ ‘TAP states’
weight of state m® «w eNFrap(m®)

{e3
Zng = eNfwo x Y~ eNFrar(m®)

OCSECN

Focus of the talk: introduce and analyze a free energy landscape

{x:|x|| <1} = R,

x — Band(x) C SN F(x) = % Iog/ eBHN(y)dy_
Band(x)

(In fact, we'll need to define another free energy
Band(x) — F(x) to get the full picture...) 6



TAP formula for the free energy
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Take g € (0,1) and some ||x|| = \/q.

A
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Band(x) = {y € S : [(y—x,x)| < dn}.
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dimension N — 1, let v, be the corresponding mixture, after we
remove the 1-spin component.



TAP formula

Take g € (0,1) and some ||x|| = \/q.

e

Define

Band(x) = {y € S : [(y—x,x)| < dn}.

The restriction of Hy(+) to Band(x) is roughly a spherical model of
dimension N — 1, let v, be the corresponding mixture, after we
remove the 1-spin component.

1
Notation: E.(q) := Allin N en\}aaxSN Hp(x).
o X . 7



TAP formula
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For any spherical model and 3 > 0:
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TAP formula

Theorem (S. ‘18)

For any spherical model and 3 > 0:

1 .
1. = [ (BE*(q) + 5 log(1—q) + NlianFN.{f(VqD-

2. Any g € Supp(up) attains the max.
3. For some explicit Q C [0, 1]:

1
ge QR < /\/llnscEFN"-j(Vq) = 5;32(1/(1) —v(q) — (1 - q)z/(q))A
4. g, = maxSupp(up) € Q

= can maximize over Q in (1) and substitute (3).




TAP formula

Corollary (S. ‘18)

For any spherical model and 3 > 0:
lim EF,
Nl—r>nc>o N.A

— max [BE.(4) + 5 log(L — @)+ 52(#(1) (@) - (1 - /()]




TAP formula

e S. ‘17: for pure p-spin with p > 3 (v(x) = xP) and § > 1, the
same formula (as the last corollary) was proved with g = g,.
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TAP formula

e S. ‘17: for pure p-spin with p > 3 (v(x) = xP) and § > 1, the
same formula (as the last corollary) was proved with g = g,.
e Ben Arous-S.-Zeitouni ‘18: same as above, for mixed models

‘close’ to pure.

e Chen-Panchenko ‘17: work with general mixed models, Ising
spins, get a similar, but more complicated (due to
inhomogeneity), formula with for g > ¢, or ¢ = q..

e Belius-Kistler ‘18: spherical pure 2-spin (v(x) = x?), prove the
same result as the corollary.

10



Free energy landscapes




Free energy landscapes I

Fix g € (0,1) and some dy = o(1).
Forx € /q-SN = {x: |x| = \/q}, "

Band(x) = {y € SV : [(y—x,x)| < oy}

11



Free energy landscapes I

Fix g € (0,1) and some dy = o(1).

A

For x € \/5LN = {x: x|l = \/6}~.

)

Band(x) = {y € SV : [(y—x,x)| < oy}

We introduce a free energy landscape on /g - SN

1
Fn(x) = N Iog/B § )eﬁH"’(y)dy.

11



Free energy landscapes I

e Problem: the region where Fp g(x) is maximal is too large...
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e The additional requirement will be based on:

Lemma: ¢ € Supp(up) = w.h.p. there exists a heavy band
with
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Free energy landscapes I

e Problem: the region where Fp g(x) is maximal is too large...
e We'll require more than a heavy band, and penalize otherwise.

e The additional requirement will be based on:
Lemma: ¢ € Supp(up) = w.h.p. there exists a heavy band
with

IblogGNﬁ{x, Xj & q, V/#J}Band }7(0

Proof. [kindly communicated to me by D. Panchenko |
If generic, by ultrametricity, can sample many points with
X - Xj ~ q; their average is the center x of a good band.

Otherwise, approximate the model by a sequence of generic
models and notice that this property survives the limit, due to

continuity properties of up in v. L] 1



Free energy landscapes II

Fivs(x) = 1og | &y

Iog/ P ik HN(Y:‘)dyl - dyg
(Band(x))k

=~

[~

13



Free energy landscapes II

1
Fng(x) = N Iog/B « )eﬁH"’(y)dy
1
_ Iog/ P i<k AN gy ... o
kN (Band(x)) . Yk

1
2 qls [ SRy gy,
Band(x,k,p)

Band(x, k, p) :=={(y1,..-,¥«) € Band(x)* :

Vi, 1(yi —x) - (y; —x)| < p} % /
—

13



Free energy landscapes II

1
Fus(x) = log | &y

1
_ |og/ eﬁziﬁk HN(yl)dyldyk
kN (Band(x))
2 1|og/ eﬂzlgk HN(yl)dyl...dyk
kN Band(x,k,p)
= FN. ;(X. k, /))

Band(x, k, p) :=={(y1,..-,¥«) € Band(x)* :

Vi, 1(yi —x) - (y; —x)| < p} % /
—
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Free energy landscapes II

1
Fus(x) = log | &y

1
_ |og/ eﬁziﬁk HN(yl)dyldyk
kN (Band(x))
2 1|og/ eﬂzlgk HN(yl)dyl...dyk
kN Band(x,k,p)
= FN. ;(X. k, /))

1
= Fng(x) + = log G,%}%{Band(x, k, p)|Band(x) }

e

Band(x, k, p) :=={(y1,..-,¥«) € Band(x)* :

Vi, 1(yi —x) - (y; —x)| < p} % /
—

13



Free energy landscapes II

1
Fus(x) = log | &y

1
_ |og/ Tz PO gy, . dy,
kN (Band(x))
> i Iog/ eﬁ Zigk HN(Yi)dyl .. dyk
kN Band(x,k,p)
= F/\/_ ;(X. k, /’))

1
= Fng(x) + = log G,%}%{Band(x, k, p)|Band(x) }

e

Band(x, k, p) :=={(y1,..-,¥«) € Band(x)* :

Vi, 1(yi —x) - (y; —x)| < p} b )

o’

Fn.s(x, k. py) is the second free energy landscape we consider. 13

Fix some sequences ky — oo, py — 0 slowly.



Free energy landscapes

Define the centered versions by replacing Hy(y) by Hn(y) — Hn(x):

Frg(x) = : log / A(HN(Y)~Hn () gy
A N J Band(x)

and similarly define F§, 5(x, kn, pn),

14



Free energy landscapes

Define the centered versions by replacing Hy(y) by Hn(y) — Hn(x):

=) = il / BHN)~Hu()) gy
A N J Band(x)
and similarly define £}, ,(x. ky, pn), so that

Fu () = & H(x) + Fi ).

FNﬂ(X, kN7pN) =S %HN(X) + F;\)_ ,;(X. kn, /)N)-

14
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The two most important properties of the landscapes are:
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The two most important properties of the landscapes are:

Theorem (S. ‘18)

For g € Supp(up), w.p. going to 1: for all x € \/q - SV,

1

Frng(x, kny pn) = Fng(x) = Fy g <= NHN(X) ~ E.(q).
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Free energy landscapes

The two most important properties of the landscapes are:

Theorem (S. ‘18)

For g € Supp(up), w.p. going to 1: for all x € \/q - SV,

1

Frng(x, kny pn) = Fng(x) = Fy g <= NHN(X) ~ E.(q).

Proposition (S. ‘18)

concentration of the centered free energy:

sup ‘F,ﬁ‘,ﬁ(x, kn, pn) — EF,‘{,ﬂ(x, kN,pN)| — 0 a.s.

ii5)
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AW,

Fn,5(x)
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Free energy landscapes

W,

< Fn,p(x)

16



Free energy landscapes

& Hu(x) NAD /\/\m\f sV

3
NHN(X) +EF 5(x, kn, /)I\I) < Fn(x)

16



Free energy landscapes

- Ly s

15} .
NHN(X) +EFN (%, kns pn) < Fn(x)

1
FNﬂ(X, kN,pN) ~ FNﬂ(X) ~ FNﬂ <~ NHN(X) ~ E*(q).




Free energy landscapes

%HN(X) H \‘H\ /\/\ ‘ \/a_SN

A
3 )
NHN(X) + EF/\/,;}(X,- kn, pN) < FN,,B(X)
1
Frng(x, kn, pn) = Fng(x) = Fnpg <= NHN(X) ~ E(q).

* Essentially, N"!'VHy(x) ~ 0 <= Fns(x, kn, pn) = Fu 5(x).
Recall that TAP solutions «~ %FTAp(m)... 16



Proof — concentration

Proposition (S. ‘18)

W.p. going to 1, concentration of the centered free energy:

sup ‘Fﬁl7ﬁ(xv kNapN) - EFK/,B(Xv kNapN)| = O(].)

Proof.

17



Proof — concentration

Proposition (S. ‘18)

W.p. going to 1, concentration of the centered free energy:

sup ‘Fﬁl7ﬁ(xv kNapN) - EFK/,B(Xv kNapN)| = O(].)

Proof. By computation, with V; denoting the gradient of w.r.t. the

(Normal(0, N)) Gaussian disorder coefficients J;, .,

HVJFI(\:I,B(X7k7p)” < % P‘f‘%-

17



Proof — concentration

Proposition (S. ‘18)

W.p. going to 1, concentration of the centered free energy:

sup ‘FKI75(X7 kNapN) - EFKI’ﬁ(Xa kNapN)| = O(].)

Proof. By computation, with V; denoting the gradient of w.r.t. the

(Normal(0, N)) Gaussian disorder coefficients J;, .,

HVJFKI,B(X7 kvp)” < % p+

x|

cnNs?

— For fixed x: probability of § deviation < e »+1/k

[concentration of Lipschitz functions of Gaussian variables].
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Proof — concentration

Proposition (S. ‘18)

W.p. going to 1, concentration of the centered free energy:

sup ‘FKI75(X7 kNapN) - EFKI’ﬁ(Xa kNapN)| = O(].)

Proof. By computation, with V; denoting the gradient of w.r.t. the

(Normal(0, N)) Gaussian disorder coefficients J;, .,

HVJFKI,B(X7 kvp)” < % p+

x|

cnNs?

— For fixed x: probability of ¢ deviation < e »+1/k
[concentration of Lipschitz functions of Gaussian variables].

Discretize by continuity and use union bound to get uniformity. O a7



Proof — equality of free energies <= maximality
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Proof — equality of free energies <= maximality

Denoting equality/inequality up to o(1) w.h.p. by ~/<,

B .
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Proof — equality of free energies <= maximality

Denoting equality/inequality up to o(1) w.h.p. by ~/<,

B c
1) NHN(X) +EFN s(x, kns pn) = Fn g(x, kn, pn) < Fnp(x) < F s

Maximizing over ,/q - SN we have that I

2) JE*(Q) +EF/(\:/7ﬁ(x> kN>pN) S FNA 3 -

1

3) Fng(x, kn, pn) = Fug(x) = Fyg = NHN(X) ~ E(q).

18



Proof — equality of free energies <= maximality

Denoting equality/inequality up to o(1) w.h.p. by ~/<,

B .
1) NG +EFR 5(x, kv, pn) & Fup(x, kv, o) < Fivgp(x) < Fus.

Maximizing over ,/q - SN we have that I

2) 35*(6]) +EF/(\:/7ﬁ(x> kN>pN) S FNA 3 -

1
3) FN,,B(Xy kN,pN) =~ FNyﬁ(X) ~ Fng - NHN(X) ~ E*(q).

For g € Supp(pp), Ixo as in 3)
= Fnp ~ BE(q) + EFY 5(x0, kn, pn).-

1
ThUS, NHN(X) ~ E*(q) — F/\/. ;(XA k/\/A/)/\/) Y F/\/' ;(X) ~ F/\/. 3. 18



Talagrand’s pure states
decomposition




Pure states decomposition

e Reminder: ;1p denotes the minimizer in Parisi's formula.

19



Pure states decomposition

e Reminder: ;1p denotes the minimizer in Parisi's formula.

e And for generic models®

/’P(') = ,\}iﬂOOEGﬁz(<X1,X2> S )

32,, Pill{”/p # 0} = oo.
19



Pure states decomposition

e Reminder: ;1p denotes the minimizer in Parisi's formula.

e And for generic models®
/’P(') = ,\}iﬂOOEGﬁz(<X1,X2> S )

e Denote

g, = maxSupp(up) < 1.

32,, Pill{”/p # 0} = oo.
19



Pure states decomposition

Theorem (Talagrand ‘10)

Assume Hy(o) is generic and pup({g+}) = ax € (0,1).
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Assume Hy(o) is generic and pup({g+}) = ax € (0,1).

Then there exist (random) k>1,st.:
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Pure states decomposition

Theorem (Talagrand ‘10)

Assume Hy(o) is generic and pup({g+}) = ax € (0,1).

Then there exist (random) k>1,st.:
1. (Gn( ))k21 — PD(1 — ).

2. I\IITOOEG,%2<{3k:X7yE FA{lix,y) — |<€N}):0-

* This decomposition can also be directly derived from the ultrametricity
property proved by Panchenko ‘13; and a similar one was derived by
Jagannath ‘17 even when o, = 0.

20



Pure states decomposition

K i /
m* = xdGpy(x),
Gn(Ak) Ja, vx)

Band(m) = {x € SN : [(x — x., )| < dn}.

21



Pure states decomposition

1
- /A xdGn(x)

Band(m) = {x € SN : |(x — x4, x,)| < n}.

(easy) Lemma

Ay as in Talagrand's decomposition.
lim E’||mk|| — 4| =0,
N—o0

lim G s(Ax A Band(m¥)) = 0.
N—o0

21



Pure states decomposition

1

m" = GN(Ak)/ xdGp/(x),

Band(m {XGSN (X — Xy, X4)| < O}

Theorem (S. ‘18)

Ak as in Talagrand's decomposition.

1
lim %HN(m ) = I|m —E max Hy(x).

N—o0 N—oo XE s N

21



Thank You!
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