Free energy landscapes in spherical spin glasses

Eliran Subag
October, 2018

SIMONS FOUNDATION
Mathematics \& Physical Sciences

Spherical spin glasses models

- Given a "mixture" $\nu(x)=\sum_{p=1}^{\infty} \gamma_{p}^{2} x^{p}$, define

$$
\begin{aligned}
& H_{N}: \mathbb{S}^{N} \rightarrow \mathbb{R}, \quad \forall N \geq 1 \\
& H_{N}(\mathbf{x})=\sum_{p} \gamma_{p} \sum_{i_{1}, \ldots, i_{p}=1}^{N} J_{i_{1}, \ldots, i_{p}} x_{i_{1}} x_{i_{2}} \cdots x_{i_{p}}, \quad \mathbf{x} \in \mathbb{S}^{N},
\end{aligned}
$$

where $J_{i_{1}, \ldots, i_{p}} \sim \operatorname{Normal}(0, N)$ i.i.d.

Spherical spin glasses models

- Given a "mixture" $\nu(x)=\sum_{p=1}^{\infty} \gamma_{p}^{2} x^{p}$, define

$$
\begin{aligned}
& H_{N}: \mathbb{S}^{N} \rightarrow \mathbb{R}, \quad \forall N \geq 1 \\
& H_{N}(\mathbf{x})=\sum_{p} \gamma_{p} \sum_{i_{1}, \ldots, i_{p}=1}^{N} J_{i_{1}, \ldots, i_{p}} x_{i_{1}} x_{i_{2}} \cdots x_{i_{p}}, \quad \mathbf{x} \in \mathbb{S}^{N}
\end{aligned}
$$

where $J_{i_{1}, \ldots, i_{p}} \sim \operatorname{Normal}(0, N)$ i.i.d.

- $H_{N}(\mathbf{x})$ is the Gaussian process that satisfies

$$
\mathbb{E} H_{N}(\mathbf{x})=0, \quad \mathbb{E} H_{N}(\mathbf{x}) H_{N}(\mathbf{y})=N_{\nu}(\langle\mathbf{x}, \mathbf{y}\rangle)
$$

Spherical spin glasses models

- Given a "mixture" $\nu(x)=\sum_{p=1}^{\infty} \gamma_{p}^{2} x^{p}$, define

$$
\begin{aligned}
& H_{N}: \mathbb{S}^{N} \rightarrow \mathbb{R}, \quad \forall N \geq 1 \\
& H_{N}(\mathbf{x})=\sum_{p} \gamma_{p} \sum_{i_{1}, \ldots, i_{p}=1}^{N} J_{i_{1}, \ldots, i_{p}} x_{i_{1}} x_{i_{2}} \cdots x_{i_{p}}, \quad \mathbf{x} \in \mathbb{S}^{N}
\end{aligned}
$$

where $J_{i_{1}, \ldots, i_{p}} \sim \operatorname{Normal}(0, N)$ i.i.d.

- $H_{N}(\mathbf{x})$ is the Gaussian process that satisfies

$$
\mathbb{E} H_{N}(\mathbf{x})=0, \quad \mathbb{E} H_{N}(\mathbf{x}) H_{N}(\mathbf{y})=N_{\nu}(\langle\mathbf{x}, \mathbf{y}\rangle)
$$

- Models with 'Ising spins': replace \mathbb{S}^{N} with $\Sigma_{N}=\{ \pm 1\}^{N}$ (and normalize).

The free energy and Parisi's formula

- Free energy (at inverse-temperature $\beta>0$):

$$
F_{N, \beta}=\frac{1}{N} \log Z_{N, \beta}=\frac{1}{N} \log \int_{\mathbb{S} N} e^{\beta H_{N}(\mathbf{x})} d \mathbf{x}
$$

The free energy and Parisi's formula

- Free energy (at inverse-temperature $\beta>0$):

$$
F_{N, \beta}=\frac{1}{N} \log Z_{N, \beta}=\frac{1}{N} \log \int_{\mathbb{S}^{N}} e^{\beta H_{N}(\mathrm{x})} d \mathbf{x} .
$$

Parisi's formula (Parisi '79 [cube], Crisanti-Sommers '92 [sphere])

$$
\lim _{N \rightarrow \infty} \mathbb{E} F_{N, \beta}=\min _{\mu \in M_{1}([0,1])} \mathcal{P}_{\nu, \beta}(\mu) .
$$

- Upper bound proved by Guerra '03, lower bound by Talagrand '06 for even models ($\gamma_{p}=0$ for odd p);
following Panchenko's ' 13 proof of ultrametricity, the formula was extended by Panchenko ' 14 [cube] and Chen '13 [sphere] to general mixed models.

The free energy and Parisi's formula

- Gibbs measure (at inverse temperature $\beta>0$):

$$
G_{N}(A)=G_{N, \beta}(A)=\frac{1}{Z_{N, \beta}} \int_{A} e^{\beta H_{N}(\mathbf{x})} d \mathbf{x}, \quad A \subset \mathbb{S}^{N}
$$

The free energy and Parisi's formula

- Gibbs measure (at inverse temperature $\beta>0$):

$$
G_{N}(A)=G_{N, \beta}(A)=\frac{1}{Z_{N, \beta}} \int_{A} e^{\beta H_{N}(\mathrm{x})} d \mathbf{x}, \quad A \subset \mathbb{S}^{N}
$$

- For "generic" models, ${ }^{1}$ the overlap distribution converges

$$
\mu_{P}(\cdot)=\lim _{N \rightarrow \infty} \mathbb{E} G_{N}^{\otimes 2}\left(\left\langle\mathbf{x}_{1}, \mathbf{x}_{2}\right\rangle \in \cdot\right),
$$

and the limit is the minimizer in Parisi's formula

$$
\lim _{N \rightarrow \infty} \mathbb{E} F_{N, \beta}=\mathcal{P}_{\nu, \beta}\left(\mu_{P}\right)=\min _{\mu \in M_{1}([0,1])} \mathcal{P}_{\nu, \beta}(\mu) .
$$

$$
{ }^{1} \sum_{p \text { odd }} p^{-1} \mathbf{1}\left\{\gamma_{p} \neq 0\right\}=\sum_{p \text { even }} p^{-1} \mathbf{1}\left\{\gamma_{p} \neq 0\right\}=\infty
$$

TAP approach l: the TAP equations

- Thouless-Anderson-Palmer '77 consider, for the SK model $\left(\nu(x)=x^{2}\right.$, Ising spins), the local magnetizations $m=\left(m_{i}\right)_{i \leq N}$,

$$
m:=\langle\mathbf{x}\rangle=\int \mathbf{x} d G_{N, \beta},
$$

and derived self-consistency equations of the form

$$
m_{i} \approx \tanh \left(\frac{2 \beta}{\sqrt{N}} \sum_{j} J_{i j} m_{j}+h-\beta^{2}\left(1-q^{2}\right) m_{i}\right), \quad i=1, \ldots, N
$$

TAP approach l: the TAP equations

- Thouless-Anderson-Palmer '77 consider, for the SK model $\left(\nu(x)=x^{2}\right.$, Ising spins), the local magnetizations $m=\left(m_{i}\right)_{i \leq N}$,

$$
m:=\langle\mathbf{x}\rangle=\int \mathbf{x} d G_{N, \beta},
$$

and derived self-consistency equations of the form

$$
m_{i} \approx \tanh \left(\frac{2 \beta}{\sqrt{N}} \sum_{j} J_{i j} m_{j}+h-\beta^{2}\left(1-q^{2}\right) m_{i}\right), \quad i=1, \ldots, N
$$

- This was proved rigorously:
- Talagrand ‘03 and Chatterjee '10 - high-temp. SK,
- Auffinger-Jagannath '16 - generic Ising models, at any temp. restricted to pure-states.
- Bolthausen ' 14 proved that in the high-temp. SK model, the unique solution can be obtained as the limit of certain iterative equations.

TAP approach II: the TAP free energy

- TAP ‘77 also associate to the magnetization a free energy of the from

$$
F_{\mathrm{TAP}}(m)=\frac{\beta}{N} H_{N}(m)+f(m)
$$

which under a certain convergence condition on $\|m\|$ should give

$$
F_{N, \beta} \approx F_{\mathrm{TAP}}(m)
$$

TAP approach II: the TAP free energy

- TAP ‘77 also associate to the magnetization a free energy of the from

$$
F_{\mathrm{TAP}}(m)=\frac{\beta}{N} H_{N}(m)+f(m)
$$

which under a certain convergence condition on $\|m\|$ should give

$$
F_{N, \beta} \approx F_{\mathrm{TAP}}(m)
$$

- They also note that for any m,

$$
\frac{\partial}{\partial m} F_{\mathrm{TAP}}(m)=0 \Longleftrightarrow m=\text { solution of TAP eqns. }
$$

TAP approach II: the TAP free energy

- TAP ‘77 also associate to the magnetization a free energy of the from

$$
F_{\mathrm{TAP}}(m)=\frac{\beta}{N} H_{N}(m)+f(m)
$$

which under a certain convergence condition on $\|m\|$ should give

$$
F_{N, \beta} \approx F_{\mathrm{TAP}}(m)
$$

- They also note that for any m,

$$
\frac{\partial}{\partial m} F_{\mathrm{TAP}}(m)=0 \Longleftrightarrow m=\text { solution of TAP eqns. }
$$

- At low temp., there are exp. many solutions ('complexity'>0). For spherical pure p-spin $\left(\nu(x)=x^{p}\right)$ this is rigorous:
Auffinger-Ben Arous-Cerny '12, Auffinger-Ben Arous '13 - annealed, 1st moment; S. '17, Ben Arous-S-Zeitouni '18 - quenched, 2nd momb

TAP approach II: the TAP free energy

The general idea in physics about the low temp phase:
think of $F_{\mathrm{TAP}}(m)$ as a TAP-free-energy on the space of magnetizations;
crt. pts. of $F_{\mathrm{TAP}}(m) \leadsto$ TAP solutions $九 \rightsquigarrow \rightarrow$ 'TAP states' weight of state $m^{\alpha} \rightsquigarrow>e^{N F_{\text {TAP }}\left(m^{\alpha}\right)}$

$$
Z_{N, \beta}=e^{N F_{N, \beta}} \approx \sum_{\alpha \leq e^{c N}} e^{N F_{\mathrm{TAP}}\left(m^{\alpha}\right)}
$$

TAP approach II: the TAP free energy

The general idea in physics about the low temp phase:
think of $F_{\mathrm{TAP}}(m)$ as a TAP-free-energy on the space of magnetizations;
crt. pts. of $F_{\mathrm{TAP}}(m) \leadsto$ TAP solutions $\leadsto \rightsquigarrow$ 'TAP states' weight of state $m^{\alpha} \nVdash e^{N F_{\text {TAP }}\left(m^{\alpha}\right)}$

$$
Z_{N, \beta}=e^{N F_{N, \beta}} \approx \sum_{\alpha \leq e^{c N}} e^{N F_{\mathrm{TAP}}\left(m^{\alpha}\right)}
$$

Focus of the talk: introduce and analyze a free energy landscape

$$
\begin{aligned}
& \{\mathbf{x}:\|\mathbf{x}\|<1\} \rightarrow \mathbb{R}, \\
& \mathbf{x} \mapsto \operatorname{Band}(\mathbf{x}) \subset \mathbb{S}^{N} \mapsto F(\mathbf{x})=\frac{1}{N} \log \int_{\operatorname{Band}(\mathbf{x})} e^{\beta H_{N}(\mathbf{y})} d \mathbf{y} .
\end{aligned}
$$

(In fact, we'll need to define another free energy $\operatorname{Band}(\mathbf{x}) \mapsto \tilde{F}(\mathbf{x})$ to get the full picture...)

TAP formula for the free energy

TAP formula

Take $q \in(0,1)$ and some $\|\mathbf{x}\|=\sqrt{q}$.
Define
$\operatorname{Band}(\mathbf{x})=\left\{\mathbf{y} \in \mathbb{S}^{N}:|\langle\mathbf{y}-\mathbf{x}, \mathbf{x}\rangle|<\delta_{N}\right\}$.

TAP formula

Take $q \in(0,1)$ and some $\|\mathbf{x}\|=\sqrt{q}$.
Define
$\operatorname{Band}(\mathbf{x})=\left\{\mathbf{y} \in \mathbb{S}^{N}:|\langle\mathbf{y}-\mathbf{x}, \mathbf{x}\rangle|<\delta_{N}\right\}$.

The restriction of $H_{N}(\cdot)$ to $\operatorname{Band}(\mathbf{x})$ is roughly a spherical model of dimension $N-1$, let ν_{q} be the corresponding mixture, after we remove the 1 -spin component.

TAP formula

Take $q \in(0,1)$ and some $\|\mathbf{x}\|=\sqrt{q}$.
Define
$\operatorname{Band}(\mathbf{x})=\left\{\mathbf{y} \in \mathbb{S}^{N}:|\langle\mathbf{y}-\mathbf{x}, \mathbf{x}\rangle|<\delta_{N}\right\}$.

The restriction of $H_{N}(\cdot)$ to $\operatorname{Band}(\mathbf{x})$ is roughly a spherical model of dimension $N-1$, let ν_{q} be the corresponding mixture, after we remove the 1 -spin component.

Notation: $E_{\star}(q):=\lim _{N \rightarrow \infty} \frac{1}{N} \max _{\mathbf{x} \in \sqrt{q} \cdot \mathbb{S}^{N}} H_{N}(\mathbf{x})$.

TAP formula

Theorem (S. '18)
For any spherical model and $\beta>0$:

1. $\lim _{N \rightarrow \infty} \mathbb{E} F_{N, \beta}=\max _{q \in[0,1]}\left(\beta E_{\star}(q)+\frac{1}{2} \log (1-q)+\lim _{N \rightarrow \infty} \mathbb{E} F_{N, \beta}\left(\nu_{q}\right)\right)$.
2. Any $q \in \operatorname{Supp}\left(\mu_{P}\right)$ attains the max.

TAP formula

Theorem (S. '18)
For any spherical model and $\beta>0$:

1. $\lim _{N \rightarrow \infty} \mathbb{E} F_{N, \beta}=\max _{q \in[0,1]}\left(\beta E_{\star}(q)+\frac{1}{2} \log (1-q)+\lim _{N \rightarrow \infty} \mathbb{E} F_{N, \beta}\left(\nu_{q}\right)\right)$.
2. Any $q \in \operatorname{Supp}\left(\mu_{P}\right)$ attains the max.
3. For some explicit $Q \subset[0,1]$:

$$
q \in Q \Longleftrightarrow \lim _{N \rightarrow \infty} \mathbb{E} F_{N, \beta}\left(\nu_{q}\right)=\frac{1}{2} \beta^{2}\left(\nu(1)-\nu(q)-(1-q) \nu^{\prime}(q)\right) .
$$

TAP formula

Theorem (S. '18)

For any spherical model and $\beta>0$:

1. $\lim _{N \rightarrow \infty} \mathbb{E} F_{N, \beta}=\max _{q \in[0,1]}\left(\beta E_{\star}(q)+\frac{1}{2} \log (1-q)+\lim _{N \rightarrow \infty} \mathbb{E} F_{N, \beta}\left(\nu_{q}\right)\right)$.
2. Any $q \in \operatorname{Supp}\left(\mu_{P}\right)$ attains the max.
3. For some explicit $Q \subset[0,1]$:
$q \in Q \Longleftrightarrow \lim _{N \rightarrow \infty} \mathbb{E} F_{N, \beta}\left(\nu_{q}\right)=\frac{1}{2} \beta^{2}\left(\nu(1)-\nu(q)-(1-q) \nu^{\prime}(q)\right)$.
4. $q_{\star}:=\max \operatorname{Supp}\left(\mu_{P}\right) \in Q$

TAP formula

Theorem (S. '18)

For any spherical model and $\beta>0$:

1. $\lim _{N \rightarrow \infty} \mathbb{E} F_{N, \beta}=\max _{q \in[0,1]}\left(\beta E_{\star}(q)+\frac{1}{2} \log (1-q)+\lim _{N \rightarrow \infty} \mathbb{E} F_{N, \beta}\left(\nu_{q}\right)\right)$.
2. Any $q \in \operatorname{Supp}\left(\mu_{P}\right)$ attains the max.
3. For some explicit $Q \subset[0,1]$:
$q \in Q \Longleftrightarrow \lim _{N \rightarrow \infty} \mathbb{E} F_{N, \beta}\left(\nu_{q}\right)=\frac{1}{2} \beta^{2}\left(\nu(1)-\nu(q)-(1-q) \nu^{\prime}(q)\right)$.
4. $q_{\star}:=\max \operatorname{Supp}\left(\mu_{P}\right) \in Q$
\Longrightarrow can maximize over Q in (1) and substitute (3).

TAP formula

Corollary (S. '18)

For any spherical model and $\beta>0$:
$\lim _{N \rightarrow \infty} \mathbb{E} F_{N, \beta}$

$$
=\max _{q \in Q}\left[\beta E_{\star}(q)+\frac{1}{2} \log (1-q)+\frac{1}{2} \beta^{2}\left(\nu(1)-\nu(q)-(1-q) \nu^{\prime}(q)\right)\right] .
$$

TAP formula

- S. '17: for pure p-spin with $p \geq 3\left(\nu(x)=x^{p}\right)$ and $\beta \gg 1$, the same formula (as the last corollary) was proved with $q=q_{\star}$.

TAP formula

- S. '17: for pure p-spin with $p \geq 3\left(\nu(x)=x^{p}\right)$ and $\beta \gg 1$, the same formula (as the last corollary) was proved with $q=q_{\star}$.
- Ben Arous-S.-Zeitouni '18: same as above, for mixed models 'close' to pure.

TAP formula

- S. '17: for pure p-spin with $p \geq 3\left(\nu(x)=x^{p}\right)$ and $\beta \gg 1$, the same formula (as the last corollary) was proved with $q=q_{\star}$.
- Ben Arous-S.-Zeitouni '18: same as above, for mixed models 'close' to pure.
- Chen-Panchenko '17: work with general mixed models, Ising spins, get a similar, but more complicated (due to inhomogeneity), formula with for $q \geq q_{\star}$ or $q=q_{\star}$.

TAP formula

- S. '17: for pure p-spin with $p \geq 3\left(\nu(x)=x^{p}\right)$ and $\beta \gg 1$, the same formula (as the last corollary) was proved with $q=q_{\star}$.
- Ben Arous-S.-Zeitouni '18: same as above, for mixed models 'close' to pure.
- Chen-Panchenko '17: work with general mixed models, Ising spins, get a similar, but more complicated (due to inhomogeneity), formula with for $q \geq q_{\star}$ or $q=q_{\star}$.
- Belius-Kistler '18: spherical pure 2-spin $\left(\nu(x)=x^{2}\right)$, prove the same result as the corollary.

Free energy landscapes

Free energy landscapes I

Fix $q \in(0,1)$ and some $\delta_{N}=o(1)$.
For $\mathbf{x} \in \sqrt{q} \cdot \mathbb{S}^{N}=\{\mathbf{x}:\|\mathbf{x}\|=\sqrt{q}\}$,
$\operatorname{Band}(\mathbf{x})=\left\{\mathbf{y} \in \mathbb{S}^{N}:|\langle\mathbf{y}-\mathbf{x}, \mathbf{x}\rangle|<\delta_{N}\right\}$.

Free energy landscapes I

Fix $q \in(0,1)$ and some $\delta_{N}=o(1)$.
For $\mathbf{x} \in \sqrt{q} \cdot \mathbb{S}^{N}=\{\mathbf{x}:\|\mathbf{x}\|=\sqrt{q}\}$,
$\operatorname{Band}(\mathbf{x})=\left\{\mathbf{y} \in \mathbb{S}^{N}:|\langle\mathbf{y}-\mathbf{x}, \mathbf{x}\rangle|<\delta_{N}\right\}$.

We introduce a free energy landscape on $\sqrt{q} \cdot \mathbb{S}^{N}$:

$$
F_{N, \beta}(\mathbf{x})=\frac{1}{N} \log \int_{\operatorname{Band}(\mathbf{x})} e^{\beta H_{N}(\mathbf{y})} d \mathbf{y}
$$

Free energy landscapes I

- Problem: the region where $F_{N, \beta}(\mathbf{x})$ is maximal is too large...

Free energy landscapes I

- Problem: the region where $F_{N, \beta}(\mathbf{x})$ is maximal is too large...
- We'll require more than a heavy band, and penalize otherwise.

Free energy landscapes I

- Problem: the region where $F_{N, \beta}(\mathbf{x})$ is maximal is too large...
- We'll require more than a heavy band, and penalize otherwise.
- The additional requirement will be based on:

Lemma: $q \in \operatorname{Supp}\left(\mu_{P}\right) \Longrightarrow$ w.h.p. there exists a heavy band with

$$
\frac{1}{N} \log G_{N, \beta}^{\otimes k}\left\{\mathbf{x}_{i} \cdot \mathbf{x}_{j} \approx q, \forall i \neq j \mid \operatorname{Band}(\mathbf{x})\right\} \nless 0 .
$$

Free energy landscapes I

- Problem: the region where $F_{N, \beta}(\mathbf{x})$ is maximal is too large...
- We'll require more than a heavy band, and penalize otherwise.
- The additional requirement will be based on:

Lemma: $q \in \operatorname{Supp}\left(\mu_{p}\right) \Longrightarrow$ w.h.p. there exists a heavy band with

$$
\frac{1}{N} \log G_{N, \beta}^{\otimes k}\left\{\mathbf{x}_{i} \cdot \mathbf{x}_{j} \approx q, \forall i \neq j \mid \operatorname{Band}(\mathbf{x})\right\} \nless 0 .
$$

Proof. [kindly communicated to me by D. Panchenko] If generic, by ultrametricity, can sample many points with $\mathbf{x}_{i} \cdot \mathbf{x}_{j} \approx q$; their average is the center \mathbf{x} of a good band.

Otherwise, approximate the model by a sequence of generic models and notice that this property survives the limit, due to continuity properties of μ_{P} in ν.

Free energy landscapes II

$$
\begin{aligned}
F_{N, \beta}(\mathbf{x}) & =\frac{1}{N} \log \int_{\operatorname{Band}(\mathbf{x})} e^{\beta H_{N}(\mathbf{y})} d \mathbf{y} \\
& =\frac{1}{k N} \log \int_{(\operatorname{Band}(\mathbf{x}))^{k}} e^{\beta \sum_{i \leq k} H_{N}\left(\mathbf{y}_{i}\right)} d \mathbf{y}_{1} \cdots d \mathbf{y}_{k}
\end{aligned}
$$

Free energy landscapes II

$$
\begin{aligned}
F_{N, \beta}(\mathbf{x}) & =\frac{1}{N} \log \int_{\operatorname{Band}(\mathbf{x})} e^{\beta H_{N}(\mathbf{y})} d \mathbf{y} \\
& =\frac{1}{k N} \log \int_{(\operatorname{Band}(\mathbf{x}))^{k}} e^{\beta \sum_{i \leq k} H_{N}\left(\mathbf{y}_{i}\right)} d \mathbf{y}_{1} \cdots d \mathbf{y}_{k} \\
& \geq \frac{1}{k N} \log \int_{\operatorname{Band}(\mathbf{x}, k, \rho)} e^{\beta \sum_{i \leq k} H_{N}\left(\mathbf{y}_{i}\right)} d \mathbf{y}_{1} \cdots d \mathbf{y}_{k}
\end{aligned}
$$

$\operatorname{Band}(\mathbf{x}, k, \rho):=\left\{\left(\mathbf{y}_{1}, \ldots, \mathbf{y}_{k}\right) \in \operatorname{Band}(\mathbf{x})^{k}:\right.$

$$
\left.\forall i \neq j,\left|\left(\mathbf{y}_{i}-\mathbf{x}\right) \cdot\left(\mathbf{y}_{j}-\mathbf{x}\right)\right|<\rho\right\}
$$

Free energy landscapes II

$$
\begin{aligned}
F_{N, \beta}(\mathbf{x}) & =\frac{1}{N} \log \int_{\operatorname{Band}(\mathbf{x})} e^{\beta H_{N}(\mathbf{y})} d \mathbf{y} \\
& =\frac{1}{k N} \log \int_{(\operatorname{Band}(\mathbf{x}))^{k}} e^{\beta \sum_{i \leq k} H_{N}\left(\mathbf{y}_{i}\right)} d \mathbf{y}_{1} \cdots d \mathbf{y}_{k} \\
& \geq \frac{1}{k N} \log \int_{\operatorname{Band}(\mathbf{x}, k, \rho)} e^{\beta \sum_{i \leq k} H_{N}\left(\mathbf{y}_{i}\right)} d \mathbf{y}_{1} \cdots d \mathbf{y}_{k} \\
& =: F_{N, \beta}(\mathbf{x}, k, \rho)
\end{aligned}
$$

$\operatorname{Band}(\mathbf{x}, k, \rho):=\left\{\left(\mathbf{y}_{1}, \ldots, \mathbf{y}_{k}\right) \in \operatorname{Band}(\mathbf{x})^{k}:\right.$

$$
\left.\forall i \neq j,\left|\left(\mathbf{y}_{i}-\mathbf{x}\right) \cdot\left(\mathbf{y}_{j}-\mathbf{x}\right)\right|<\rho\right\}
$$

Free energy landscapes II

$$
\begin{aligned}
F_{N, \beta}(\mathbf{x}) & =\frac{1}{N} \log \int_{\operatorname{Band}(\mathbf{x})} e^{\beta H_{N}(\mathbf{y})} d \mathbf{y} \\
& =\frac{1}{k N} \log \int_{(\operatorname{Band}(\mathbf{x}))^{k}} e^{\beta \sum_{i \leq k} H_{N}\left(\mathbf{y}_{i}\right)} d \mathbf{y}_{1} \cdots d \mathbf{y}_{k} \\
& \geq \frac{1}{k N} \log \int_{\operatorname{Band}(\mathbf{x}, k, \rho)} e^{\beta \sum_{i \leq k} H_{N}\left(\mathbf{y}_{i}\right)} d \mathbf{y}_{1} \cdots d \mathbf{y}_{k} \\
& =: F_{N, \beta}(\mathbf{x}, k, \rho) \\
& =F_{N, \beta}(\mathbf{x})+\frac{1}{N} \log G_{N, \beta}^{\otimes k}\{\operatorname{Band}(\mathbf{x}, k, \rho) \mid \operatorname{Band}(\mathbf{x})\}
\end{aligned}
$$

$\operatorname{Band}(\mathbf{x}, k, \rho):=\left\{\left(\mathbf{y}_{1}, \ldots, \mathbf{y}_{k}\right) \in \operatorname{Band}(\mathbf{x})^{k}:\right.$

$$
\left.\forall i \neq j,\left|\left(\mathbf{y}_{i}-\mathbf{x}\right) \cdot\left(\mathbf{y}_{j}-\mathbf{x}\right)\right|<\rho\right\}
$$

Free energy landscapes II

$$
\begin{aligned}
F_{N, \beta}(\mathbf{x}) & =\frac{1}{N} \log \int_{\operatorname{Band}(\mathbf{x})} e^{\beta H_{N}(\mathbf{y})} d \mathbf{y} \\
& =\frac{1}{k N} \log \int_{(\operatorname{Band}(\mathbf{x}))^{k}} e^{\beta \sum_{i \leq k} H_{N}\left(\mathbf{y}_{i}\right)} d \mathbf{y}_{1} \cdots d \mathbf{y}_{k} \\
& \geq \frac{1}{k N} \log \int_{\operatorname{Band}(\mathbf{x}, k, \rho)} e^{\beta \sum_{i \leq k} H_{N}\left(\mathbf{y}_{i}\right)} d \mathbf{y}_{1} \cdots d \mathbf{y}_{k} \\
& =: F_{N, \beta}(\mathbf{x}, k, \rho) \\
& =F_{N, \beta}(\mathbf{x})+\frac{1}{N} \log G_{N, \beta}^{\otimes k}\{\operatorname{Band}(\mathbf{x}, k, \rho) \mid \operatorname{Band}(\mathbf{x})\}
\end{aligned}
$$

$\operatorname{Band}(\mathbf{x}, k, \rho):=\left\{\left(\mathbf{y}_{1}, \ldots, \mathbf{y}_{k}\right) \in \operatorname{Band}(\mathbf{x})^{k}:\right.$

$$
\left.\forall i \neq j,\left|\left(\mathbf{y}_{i}-\mathbf{x}\right) \cdot\left(\mathbf{y}_{j}-\mathbf{x}\right)\right|<\rho\right\}
$$

Fix some sequences $k_{N} \rightarrow \infty, \rho_{N} \rightarrow 0$ slowly.
$F_{N, \beta}\left(\mathrm{x}, k_{N}, \rho_{N}\right)$ is the second free energy landscape we consider.

Free energy landscapes

Define the centered versions by replacing $H_{N}(\mathbf{y})$ by $H_{N}(\mathbf{y})-H_{N}(\mathbf{x})$:

$$
F_{N, \beta}^{\mathrm{c}}(\mathbf{x})=\frac{1}{N} \log \int_{\operatorname{Band}(\mathbf{x})} e^{\beta\left(H_{N}(\mathbf{y})-H_{N}(\mathbf{x})\right)} d \mathbf{y}
$$

and similarly define $F_{N, \beta}^{c}\left(\mathrm{x}, k_{N}, \rho_{N}\right)$,

Free energy landscapes

Define the centered versions by replacing $H_{N}(\mathbf{y})$ by $H_{N}(\mathbf{y})-H_{N}(\mathbf{x})$:

$$
F_{N, \beta}^{\mathrm{c}}(\mathbf{x})=\frac{1}{N} \log \int_{\operatorname{Band}(\mathbf{x})} e^{\beta\left(H_{N}(\mathbf{y})-H_{N}(\mathbf{x})\right)} d \mathbf{y}
$$

and similarly define $F_{N, \beta}^{\mathrm{c}}\left(\mathrm{x}, k_{N}, \rho_{N}\right)$, so that

$$
\begin{aligned}
F_{N, \beta}(\mathbf{x}) & =\frac{\beta}{N} H_{N}(\mathbf{x})+F_{N, \beta}^{\mathrm{c}}(\mathbf{x}), \\
F_{N, \beta}\left(\mathbf{x}, k_{N}, \rho_{N}\right) & =\frac{\beta}{N} H_{N}(\mathbf{x})+F_{N, \beta}^{\mathrm{c}}\left(\mathbf{x}, k_{N}, \rho_{N}\right)
\end{aligned}
$$

Free energy landscapes

The two most important properties of the landscapes are:

Free energy landscapes

The two most important properties of the landscapes are:

Theorem (S. '18)

For $q \in \operatorname{Supp}\left(\mu_{P}\right)$, w.p. going to 1 : for all $\mathbf{x} \in \sqrt{q} \cdot \mathbb{S}^{N}$,

$$
F_{N, \beta}\left(\mathbf{x}, k_{N}, \rho_{N}\right) \approx F_{N, \beta}(\mathbf{x}) \approx F_{N, \beta} \Longleftrightarrow \frac{1}{N} H_{N}(\mathbf{x}) \approx E_{\star}(q)
$$

Free energy landscapes

The two most important properties of the landscapes are:

Theorem (S. '18)

For $q \in \operatorname{Supp}\left(\mu_{P}\right)$, w.p. going to 1 : for all $\mathbf{x} \in \sqrt{q} \cdot \mathbb{S}^{N}$,

$$
F_{N, \beta}\left(\mathbf{x}, k_{N}, \rho_{N}\right) \approx F_{N, \beta}(\mathbf{x}) \approx F_{N, \beta} \Longleftrightarrow \frac{1}{N} H_{N}(\mathbf{x}) \approx E_{\star}(q)
$$

Proposition (S. '18)

Uniform concentration of the centered free energy:

$$
\sup _{x \in \sqrt{q} \cdot S^{N}}\left|F_{N, \beta}^{\mathrm{c}}\left(\mathbf{x}, k_{N}, \rho_{N}\right)-\mathbb{E} F_{N, \beta}^{\mathrm{c}}\left(\mathbf{x}, k_{N}, \rho_{N}\right)\right| \rightarrow 0 \text { a.s. }
$$

Free energy landscapes

$$
\begin{aligned}
\frac{\beta}{N} H_{N}(\mathbf{x})+\mathbb{E} F_{N, \beta}^{c}\left(\mathbf{x}, k_{N}, \rho_{N}\right) & \approx F_{N, \beta}\left(\mathbf{x}, k_{N}, \rho_{N}\right) \leq F_{N, \beta}(\mathbf{x}) \leq F_{N, \beta} \\
F_{N, \beta}\left(\mathbf{x}, k_{N}, \rho_{N}\right) & \approx F_{N, \beta}(\mathbf{x}) \approx F_{N, \beta} \Longleftrightarrow \frac{1}{N} H_{N}(\mathbf{x}) \approx E_{\star}(q)
\end{aligned}
$$

${ }^{\star}$ Essentially, $N^{-1} \nabla H_{N}(\mathbf{x}) \approx 0 \Longleftrightarrow F_{N, \beta}\left(\mathbf{x}, k_{N}, \rho_{N}\right) \approx F_{N, \beta}(\mathbf{x})$.
Recall that TAP solutions ans $\frac{\partial}{\partial m} F_{T A P}(m) \ldots$

Proof - concentration

Proposition (S. '18)

W.p. going to 1 , uniform concentration of the centered free energy:

$$
\sup _{\mathbf{x} \in \sqrt{q} \cdot \mathbb{S}^{N}}\left|F_{N, \beta}^{\mathrm{c}}\left(\mathbf{x}, k_{N}, \rho_{N}\right)-\mathbb{E} F_{N, \beta}^{\mathrm{c}}\left(\mathbf{x}, k_{N}, \rho_{N}\right)\right|=o(1)
$$

Proof.

Proof - concentration

Proposition (S. '18)

W.p. going to 1 , uniform concentration of the centered free energy:

$$
\sup _{\mathbf{x} \in \sqrt{q} \cdot \mathbb{S}^{N}}\left|F_{N, \beta}^{\mathrm{c}}\left(\mathbf{x}, k_{N}, \rho_{N}\right)-\mathbb{E} F_{N, \beta}^{\mathrm{c}}\left(\mathbf{x}, k_{N}, \rho_{N}\right)\right|=o(1) .
$$

Proof. By computation, with $\nabla_{\mathbf{J}}$ denoting the gradient of w.r.t. the (Normal $(0, N)$) Gaussian disorder coefficients $J_{i_{1}, \ldots, i_{p}}$,

$$
\left\|\nabla_{\mathbf{J}} F_{N, \beta}^{\mathrm{c}}(\mathbf{x}, k, \rho)\right\| \leq \frac{C}{N} \sqrt{\rho+\frac{1}{k}}
$$

Proof - concentration

Proposition (S. '18)

W.p. going to 1 , uniform concentration of the centered free energy:

$$
\sup _{\mathbf{x} \in \sqrt{q} \cdot \mathbb{S}^{N}}\left|F_{N, \beta}^{\mathrm{c}}\left(\mathbf{x}, k_{N}, \rho_{N}\right)-\mathbb{E} F_{N, \beta}^{\mathrm{c}}\left(\mathbf{x}, k_{N}, \rho_{N}\right)\right|=o(1) .
$$

Proof. By computation, with $\nabla_{\mathbf{J}}$ denoting the gradient of w.r.t. the (Normal $(0, N)$) Gaussian disorder coefficients $J_{i_{1}, \ldots, i_{p}}$,

$$
\left\|\nabla_{\mathbf{J}} F_{N, \beta}^{\mathrm{c}}(\mathbf{x}, k, \rho)\right\| \leq \frac{C}{N} \sqrt{\rho+\frac{1}{k}}
$$

\Longrightarrow For fixed \mathbf{x} : probability of δ deviation $<e^{-\frac{C N \delta^{2}}{\rho+1 / k}}$
[concentration of Lipschitz functions of Gaussian variables].

Proof - concentration

Proposition (S. '18)

W.p. going to 1 , uniform concentration of the centered free energy:

$$
\sup _{x \in \sqrt{q} \cdot \mathbb{S}^{N}}\left|F_{N, \beta}^{\mathrm{c}}\left(\mathbf{x}, k_{N}, \rho_{N}\right)-\mathbb{E} F_{N, \beta}^{\mathrm{c}}\left(\mathbf{x}, k_{N}, \rho_{N}\right)\right|=o(1) .
$$

Proof. By computation, with $\nabla_{\boldsymbol{J}}$ denoting the gradient of w.r.t. the (Normal $(0, N)$) Gaussian disorder coefficients $J_{i_{1}, \ldots, i_{p}}$,

$$
\left\|\nabla_{\mathbf{J}} F_{N, \beta}^{\mathrm{c}}(\mathbf{x}, k, \rho)\right\| \leq \frac{C}{N} \sqrt{\rho+\frac{1}{k}}
$$

\Longrightarrow For fixed \mathbf{x} : probability of δ deviation $<e^{-\frac{C N \delta^{2}}{\rho+1 / k}}$
[concentration of Lipschitz functions of Gaussian variables].
Discretize by continuity and use union bound to get uniformity.

Proof - equality of free energies \Longleftrightarrow maximality

Proof - equality of free energies

Denoting equality/inequality up to $o(1)$ w.h.p. by \approx / \lesssim,

1) $\frac{\beta}{N} H_{N}(\mathbf{x})+\mathbb{E} F_{N, \beta}^{\mathrm{c}}\left(\mathbf{x}, k_{N}, \rho_{N}\right) \approx F_{N, \beta}\left(\mathbf{x}, k_{N}, \rho_{N}\right) \leq F_{N, \beta}(\mathbf{x}) \leq F_{N, \beta}$.

Proof - equality of free energies

Denoting equality/inequality up to o(1) w.h.p. by \approx / \lesssim,

1) $\frac{\beta}{N} H_{N}(\mathbf{x})+\mathbb{E} F_{N, \beta}^{\mathrm{c}}\left(\mathbf{x}, k_{N}, \rho_{N}\right) \approx F_{N, \beta}\left(\mathbf{x}, k_{N}, \rho_{N}\right) \leq F_{N, \beta}(\mathbf{x}) \leq F_{N, \beta}$.

Maximizing over $\sqrt{q} \cdot \mathbb{S}^{N}$ we have that

$$
\beta E_{\star}(q)+\mathbb{E} F_{N, \beta}^{\mathrm{c}}\left(\mathbf{x}, k_{N}, \rho_{N}\right) \lesssim F_{N, \beta} .
$$

Proof - equality of free energies

Denoting equality/inequality up to o(1) w.h.p. by \approx / \lesssim,

1) $\frac{\beta}{N} H_{N}(\mathbf{x})+\mathbb{E} F_{N, \beta}^{\mathrm{c}}\left(\mathbf{x}, k_{N}, \rho_{N}\right) \approx F_{N, \beta}\left(\mathbf{x}, k_{N}, \rho_{N}\right) \leq F_{N, \beta}(\mathbf{x}) \leq F_{N, \beta}$.

Maximizing over $\sqrt{q} \cdot \mathbb{S}^{N}$ we have that
2)

$$
\beta E_{\star}(q)+\mathbb{E} F_{N, \beta}^{\mathrm{c}}\left(\mathbf{x}, k_{N}, \rho_{N}\right) \lesssim F_{N, \beta} .
$$

3) $F_{N, \beta}\left(\mathbf{x}, k_{N}, \rho_{N}\right) \approx F_{N, \beta}(\mathbf{x}) \approx F_{N, \beta} \Longrightarrow \frac{1}{N} H_{N}(\mathbf{x}) \approx E_{\star}(q)$.

Proof - equality of free energies

Denoting equality/inequality up to o(1) w.h.p. by \approx / \lesssim,

1) $\frac{\beta}{N} H_{N}(\mathbf{x})+\mathbb{E} F_{N, \beta}^{\mathrm{c}}\left(\mathbf{x}, k_{N}, \rho_{N}\right) \approx F_{N, \beta}\left(\mathbf{x}, k_{N}, \rho_{N}\right) \leq F_{N, \beta}(\mathbf{x}) \leq F_{N, \beta}$.

Maximizing over $\sqrt{q} \cdot \mathbb{S}^{N}$ we have that
2)

$$
\beta E_{\star}(q)+\mathbb{E} F_{N, \beta}^{c}\left(\mathbf{x}, k_{N}, \rho_{N}\right) \lesssim F_{N, \beta} .
$$

3) $F_{N, \beta}\left(\mathbf{x}, k_{N}, \rho_{N}\right) \approx F_{N, \beta}(\mathbf{x}) \approx F_{N, \beta} \Longrightarrow \frac{1}{N} H_{N}(\mathbf{x}) \approx E_{\star}(q)$.

For $q \in \operatorname{Supp}\left(\mu_{P}\right), \exists \mathbf{x}_{0}$ as in 3)
$\Longrightarrow F_{N, \beta} \approx \beta E_{\star}(q)+\mathbb{E} F_{N, \beta}^{\mathrm{c}}\left(\mathrm{x}_{0}, k_{N}, \rho_{N}\right)$.
Thus, $\quad \frac{1}{N} H_{N}(\mathbf{x}) \approx E_{\star}(q) \Longrightarrow F_{N, \beta}\left(x, k_{N}, \rho_{N}\right) \approx F_{N, \beta}(x) \approx F_{N, \beta}$.

Talagrand's pure states decomposition

Pure states decomposition

- Reminder: μ_{p} denotes the minimizer in Parisi's formula.

Pure states decomposition

- Reminder: μ_{P} denotes the minimizer in Parisi's formula.
- And for generic models ${ }^{3}$

$$
\mu_{P}(\cdot)=\lim _{N \rightarrow \infty} \mathbb{E} G_{N}^{\otimes 2}\left(\left\langle\mathbf{x}_{1}, \mathbf{x}_{2}\right\rangle \in \cdot\right)
$$

$$
{ }^{3} \sum_{p} p^{-1} \mathbf{1}\left\{\gamma_{p} \neq 0\right\}=\infty .
$$

Pure states decomposition

- Reminder: μ_{p} denotes the minimizer in Parisi's formula.
- And for generic models ${ }^{3}$

$$
\mu_{P}(\cdot)=\lim _{N \rightarrow \infty} \mathbb{E} G_{N}^{\otimes 2}\left(\left\langle\mathbf{x}_{1}, \mathbf{x}_{2}\right\rangle \in \cdot\right)
$$

- Denote

$$
q_{\star}=\max \operatorname{Supp}\left(\mu_{P}\right)<1
$$

$$
{ }^{3} \sum_{p} p^{-1} \mathbf{1}\left\{\gamma_{p} \neq 0\right\}=\infty .
$$

Pure states decomposition

Theorem (Talagrand '10)

Assume $H_{N}(\sigma)$ is generic and $\mu_{P}\left(\left\{q_{\star}\right\}\right)=\alpha_{\star} \in(0,1)$.

Pure states decomposition

Theorem (Talagrand '10)

Assume $H_{N}(\sigma)$ is generic and $\mu_{P}\left(\left\{q_{\star}\right\}\right)=\alpha_{\star} \in(0,1)$.
Then there exist (random) disjoint $A_{k}=A_{N, k} \subset \mathbb{S}^{N}, k \geq 1$, s.t.:

Pure states decomposition

Theorem (Talagrand '10)

Assume $H_{N}(\sigma)$ is generic and $\mu_{P}\left(\left\{q_{\star}\right\}\right)=\alpha_{\star} \in(0,1)$.
Then there exist (random) disjoint $A_{k}=A_{N, k} \subset \mathbb{S}^{N}, k \geq 1$, s.t.:

1. $\left(G_{N}\left(A_{k}\right)\right)_{k \geq 1} \rightarrow P D\left(1-\alpha_{\star}\right)$.

Pure states decomposition

Theorem (Talagrand '10)

Assume $H_{N}(\sigma)$ is generic and $\mu_{P}\left(\left\{q_{\star}\right\}\right)=\alpha_{\star} \in(0,1)$.
Then there exist (random) disjoint $A_{k}=A_{N, k} \subset \mathbb{S}^{N}, k \geq 1$, s.t.:

1. $\left(G_{N}\left(A_{k}\right)\right)_{k \geq 1} \rightarrow P D\left(1-\alpha_{\star}\right)$.
2. $\lim _{N \rightarrow \infty} \mathbb{E} G_{N}^{\otimes 2}\left(\left\{\exists k: \mathbf{x}, \mathbf{y} \in A_{k}\right\} \triangle\left\{\left|\langle\mathbf{x}, \mathbf{y}\rangle-q_{\star}\right|<\epsilon_{N}\right\}\right)=0$.

Pure states decomposition

Theorem (Talagrand '10)

Assume $H_{N}(\sigma)$ is generic and $\mu_{P}\left(\left\{q_{\star}\right\}\right)=\alpha_{\star} \in(0,1)$.
Then there exist (random) disjoint $A_{k}=A_{N, k} \subset \mathbb{S}^{N}, k \geq 1$, s.t.:

1. $\left(G_{N}\left(A_{k}\right)\right)_{k \geq 1} \rightarrow P D\left(1-\alpha_{\star}\right)$.
2. $\lim _{N \rightarrow \infty} \mathbb{E} G_{N}^{\otimes 2}\left(\left\{\exists k: \mathbf{x}, \mathbf{y} \in A_{k}\right\} \triangle\left\{\left|\langle\mathbf{x}, \mathbf{y}\rangle-q_{\star}\right|<\epsilon_{N}\right\}\right)=0$.

* This decomposition can also be directly derived from the ultrametricity property proved by Panchenko '13; and a similar one was derived by Jagannath ' 17 even when $\alpha_{\star}=0$.

Pure states decomposition

$$
\begin{aligned}
& m^{k}=\frac{1}{G_{N}\left(A_{k}\right)} \int_{A_{k}} \mathbf{x} d G_{N}(\mathbf{x}) \\
& \operatorname{Band}(m)=\left\{\mathbf{x} \in \mathbb{S}^{N}:\left|\left\langle\mathbf{x}-\mathbf{x}_{\star}, \mathbf{x}_{\star}\right\rangle\right| \leq \delta_{N}\right\} .
\end{aligned}
$$

Pure states decomposition

(easy) Lemma

A_{k} as in Talagrand's decomposition.

$$
\begin{aligned}
& \lim _{N \rightarrow \infty} \mathbb{E}\left|\left\|m^{k}\right\|-\sqrt{q_{\star}}\right|=0 \\
& \lim _{N \rightarrow \infty} G_{N, \beta}\left(A_{k} \triangle \operatorname{Band}\left(m^{k}\right)\right)=0
\end{aligned}
$$

Pure states decomposition

Theorem (S. '18)
A_{k} as in Talagrand's decomposition.

$$
\lim _{N \rightarrow \infty} \frac{1}{N} H_{N}\left(m^{k}\right)=\lim _{N \rightarrow \infty} \frac{1}{N} \mathbb{E} \max _{x \in \sqrt{q_{x} S^{N}}} H_{N}(\mathbf{x}) .
$$

Thank You!

