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Low-density parity check codes

Linear codes
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œ let q be a prime power and A and m £n matrix over Fq

œ the codebook is ker A

œ the rate of the code is nul(A)/n

x1 x2 x3 x4 x5 x6

a1 a2 a3

Ï let d ≥ 1, k ≥ 3 be random variables with E[d 2+ε],E[k2+ε] <∞
Ï with d = E[d ], k = E[k] and m ∼ Po(dn/k) and given

n∑

i=1
d i =

m∑

i=1
k i

generate a random bipartite graph G with degrees d i ,k i

Ï insert entries drawn from χ ∈ F∗q independently to obtain A



Low-density parity check codes

Linear codes

x1 x2 x3 x4 x5 x6

a1 a2 a3

0
@

1 0 0 1 0 1
0 1 2 0 1 0
0 0 0 2 2 1

1
A

œ let q be a prime power and A and m £n matrix over Fq

œ the codebook is ker A

œ the rate of the code is nul(A)/n
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Ï A is a sparse random matrix over Fq

Ï define the rate of the code as 1− limn→∞ rank(A)/n

Ï Goal: given d ,k ,χ, find limn→∞ rank(A)/n



Prior work

Ï classical work on dense matrices [K96]

Ï the case d = d , k = k [MC03]

Ï sufficient condition for full rank [MMU08]

Ï full rank: q = 2, d ∼ Po(d), k = k [DM03,DGMMPR10,PS16]

Ï rank for q = 2, d ∼ Po(d), k = k [CFP18]

Ï rank for q > 2, d ∼ Po(d), k = k [ACOGM17]



A graph-theoretic bound

The 2-core

Keep removing

Ï zero columns

Ï columns with one non-zero entry along with that row

How many ways are there to extend A∗0 = 0 to a solution of Ax = 0?
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A graph-theoretic bound

The 2-core bound

Ï let n∗ = #columns and m∗ = #rows of the 2-core

Ï then

nul(A) ≥ n −n∗− (m −m∗) and thus

rank(A) ≤ n∗+m −m∗

Ï also trivially rank(A) ≤ m



A graph-theoretic bound

The 2-core bound

Ï with D( · ), K ( · ) the p.g.f. of d ,k , let

Φ(z) = D(1−K ′(z)/k)+ d

k

(
K (z)+ (1− z)K ′(z)−1

)
,

%= max
{

z ∈ [0,1] :Φ′(z) = 0
}

Ï Then
limsup

n→∞
rank(A)/n ≤ 1− (Φ(0)∨Φ(%))



The cavity method. . .

The replica symmetric ansatz [AS08]

Ï size-biased check degrees P[k̂ = i ] = i P[k = i ]/k

Ï fixed points of the Belief Propagation recurrence

µ(σ) ∝
d∏

i=1

∑

τ∈Fk̂i
q

1

{
τ1 =σ,

k̂ i∑

h=1
χi ,hτh = 0

}
k̂ i∏

h=2
µi ,h(τh)

via population dynamics



The cavity method. . .

The replica symmetric ansatz [AS08]

Ï the Bethe free entropy

B(µ) = E


logq

∑
σ1∈Fq

d∏

i=1

∑
σ2,...,σk̂i

∈Fq

1

{
k̂ i∑

j=1
σ jχi , j = 0

}
k̂ i∏

j=2
µi , j (σ j )




− d

k
E

[
(k −1)logq

∑
σ1,...,σk∈Fq

1

{
k∑

i=1
σiχi = 0

}
k∏

i=1
µi (σi )

]

should yield
rank(A)/n ∼ 1−B(µ)



The cavity method. . .

The replica symmetric ansatz [AS08]

Ï solutions for various d ,k read

µ=
{
δ0 with probability z

q−11 with probability 1− z
for z ∈ {0,%}

Ï in effect, B(µ) = 1− (Φ(0)∨Φ(%))

Ï Conjecture: for any d ,k ,χ,

lim
n→∞rank(A)/n = 1− (Φ(0)∨Φ(%))



The cavity method. . .

Survey Propagation and 1rsb [MM08]

Ï fixed points of the Survey Propagation equations [MRTZ02]

Ï 1rsb version of the Bethe formula

Ï Prediction: for any d ,k ,χ,

lim
n→∞rank(A)/n = 1− (Φ(0)∨Φ(%))



. . . and its caveats

Theorem [L13]

For any d ,k ,χ,

limsup
n→∞

1

n
rank(A) ≤ 1− max

z∈[0,1]
Φ(z)

Proof via determinant and the matching number [BLS13]



. . . and its caveats

Example [L13]

Consider d ,k with

D(z) = K (z) = 4z3/5+ z15/5

Then %= 1 andΦ(0) =Φ(%) = 0 but

limsup
n→∞

1

n
rank(A) < 1.



. . . and its caveats

Example [COG18]

Letting k = 10 and

D(z) = (190z3 +7z200)/197,

we have %= 1 andΦ(0) =Φ(%) = 0 but

limsup
n→∞

1

n
rank(A) < 1.
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The rank formula

Theorem [COG18]

If

Ï either Var(k) = 0 or k ∼ Po≥`(λ), and

Ï either Var(d ) = 0 or d ∼ Po≥`′(λ′),

then

lim
n→∞

1

n
rank(A) = 1−Φ(0)∨Φ(%)

This covers all examples from [AS08].



Aizenman-Sims-Starr

limsup
n→∞

1

n
E[nul(A)] ≤ limsup

n→∞
E[nul(An+1)]−E[nul(An)]



Aizenman-Sims-Starr

E[nul(An+1)]−E[nul(An)] ≤ max
α∈[0,1]

Φ(α)+o(1)



Cavities redux

Ï let Aε,n be a random mε×n-matrix with

mε ∼ Po((1−ε)dn/k)

Ï cavities are variables that undershoot their target degrees



Cavities redux

xn+1
A' A'

a1

a2

Ï Aε,n+1 and Aε,n can be coupled (relatively) easily

Ï we aim to show

limsup
ε→0

limsup
n→∞

E
[
nul(Aε,n+1)−nul(Aε,n)

]≤ max
α∈[0,1]

Φ(α)



The Boltzmann distribution

Ï for an m ×n matrix A define µA ∈P (Fn
q ) by

µA(σ) = 1{σ ∈ ker A}/qnul(A)

Ï µA is (δ,`)-extremal if

n∑

i1,...,i`=1

∥∥µA,i1,...,i` −µA,i1 ⊗·· ·⊗µA,i`

∥∥
TV < δn`



The Boltzmann distribution

Lemma [ACOGM17]

For any m ×n matrix A there is a partition I0, . . . , It of {1, . . . ,n} s.t.

µA,i =
{
δ0 if i ∈ I0

q−11 otherwise

H(µA,i , j ) = 2log q if i ∈ Is , j ∈ Is′ , 1 ≤ s < s′

H(µA,i , j ) = ln q if i , j ∈ Is , 1 ≤ s



The Boltzmann distribution

Corollary [ACOGM17]

For any δ,`> 0 there is θ = θ(δ,`) > 0 such that for any m×n matrix
A for a random column permutation π,

Â =
(

Aπ

idθ×θ 0

)

satisfies
P

[
µÂ is (δ,`)-extrmal

]> 1−δ.



The Boltzmann distribution

Corollary [ACOGM17]

For any δ,`> 0 there is θ = θ(δ,`) > 0 such that

P
[
µAε,n,θ is (δ,`)-extrmal

]> 1−δ.



Adding a check

A' a

Ï let α be the (weighted) fraction of frozen cavities

Ï adding a check a of degree κ entails

E[nul(A′+a) |α] =ακ−1+o(1)



Adding a variable

xn+1
A'

Ï let α be the (weighted) fraction of frozen cavities

Ï adding xn+1 along with checks of degrees κ1, . . . ,κγ yields

E[nul(A′+xn+1 +a1 +·· ·+aγ) |α]

=γ
γ∏

i=1

(
1−ακi−1)+

γ∑

i=1

(
ακi−1 −1

)+ (1−γ)
γ∏

i=1

(
1−ακi−1)

=
γ∏

i=1

(
1−ακi−1)+

γ∑

i=1

(
ακi−1 −1

)



Lower bound via interpolation

Ï set up an interpolation with

mε(t ) = Po((1−ε)tdn/k) ‘real’ checks,

mε(t ) = Po((1−ε)(1− t )dnE[k2]/k) unary checks

Ï actual matrices throughout the interpolation



Summary

Ï proof of Lelarge’s rank conjecture

lim
n→∞

1

n
rank(A) = 1− max

α∈[0,1]
Φ(α)

Ï proof strategy inspired by inference problems [COKPZ18]

Ï Open problem: random equations over finite groups?


