The rank of random matrices over \mathbb{F}_{q}

Amin Coja-Oghlan
Goethe University Frankfurt
joint work with Pu Gao

Linear codes

$\left(\begin{array}{llllll}1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 2 & 0 & 1 & 0 \\ 0 & 0 & 0 & 2 & 2 & 1\end{array}\right)$

- let q be a prime power and A and $m \times n$ matrix over \mathbb{F}_{q}
- the codebook is $\operatorname{ker} A$
- the rate of the code is $\operatorname{nul}(A) / n$

Low-density parity check codes

$$
\left(\begin{array}{llllll}
1 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 2 & 0 & 1 & 0 \\
0 & 0 & 0 & 2 & 2 & 1
\end{array}\right)
$$

- let $\boldsymbol{d} \geq 1, \boldsymbol{k} \geq 3$ be random variables with $\mathrm{E}\left[\boldsymbol{d}^{2+\varepsilon}\right], \mathrm{E}\left[\boldsymbol{k}^{2+\varepsilon}\right]<\infty$
- with $d=\mathrm{E}[\boldsymbol{d}], k=\mathrm{E}[\boldsymbol{k}]$ and $m \sim \operatorname{Po}(d n / k)$ and given

$$
\sum_{i=1}^{n} \boldsymbol{d}_{i}=\sum_{i=1}^{m} \boldsymbol{k}_{i}
$$

generate a random bipartite graph \mathbf{G} with degrees $\boldsymbol{d}_{i}, \boldsymbol{k}_{i}$

- insert entries drawn from $\chi \in \mathbb{F}_{q}^{*}$ independently to obtain \boldsymbol{A}

Low-density parity check codes

$$
\left(\begin{array}{llllll}
1 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 2 & 0 & 1 & 0 \\
0 & 0 & 0 & 2 & 2 & 1
\end{array}\right)
$$

- \boldsymbol{A} is a sparse random matrix over \mathbb{F}_{q}
- define the rate of the code as $1-\lim _{n \rightarrow \infty} \operatorname{rank}(A) / n$
- Goal: given $\boldsymbol{d}, \boldsymbol{k}, \boldsymbol{\chi}$, find $\lim _{n \rightarrow \infty} \operatorname{rank}(\boldsymbol{A}) / n$

Prior work

- classical work on dense matrices
- the case $\boldsymbol{d}=d, \boldsymbol{k}=k$
[MC03]
- sufficient condition for full rank
[MMU08]
- full rank: $q=2, \boldsymbol{d} \sim \operatorname{Po}(d), \boldsymbol{k}=k$
- rank for $q=2, \boldsymbol{d} \sim \operatorname{Po}(d), \boldsymbol{k}=k$
- rank for $q>2, \boldsymbol{d} \sim \operatorname{Po}(d), \boldsymbol{k}=k$
[CFP18]
[ACOGM17]

A graph-theoretic bound

The 2-core
Keep removing

- zero columns
- columns with one non-zero entry along with that row

How many ways are there to extend $A_{*} 0=0$ to a solution of $A x=0$?

A graph-theoretic bound

The 2-core

Keep removing

- zero columns
- columns with one non-zero entry along with that row

How many ways are there to extend $A_{*} 0=0$ to a solution of $A x=0$?

A graph-theoretic bound

The 2-core

Keep removing

- zero columns
- columns with one non-zero entry along with that row

How many ways are there to extend $A_{*} 0=0$ to a solution of $A x=0$?

A graph-theoretic bound

The 2-core bound

- let $\boldsymbol{n}^{*}=$ \#columns and $\boldsymbol{m}^{*}=$ \#rows of the 2-core
- then

$$
\begin{aligned}
\operatorname{nul}(\boldsymbol{A}) & \geq n-\boldsymbol{n}^{*}-\left(m-\boldsymbol{m}^{*}\right) \quad \text { and thus } \\
\operatorname{rank}(\boldsymbol{A}) & \leq \boldsymbol{n}^{*}+m-\boldsymbol{m}^{*}
\end{aligned}
$$

- also trivially $\operatorname{rank}(\boldsymbol{A}) \leq m$

A graph-theoretic bound

The 2-core bound

- with $D(\cdot), K(\cdot)$ the p.g.f. of $\boldsymbol{d}, \boldsymbol{k}$, let

$$
\begin{aligned}
\Phi(z) & =D\left(1-K^{\prime}(z) / k\right)+\frac{d}{k}\left(K(z)+(1-z) K^{\prime}(z)-1\right), \\
\varrho & =\max \left\{z \in[0,1]: \Phi^{\prime}(z)=0\right\}
\end{aligned}
$$

- Then

$$
\operatorname{limsuprank}(A) / n \leq 1-(\Phi(0) \vee \Phi(\varrho))
$$

$$
n \rightarrow \infty
$$

The cavity method...

The replica symmetric ansatz
[AS08]

- size-biased check degrees $\mathrm{P}[\hat{\boldsymbol{k}}=i]=i \mathrm{P}[\boldsymbol{k}=i] / k$
- fixed points of the Belief Propagation recurrence

$$
\boldsymbol{\mu}(\sigma) \propto \prod_{i=1}^{\boldsymbol{d}} \sum_{\tau \in \mathbb{F}_{q}^{\hat{k}_{i}}} \mathbf{1}\left\{\tau_{1}=\sigma, \sum_{h=1}^{\hat{\boldsymbol{k}}_{i}} \boldsymbol{\chi}_{i, h} \tau_{h}=0\right\} \prod_{h=2}^{\hat{\boldsymbol{k}}_{i}} \boldsymbol{\mu}_{i, h}\left(\tau_{h}\right)
$$

via population dynamics

The cavity method...

The replica symmetric ansatz
[AS08]

- the Bethe free entropy

$$
\begin{aligned}
\mathscr{B}(\boldsymbol{\mu})=\mathrm{E} & {\left[\log _{q} \sum_{\sigma_{1} \in \mathbb{F}_{q}} \prod_{i=1}^{\boldsymbol{d}} \sum_{\sigma_{2}, \ldots, \sigma_{\hat{k}_{i}} \in \mathbb{F}_{q}} \mathbf{1}\left\{\sum_{j=1}^{\hat{\boldsymbol{k}}_{i}} \sigma_{j} \boldsymbol{\chi}_{i, j}=0\right\} \prod_{j=2}^{\hat{\boldsymbol{k}}_{i}} \boldsymbol{\mu}_{i, j}\left(\sigma_{j}\right)\right] } \\
& -\frac{d}{k} \mathrm{E}\left[(\boldsymbol{k}-1) \log _{q} \sum_{\sigma_{1}, \ldots, \sigma_{k} \in \mathbb{F}_{q}} \mathbf{1}\left\{\sum_{i=1}^{\boldsymbol{k}} \sigma_{i} \boldsymbol{\chi}_{i}=0\right\} \prod_{i=1}^{\boldsymbol{k}} \boldsymbol{\mu}_{i}\left(\sigma_{i}\right)\right]
\end{aligned}
$$

should yield

$$
\operatorname{rank}(\boldsymbol{A}) / n \sim 1-\mathscr{B}(\boldsymbol{\mu})
$$

The cavity method...

The replica symmetric ansatz
[AS08]

- solutions for various $\boldsymbol{d}, \boldsymbol{k}$ read

$$
\boldsymbol{\mu}=\left\{\begin{array}{ll}
\delta_{0} & \text { with probability } z \\
q^{-1} \mathbf{1} & \text { with probability } 1-z
\end{array} \quad \text { for } z \in\{0, \varrho\}\right.
$$

- in effect, $\mathscr{B}(\boldsymbol{\mu})=1-(\Phi(0) \vee \Phi(\varrho))$
- Conjecture: for any $\boldsymbol{d}, \boldsymbol{k}, \boldsymbol{\chi}$,

$$
\lim _{n \rightarrow \infty} \operatorname{rank}(\boldsymbol{A}) / n=1-(\Phi(0) \vee \Phi(\varrho))
$$

The cavity method...

Survey Propagation and 1rsb
[MM08]

- fixed points of the Survey Propagation equations
[MRTZ02]
- 1 rsb version of the Bethe formula
- Prediction: for any $\boldsymbol{d}, \boldsymbol{k}, \boldsymbol{\chi}$,

$$
\lim _{n \rightarrow \infty} \operatorname{rank}(A) / n=1-(\Phi(0) \vee \Phi(\varrho))
$$

... and its caveats

Theorem
For any $\boldsymbol{d}, \boldsymbol{k}, \boldsymbol{\chi}$,

$$
\limsup _{n \rightarrow \infty} \frac{1}{n} \operatorname{rank}(A) \leq 1-\max _{z \in[0,1]} \Phi(z)
$$

Proof via determinant and the matching number

... and its caveats

Example

Consider $\boldsymbol{d}, \boldsymbol{k}$ with

$$
D(z)=K(z)=4 z^{3} / 5+z^{15} / 5
$$

Then $\varrho=1$ and $\Phi(0)=\Phi(\varrho)=0$ but

$$
\limsup _{n \rightarrow \infty} \frac{1}{n} \operatorname{rank}(A)<1 .
$$

... and its caveats

Example

Letting $\boldsymbol{k}=10$ and

$$
D(z)=\left(190 z^{3}+7 z^{200}\right) / 197
$$

we have $\varrho=1$ and $\Phi(0)=\Phi(\varrho)=0$ but

$$
\limsup _{n \rightarrow \infty} \frac{1}{n} \operatorname{rank}(\boldsymbol{A})<1
$$

... and its caveats

Conjecture
For any $\boldsymbol{d}, \boldsymbol{k}, \boldsymbol{\chi}$,

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \operatorname{rank}(\boldsymbol{A})=1-\max _{\alpha \in[0,1]} \Phi(\alpha)
$$

The rank formula

Theorem
[COG18]
For any $\boldsymbol{d}, \boldsymbol{k}, \boldsymbol{\chi}$,

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \operatorname{rank}(\boldsymbol{A})=1-\max _{\alpha \in[0,1]} \Phi(\alpha)
$$

The rank formula

Theorem
[COG18]
If

- either $\operatorname{Var}(\boldsymbol{k})=0$ or $\boldsymbol{k} \sim \mathrm{Po}_{\geq \ell}(\lambda)$, and
- either $\operatorname{Var}(\boldsymbol{d})=0$ or $\boldsymbol{d} \sim \mathrm{Po}_{\geq \ell^{\prime}}\left(\lambda^{\prime}\right)$, then

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \operatorname{rank}(\boldsymbol{A})=1-\Phi(0) \vee \Phi(\varrho)
$$

This covers all examples from [AS08].

Aizenman-Sims-Starr

$\underset{n \rightarrow \infty}{\limsup } \frac{1}{n} \mathrm{E}[\operatorname{nul}(\boldsymbol{A})] \leq \underset{n \rightarrow \infty}{\limsup } \mathrm{E}\left[\operatorname{nul}\left(\boldsymbol{A}_{n+1}\right)\right]-\mathrm{E}\left[\operatorname{nul}\left(\boldsymbol{A}_{n}\right)\right]$

Aizenman-Sims-Starr

$\mathrm{E}\left[\operatorname{nul}\left(\boldsymbol{A}_{n+1}\right)\right]-\mathrm{E}\left[\operatorname{nul}\left(\boldsymbol{A}_{n}\right)\right] \leq \max _{\alpha \in[0,1]} \Phi(\alpha)+o(1)$

Cavities redux

- let $\boldsymbol{A}_{\varepsilon, n}$ be a random $m_{\varepsilon} \times n$-matrix with

$$
m_{\varepsilon} \sim \operatorname{Po}((1-\varepsilon) d n / k)
$$

- cavities are variables that undershoot their target degrees

Cavities redux

- $\boldsymbol{A}_{\varepsilon, n+1}$ and $\boldsymbol{A}_{\varepsilon, n}$ can be coupled (relatively) easily
- we aim to show

$$
\limsup _{\varepsilon \rightarrow 0} \limsup _{n \rightarrow \infty} \mathrm{E}\left[\operatorname{nul}\left(\boldsymbol{A}_{\varepsilon, n+1}\right)-\operatorname{nul}\left(\boldsymbol{A}_{\varepsilon, n}\right)\right] \leq \max _{\alpha \in[0,1]} \Phi(\alpha)
$$

The Boltzmann distribution

- for an $m \times n$ matrix A define $\mu_{A} \in \mathscr{P}\left(\mathbb{F}_{q}^{n}\right)$ by

$$
\mu_{A}(\sigma)=\mathbf{1}\{\sigma \in \operatorname{ker} A\} / q^{\operatorname{nul}(A)}
$$

- μ_{A} is (δ, ℓ)-extremal if

$$
\sum_{i_{1}, \ldots, i_{\ell}=1}^{n}\left\|\mu_{A, i_{1}, \ldots, i_{\ell}}-\mu_{A, i_{1}} \otimes \cdots \otimes \mu_{A, i_{\ell}}\right\|_{\mathrm{TV}}<\delta n^{\ell}
$$

The Boltzmann distribution

Lemma
For any $m \times n$ matrix A there is a partition I_{0}, \ldots, I_{t} of $\{1, \ldots, n\}$ s.t.

$$
\begin{aligned}
& \mu_{A, i}= \begin{cases}\delta_{0} & \text { if } i \in I_{0} \\
q^{-1} \mathbf{1} & \text { otherwise }\end{cases} \\
& H\left(\mu_{A, i, j}\right)=2 \log q \quad \text { if } i \in I_{s}, j \in I_{s^{\prime}}, 1 \leq s<s^{\prime} \\
& H\left(\mu_{A, i, j}\right)=\ln q \quad \text { if } i, j \in I_{s}, 1 \leq s
\end{aligned}
$$

The Boltzmann distribution

Corollary
For any $\delta, \ell>0$ there is $\boldsymbol{\theta}=\boldsymbol{\theta}(\delta, \ell)>0$ such that for any $m \times n$ matrix A for a random column permutation π,

$$
\hat{A}=\left(\begin{array}{cc}
A^{\boldsymbol{\pi}} & \\
\operatorname{id}_{\boldsymbol{\theta} \times \boldsymbol{\theta}} & 0
\end{array}\right)
$$

satisfies

$$
\mathrm{P}\left[\mu_{\hat{A}} \text { is }(\delta, \ell) \text {-extrmal }\right]>1-\delta .
$$

The Boltzmann distribution

Corollary
For any $\delta, \ell>0$ there is $\boldsymbol{\theta}=\boldsymbol{\theta}(\delta, \ell)>0$ such that

$$
\mathrm{P}\left[\mu_{\boldsymbol{A}_{\varepsilon, n, \boldsymbol{\theta}}} \text { is }(\delta, \ell) \text {-extrmal }\right]>1-\delta .
$$

Adding a check

- let $\boldsymbol{\alpha}$ be the (weighted) fraction of frozen cavities
- adding a check a of degree κ entails

$$
\mathrm{E}\left[\operatorname{nul}\left(\boldsymbol{A}^{\prime}+a\right) \mid \boldsymbol{\alpha}\right]=\boldsymbol{\alpha}^{\kappa}-1+o(1)
$$

Adding a variable

- let $\boldsymbol{\alpha}$ be the (weighted) fraction of frozen cavities
- adding x_{n+1} along with checks of degrees $\kappa_{1}, \ldots, \kappa_{\gamma}$ yields
$\mathrm{E}\left[\operatorname{nul}\left(\boldsymbol{A}^{\prime}+x_{n+1}+a_{1}+\cdots+a_{\boldsymbol{r}}\right) \mid \boldsymbol{\alpha}\right]$

$$
\begin{aligned}
& =\boldsymbol{\gamma} \prod_{i=1}^{\boldsymbol{\gamma}}\left(1-\boldsymbol{\alpha}^{\kappa_{i}-1}\right)+\sum_{i=1}^{\boldsymbol{\gamma}}\left(\boldsymbol{\alpha}^{\kappa_{i}-1}-1\right)+(1-\boldsymbol{\gamma}) \prod_{i=1}^{\boldsymbol{\gamma}}\left(1-\boldsymbol{\alpha}^{\kappa_{i}-1}\right) \\
& =\prod_{i=1}^{\boldsymbol{\gamma}}\left(1-\boldsymbol{\alpha}^{\kappa_{i}-1}\right)+\sum_{i=1}^{\boldsymbol{\gamma}}\left(\boldsymbol{\alpha}^{\kappa_{i}-1}-1\right)
\end{aligned}
$$

Lower bound via interpolation

- set up an interpolation with

$$
\begin{array}{ll}
m_{\varepsilon}(t)=\operatorname{Po}((1-\varepsilon) t d n / k) & \text { 'real' checks, } \\
m_{\varepsilon}(t)=\operatorname{Po}\left((1-\varepsilon)(1-t) d n \mathrm{E}\left[\boldsymbol{k}^{2}\right] / k\right) & \text { unary checks }
\end{array}
$$

- actual matrices throughout the interpolation

Summary

- proof of Lelarge's rank conjecture

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \operatorname{rank}(\boldsymbol{A})=1-\max _{\alpha \in[0,1]} \Phi(\alpha)
$$

- proof strategy inspired by inference problems
- Open problem: random equations over finite groups?

