The rank of random matrices over \mathbb{F}_q

Amin Coja-Oghlan Goethe University Frankfurt

joint work with Pu Gao

Linear codes

- ▶ let *q* be a prime power and *A* and $m \times n$ matrix over \mathbb{F}_q
- the codebook is ker A
- the rate of the code is nul(A)/n

Low-density parity check codes

- ▶ let $d \ge 1$, $k \ge 3$ be random variables with $\mathbb{E}[d^{2+\varepsilon}], \mathbb{E}[k^{2+\varepsilon}] < \infty$
- with d = E[d], k = E[k] and $m \sim Po(dn/k)$ and given

$$\sum_{i=1}^{n} \boldsymbol{d}_{i} = \sum_{i=1}^{m} \boldsymbol{k}_{i}$$

generate a random bipartite graph **G** with degrees d_i , k_i

• insert entries drawn from $\chi \in \mathbb{F}_q^*$ independently to obtain *A*

Low-density parity check codes

- A is a sparse random matrix over \mathbb{F}_q
- define the rate of the code as $1 \lim_{n \to \infty} \operatorname{rank}(A)/n$
- *Goal:* given d, k, χ , find $\lim_{n\to\infty} \operatorname{rank}(A)/n$

Prior work

classical work on dense matrices	[K96]
the case $\boldsymbol{d} = d$, $\boldsymbol{k} = k$	[MC03]
sufficient condition for full rank	[MMU08]
full rank: $q = 2$, $d \sim Po(d)$, $k = k$	[DM03,DGMMPR10,PS16]
rank for $q = 2$, $\boldsymbol{d} \sim \text{Po}(\boldsymbol{d})$, $\boldsymbol{k} = k$	[CFP18]
rank for $q > 2$, $\boldsymbol{d} \sim \text{Po}(\boldsymbol{d})$, $\boldsymbol{k} = k$	[ACOGM17]

The 2-core

Keep removing

- zero columns
- columns with one non-zero entry along with that row

How many ways are there to extend $A_*0 = 0$ to a solution of Ax = 0?

The 2-core

Keep removing

- zero columns
- columns with one non-zero entry along with that row

How many ways are there to extend $A_*0 = 0$ to a solution of Ax = 0?

The 2-core

Keep removing

- zero columns
- columns with one non-zero entry along with that row

How many ways are there to extend $A_*0 = 0$ to a solution of Ax = 0?

The 2-core bound

▶ let n^* = #columns and m^* = #rows of the 2-core

► then

$$\operatorname{nul}(A) \ge n - n^* - (m - m^*) \qquad \text{and thus}$$
$$\operatorname{rank}(A) \le n^* + m - m^*$$

• also trivially $rank(A) \le m$

The 2-core bound

• with $D(\cdot)$, $K(\cdot)$ the p.g.f. of d, k, let

$$\Phi(z) = D(1 - K'(z)/k) + \frac{d}{k} (K(z) + (1 - z)K'(z) - 1),$$

$$\rho = \max \{ z \in [0, 1] : \Phi'(z) = 0 \}$$

Then

$$\limsup_{n \to \infty} \operatorname{rank}(A) / n \le 1 - (\Phi(0) \lor \Phi(\varrho))$$

The replica symmetric ansatz

[AS08]

- ► size-biased check degrees $P[\hat{k} = i] = iP[k = i]/k$
- fixed points of the Belief Propagation recurrence

$$\boldsymbol{\mu}(\sigma) \propto \prod_{i=1}^{d} \sum_{\tau \in \mathbb{F}_q^{\hat{k}_i}} \mathbf{1} \left\{ \tau_1 = \sigma, \sum_{h=1}^{\hat{k}_i} \boldsymbol{\chi}_{i,h} \tau_h = 0 \right\} \prod_{h=2}^{\hat{k}_i} \boldsymbol{\mu}_{i,h}(\tau_h)$$

via population dynamics

The replica symmetric ansatz

[AS08]

the Bethe free entropy

$$\mathscr{B}(\boldsymbol{\mu}) = \mathbb{E}\left[\log_{q} \sum_{\sigma_{1} \in \mathbb{F}_{q}} \prod_{i=1}^{d} \sum_{\sigma_{2},...,\sigma_{\hat{k}_{i}} \in \mathbb{F}_{q}} \mathbf{1} \left\{ \sum_{j=1}^{\hat{k}_{i}} \sigma_{j} \boldsymbol{\chi}_{i,j} = 0 \right\} \prod_{j=2}^{\hat{k}_{i}} \boldsymbol{\mu}_{i,j}(\sigma_{j}) \right] \\ - \frac{d}{k} \mathbb{E}\left[(\boldsymbol{k}-1) \log_{q} \sum_{\sigma_{1},...,\sigma_{k} \in \mathbb{F}_{q}} \mathbf{1} \left\{ \sum_{i=1}^{\boldsymbol{k}} \sigma_{i} \boldsymbol{\chi}_{i} = 0 \right\} \prod_{i=1}^{\boldsymbol{k}} \boldsymbol{\mu}_{i}(\sigma_{i}) \right]$$

should yield

 $\operatorname{rank}(A)/n \sim 1 - \mathscr{B}(\mu)$

The replica symmetric ansatz

[AS08]

▶ solutions for various *d*, *k* read

 $\boldsymbol{\mu} = \begin{cases} \delta_0 & \text{with probability } z \\ q^{-1} \mathbf{1} & \text{with probability } 1 - z \end{cases} \quad \text{for } z \in \{0, \varrho\}$

- in effect, $\mathscr{B}(\boldsymbol{\mu}) = 1 (\Phi(0) \lor \Phi(\varrho))$
- *Conjecture:* for any d, k, χ ,

$$\lim_{n \to \infty} \operatorname{rank}(A) / n = 1 - (\Phi(0) \lor \Phi(\varrho))$$

Survey Propagation and 1rsb

[MM08]

- fixed points of the Survey Propagation equations [MRTZ02]
- 1rsb version of the Bethe formula
- *Prediction:* for any d, k, χ ,

 $\lim_{n \to \infty} \operatorname{rank}(A) / n = 1 - (\Phi(0) \lor \Phi(\varrho))$

Theorem For any d, k, χ ,

$$\limsup_{n \to \infty} \frac{1}{n} \operatorname{rank}(A) \le 1 - \max_{z \in [0,1]} \Phi(z)$$

Proof via determinant and the matching number

[BLS13]

[L13]

[L13]

Example

Consider *d*, *k* with

$$D(z) = K(z) = 4z^3/5 + z^{15}/5$$

Then $\rho = 1$ and $\Phi(0) = \Phi(\rho) = 0$ but

$$\limsup_{n\to\infty}\frac{1}{n}\operatorname{rank}(A) < 1.$$

[COG18]

Example

Letting k = 10 and

$$D(z) = (190z^3 + 7z^{200})/197,$$

we have $\rho = 1$ and $\Phi(0) = \Phi(\rho) = 0$ but

$$\limsup_{n\to\infty}\frac{1}{n}\operatorname{rank}(A) < 1.$$

Conjecture For any d, k, χ ,

$$\lim_{n \to \infty} \frac{1}{n} \operatorname{rank}(A) = 1 - \max_{\alpha \in [0,1]} \Phi(\alpha)$$

[L13]

The rank formula

Theorem

[COG18]

For any $\boldsymbol{d}, \boldsymbol{k}, \boldsymbol{\chi},$

$$\lim_{n \to \infty} \frac{1}{n} \operatorname{rank}(A) = 1 - \max_{\alpha \in [0,1]} \Phi(\alpha)$$

The rank formula

Theorem

[COG18]

If

- either $\operatorname{Var}(\mathbf{k}) = 0$ or $\mathbf{k} \sim \operatorname{Po}_{\geq \ell}(\lambda)$, and
- either $\operatorname{Var}(\boldsymbol{d}) = 0$ or $\boldsymbol{d} \sim \operatorname{Po}_{\geq \ell'}(\lambda')$,

then

$$\lim_{n \to \infty} \frac{1}{n} \operatorname{rank}(A) = 1 - \Phi(0) \lor \Phi(\varrho)$$

This covers all examples from [AS08].

Aizenman-Sims-Starr

$$\limsup_{n \to \infty} \frac{1}{n} \mathbb{E} \left[\operatorname{nul}(A) \right] \le \limsup_{n \to \infty} \mathbb{E} \left[\operatorname{nul}(A_{n+1}) \right] - \mathbb{E} \left[\operatorname{nul}(A_n) \right]$$

Aizenman-Sims-Starr

$\operatorname{E}\left[\operatorname{nul}(A_{n+1})\right] - \operatorname{E}\left[\operatorname{nul}(A_n)\right] \le \max_{\alpha \in [0,1]} \Phi(\alpha) + o(1)$

Cavities redux

• let $A_{\varepsilon,n}$ be a random $m_{\varepsilon} \times n$ -matrix with

$$m_{\varepsilon} \sim \operatorname{Po}((1-\varepsilon)dn/k)$$

cavities are variables that undershoot their target degrees

Cavities redux

- $A_{\varepsilon,n+1}$ and $A_{\varepsilon,n}$ can be coupled (relatively) easily
- we aim to show

$$\limsup_{\varepsilon \to 0} \limsup_{n \to \infty} \mathbb{E} \left[\operatorname{nul}(A_{\varepsilon, n+1}) - \operatorname{nul}(A_{\varepsilon, n}) \right] \le \max_{\alpha \in [0, 1]} \Phi(\alpha)$$

• for an $m \times n$ matrix A define $\mu_A \in \mathscr{P}(\mathbb{F}_q^n)$ by

$$\mu_A(\sigma) = \mathbf{1}\{\sigma \in \ker A\} / q^{\operatorname{nul}(A)}$$

• μ_A is (δ, ℓ) -extremal if

$$\sum_{i_1,...,i_{\ell}=1}^n \|\mu_{A,i_1,...,i_{\ell}} - \mu_{A,i_1} \otimes \cdots \otimes \mu_{A,i_{\ell}}\|_{\mathrm{TV}} < \delta n^{\ell}$$

Lemma

[ACOGM17]

For any $m \times n$ matrix *A* there is a partition I_0, \ldots, I_t of $\{1, \ldots, n\}$ s.t.

$\int \delta_0$	if $i \in I_0$
$\mu_{A,i} = \left(q^{-1}1\right)$	otherwise
$H(\mu_{A,i,j}) = 2\log q$	if $i \in I_s$, $j \in I_{s'}$, $1 \le s < s'$
$H(\mu_{A,i,j}) = \ln q$	if $i, j \in I_s, 1 \leq s$

Corollary

[ACOGM17]

For any δ , $\ell > 0$ there is $\theta = \theta(\delta, \ell) > 0$ such that for any $m \times n$ matrix *A* for a random column permutation π ,

$$\hat{A} = \begin{pmatrix} A^{\boldsymbol{\pi}} \\ i \mathbf{d}_{\boldsymbol{\theta} \times \boldsymbol{\theta}} & 0 \end{pmatrix}$$

satisfies

$$P\left[\mu_{\hat{A}} \text{ is } (\delta, \ell) \text{-extrmal}\right] > 1 - \delta.$$

Corollary

[ACOGM17]

For any δ , $\ell > 0$ there is $\theta = \theta(\delta, \ell) > 0$ such that

 $\mathbb{P}\left[\mu_{A_{\varepsilon,n,\theta}} \text{ is } (\delta, \ell) \text{-extrmal}\right] > 1 - \delta.$

Adding a check

- let $\boldsymbol{\alpha}$ be the (weighted) fraction of frozen cavities
- adding a check a of degree κ entails

 $\mathrm{E}[\mathrm{nul}(\mathbf{A}' + a) \mid \boldsymbol{\alpha}] = \boldsymbol{\alpha}^{\kappa} - 1 + o(1)$

Adding a variable

- let α be the (weighted) fraction of frozen cavities
- adding x_{n+1} along with checks of degrees $\kappa_1, \ldots, \kappa_{\gamma}$ yields

$$\begin{aligned} & \mathbb{E}[\operatorname{nul}(\boldsymbol{A}' + \boldsymbol{x}_{n+1} + \boldsymbol{a}_1 + \dots + \boldsymbol{a}_{\gamma}) \mid \boldsymbol{\alpha}] \\ &= \boldsymbol{\gamma} \prod_{i=1}^{\gamma} \left(1 - \boldsymbol{\alpha}^{\kappa_i - 1} \right) + \sum_{i=1}^{\gamma} \left(\boldsymbol{\alpha}^{\kappa_i - 1} - 1 \right) + (1 - \boldsymbol{\gamma}) \prod_{i=1}^{\gamma} \left(1 - \boldsymbol{\alpha}^{\kappa_i - 1} \right) \\ &= \prod_{i=1}^{\gamma} \left(1 - \boldsymbol{\alpha}^{\kappa_i - 1} \right) + \sum_{i=1}^{\gamma} \left(\boldsymbol{\alpha}^{\kappa_i - 1} - 1 \right) \end{aligned}$$

Lower bound via interpolation

set up an interpolation with

$$\begin{split} m_{\varepsilon}(t) &= \operatorname{Po}((1-\varepsilon)tdn/k) & \text{`real' checks,} \\ m_{\varepsilon}(t) &= \operatorname{Po}((1-\varepsilon)(1-t)dn\operatorname{E}[\boldsymbol{k}^2]/k) & \text{unary checks} \end{split}$$

actual matrices throughout the interpolation

Summary

proof of Lelarge's rank conjecture

$$\lim_{n \to \infty} \frac{1}{n} \operatorname{rank}(A) = 1 - \max_{\alpha \in [0,1]} \Phi(\alpha)$$

- proof strategy inspired by inference problems [COKPZ18]
- *Open problem:* random equations over finite groups?