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> let g be a prime power and A and m x n matrix over [,
» the codebook is ker A

» the rate of the code is nul(A)/n
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Low-density parity check codes
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» letd = 1, k = 3 be random variables with E[d**¢], E[k*"¢] < oo
» with d = El[d], k =E[k] and m ~ Po(dn/k) and given

n m
Ydi=Y ki
i=1 i=1

generate a random bipartite graph G with degrees d;, k;

> insert entries drawn from y € [ independently to obtain A



Low-density parity check codes
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» Ais asparse random matrix over [
» define the rate of the code as 1 —lim,,_., rank(A4)/n

» Goal: given d, k, x, find lim,,_. ., rank(A)/n



Prior work

» classical work on dense matrices
» thecased=d, k=k

» sufficient condition for full rank

» fullrank: g =2,d ~Po(d), k=k

» rankfor g=2,d ~Po(d), k=k

» rank for g >2,d ~Po(d), k=k

[K96]

[MCO03]

[MMUO08]
[DM03,DGMMPR10,PS16]
[CFP18]

[ACOGM17]



A graph-theoretic bound

The 2-core
Keep removing
» zero columns

» columns with one non-zero entry along with that row

How many ways are there to extend A0 =0 to a solution of Ax =0?
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A graph-theoretic bound

The 2-core bound

» let n* = #columns and m™* = #rows of the 2-core

» then

nul(A)=n-n"—(m-m") and thus

rank(A) <n*  + m-m*

» also trivially rank(A) < m



A graph-theoretic bound

IR,

The 2-core bound

» with D(-), K(-) the p.g.f. of d, k, let

! d !
®(2) = DA-K'(2)/k) + = (K(2)+1Q-2K'(2)-1),
o =max{z€[0,1]: ®'(z) =0}
» Then
limsuprank(A)/n < 1—(P(0) v d(p))

n—oo



The cavity method...

The replica symmetric ansatz [AS08]

» size-biased check degrees P[k = i] = iP[k = i] /k

» fixed points of the Belief Propagation recurrence

k;
1(0) ]_[ Z l{n—tf,ZthTh— }HI‘i,h(Th)
h=2

T€[F

via population dynamics



The cavity method...

The replica symmetric ansatz [AS08]

> the Bethe free entropy

B(p) =E

d ki ki
logy, 2. [T 2 1{, ijz',j=0}]_[ﬂi,j(0ﬂ]
J

01€Fgi=10>,.., Uic,-E[Fq

_dy
k

k
(k-Dlog, > 1{20,-7(,.:0}
q

should yield
rank(A)/n~1-%(u)



The cavity method...

The replica symmetric ansatz [AS08]

» solutions for various d, k read

0 ith babili
:{ 0 with probability z for z € {0, 0}

g '1  with probability 1 — z

» in effect, B(u) = 1— (®(0) v ®(p))
» Conjecture: forany d, k, x,

r}ijlgorank(A)/n =1—(P(0) v D(p))



The cavity method...

Survey Propagation and 1rsb [MMO8]

» fixed points of the Survey Propagation equations [MRTZ02]
» 1rsb version of the Bethe formula

» Prediction: for any d, k, ¥,

r}glgorank(A)/n =1-(®(0) Vv D(p))



..and its caveats

Theorem

Foranyd, k, x,

1
limsup —rank(A) <1 — max ®(z)
n—oo N z€[0,1]

Proofvia determinant and the matching number

[L13]

[BLS13]



..and its caveats

Example [L13]
Consider d, k with

D(z) = K(z) =42z%/5+z"°/5

Then p =1 and ®(0) = ®(p) = 0 but

1
limsup —rank(A) < 1.
n—oo n



..and its caveats

-0.04:

Example [COG18]
Letting k = 10 and

D(z) = (19022 + 72°%%) /197,

we have p = 1 and ®(0) = ®(p) = 0 but

1
limsup —rank(A) < 1.
n—oo n



..and its caveats

Conjecture [L13]

Foranyd, k, x,

1
lim —rank(A) =1 - max ®(a)
n—oon ael0,1]



The rank formula

Theorem [COG18]
Foranyd, k, x,

1
lim —rank(A)=1- max D(a)
n—oo a€l0,1



The rank formula

Theorem [COG18]

If
» either Var(k) =0 or k ~Po=,(1), and
» either Var(d) =0 or d ~ Po= ¢ (1),
then

1
lim —rank(A4) =1-®(0) v ®(p)
n—oon

This covers all examples from [AS08].



Aizenman-Sims-Starr

hmsup E [nul(A4)] < limsupE [nul(A;+1)] — E[nul(A,)]

n—oo n—oo



Aizenman-Sims-Starr

E[nul(A;+1)] - Enul(4,)] < ey ®(a) +o(1)



Cavities redux

> let A; , be arandom m, x n-matrix with
me ~Po((1 —e)dnlk)

» cavities are variables that undershoot their target degrees



Cavities redux

RPIPYY
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» A, ,+1 and A; , can be coupled (relatively) easily

» we aim to show

limsuplimsupE [nul(Ag, »+1) — nul(4;,,)] < III[SIX D (a)

e—0 n—oo



The Boltzmann distribution

» for an m x n matrix A define us € ;@([FZ) by
a(0) = 1{o € ker A}/ g™

> g is (0, ¢)-extremal if

n
Z ||.UA,i1 ,,,,, ig_IJA,il®"'®ﬂAyi£”TV<5n£



The Boltzmann distribution

Lemma [ACOGM17]
For any m x n matrix A there is a partition Iy, ..., I; of {1,...,n} s.t.
_ b0 ifie I
Hai= g1 otherwise
H(pa,i,j) =2logq ifiel,jely,1<s<s

H(pai,j) =Ing ifi,jel;,1<s



The Boltzmann distribution

s m |

Corollary [ACOGM17]
For any 6, ¢ > 0 there is @ = 0(9, ¢) > 0 such that for any m x n matrix
A for arandom column permutation s,
AT
idgxg O

A

satisfies
P[pjis (6,0)-extrmal] >1-6.



The Boltzmann distribution

T R

Corollary [ACOGM17]
For any 6, ¢ > 0 there is @ = 8(6, ¢) > 0 such that

Plua,,, is (6,0)-extrmal] > 1-6.



Adding a check

A |

ReP

> let & be the (weighted) fraction of frozen cavities

» adding a check a of degree « entails

Enul(A' +a) | a] = a“ -1+ 0(1)



Adding a variable

AI
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> let « be the (weighted) fraction of frozen cavities

» adding x,+; along with checks of degrees k1, ...,xy yields

Enul(A’ + xp41 + a1+ + ay) | a]
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Lower bound via interpolation

Al AN

> set up an interpolation with

me(t) =Po((1—¢)tdnl/k) ‘real’ checks,
me(t) = Po((1 - €)(1 — 1)dnE[k*]/ k) unary checks

» actual matrices throughout the interpolation



Summary

» proof of Lelarge’s rank conjecture

1
lim —rank(A4) =1 - max ®(a)
n—oo acl0,1]

» proof strategy inspired by inference problems [COKPZ18]

» Open problem: random equations over finite groups?



