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1. Introduction

Proposal: Study maximum principles and principal eigenvalues for

(EVP)

{
F (x ,D2u) + λu|u|k−1 = 0 in Ω b RN

u = 0 on ∂Ω

where F = F (x ,A) is continuous with F (x , 0) = 0 and

homogeneous of degree k in A ∈ S(N);

elliptic in the sense of Krylov [TAMS’95]; increasing in A
along Θ(x) ( S(N) an elliptic set for each x ∈ Ω

Define λ−1 (F ,Θ) as the sup over λ ∈ R for which there is a
negative subsolution of (EVP).

1 Do suitably defined supersolutions satisfy a minimum principle
for λ < λ−1 (F ,Θ)?

2 Exists ψ1 < 0 in Ω corresponding to λ = λ−1 (F ,Θ)?
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Test case: k-Hessian operators

For k = 1, 2, . . . ,N consider F (D2u) = Sk(D2u) defined by

Sk(D2u) := σk(λ(D2u)) where

σk(λ(A)) :=
∑

1≤i1<···ik≤N
λi1 · · ·λik and

λ(A) = (λ1(A), . . . , λN(A)) for A ∈ S(N).

S1(D2u) = tr (D2u): “know everything” about λ±1 (∆u) -
[Berestycki-Nirenberg-Varadhan, CPAM’94]

For each k there is a variational structure [Reilly, MMJ’73]

SN(D2u) = det (D2u): variational description of
λ−1 (Sk(D2u)) simple w/ convex eigenfunction ψ1 < 0 on Ω
strictly convex w/ ∂Ω ∈ C 2 - [P.L. Lions, AMPA’85]

k = 2, . . . ,N: similar result for Ω strictly (k − 1)-convex and
with k-convex ψ1 < 0 - [X.J. Wang, IUMJ’94]
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Objectives:

For k = 2, . . . ,N on Ω b RN which is (k − 1)-convex and
∂Ω ∈ C 2

1 Characterize λ−1 (Sk(D2u)) by the validity of a minimum
principle.

2 Capture ψ1 by an iterative viscosity method for λn ↗ λ−1 a la
[Birindelli-Demengel, CPAA’07]

In order to do this, we will:

encode the needed notions of k-convexity into the language of
elliptic sets Θ ( S(N);

define suitable notions of admissible viscosity supersolutions;

exploit the boundary convexity for constructing suitable
barriers;

follow the usual path of [BD].
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2. Notions of k-convexity

Consider the open convex cone (in RN) with vertex at the origin

Γk := {λ ∈ RN : σj(λ) > 0, j = 1, . . . , k}

and define the closed cone in S(N) by

Θk := {A ∈ S(N) : λ(A) ∈ Γk}

where λ(A) = (λ1(A), . . . , λN(A)) ∈ RN are the evals of A

Θk is an elliptic set; that is, Θk ( S(N) is closed, non empty
and

A ∈ Θk ,P ≥ 0 ⇒ A + P ∈ Θk

Sk is increasing along Θk ; that is, for each A ∈ Θk ,P ≥ 0

Sk(A + P) := σk(λ(A + P)) ≥ σk(λ(A)) := Sk(A)

where
σk(λ(A)) :=

∑
1≤i1<···ik≤N

λi1 · · ·λik
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k-convex functions on Ω

For u ∈ C 2(Ω) one asks that for each x ∈ Ω,

Sk(D2u(x)) ∈ Θk

(
⇔ σj(λ(D2u(x))) ≥ 0, j = 1, . . . , k

)
N.B. For k = 1,N, u is subharmonic, convex respectively.

For u ∈ USC (Ω) one uses a viscosity definition: for each
x0 ∈ Ω and for each ϕ ∈ C 2(Ω)

u − ϕ has a local maximum in x0 ⇒ Sk(D2ϕ(x0)) ≥ 0;

or equivalently, if (p,A) ∈ J2,+u(x0) then A ∈ Θk .

Lemma (Trudinger-Wang AM’99)

u ∈ USC (Ω) is k-convex in Ω if and only if for each Ω′ b Ω and
for each v ∈ C 2(Ω′) ∩ C (Ω) such that Sk(D2v) ≤ 0 in Ω′

u ≤ v on ∂Ω′ ⇒ u ≤ v in Ω′.
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(k − 1)-convex domains Ω

For Ω b RN with ∂Ω ∈ C 2 denote by (κ1(y), . . . , κN−1(y)) the
principal curvatures at y ∈ ∂Ω; i.e. the eigenvalues of D2ϕ(y ′)
where ϕ : Br (y ′) ⊂ RN−1 → R locally defines ∂Ω as a graph.

Ω is strictly (k − 1)-convex if

σk−1(κ1(y), . . . , κN−1(y)) > 0, for each y ∈ ∂Ω

N.B. (N − 1)-strict convexity is ordinary strict convexity.

Since ∂Ω is compact, there exists R > 0 such that

σk(κ1(y), . . . , κN−1(y),R) > 0, for each y ∈ ∂Ω;

i.e. (κ1(y), . . . , κN−1(y),R) ∈ Γk for each y ∈ ∂Ω.

Equivalently ∂Ω is strictly
−→
Θk -convex in the sense of

[Harvey-Lawson, CPAM’09]; expressed in terms of a local
defining function ρ : Br (y) ⊂ RN → R for the boundary.
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3. Minimum principle characterization of λ−1

With Φ−k (Ω) := {ψ ∈ USC (Ω) : ψ is k-convex and ψ < 0 in Ω}
define the generalized principle eigenvalue λ−1 (Sk ,Θk) as

sup{λ ∈ R : ∃ψ ∈ Φ−k (Ω) with Sk(D2ψ) + λψ|ψ|k−1 ≥ 0 in Ω},
where the inequality is in the viscosity sense: ∀ x ∈ Ω, ϕ ∈ C 2(Ω):

ψ − ϕ w/ local max in x ⇒ Sk(D2ϕ(x)) + λψ(x)|ψ(x)|k−1 ≥ 0.

Theorem (Birindelli-P.’17)

Let Ω be a strictly (k − 1)-convex domain in RN with
k ∈ {2, . . . ,N}. For every λ < λ−1 (Sk ,Θk) and for every
u ∈ LSC (Ω) admissible viscosity supersolution of

Sk(D2u) + λu|u|k−1 = 0 in Ω (1)

one has the following minimum principle

u ≥ 0 on ∂Ω ⇒ u ≥ 0 in Ω
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Admissible supersolutions of (1)

The admissibility is in the sense of [Krylov, TAMS’95]; that is,
u ∈ LSC (Ω) is an admissible viscosity supersolution of

Sk(D2u) + λu|u|k−1 = 0 in Ω

if for each x0 ∈ Ω and for each ϕ ∈ C 2(Ω) such that u − ϕ has a
local minimum (say zero) in x0 then

D2ϕ(x0) 6∈ Θ◦k or Sk(D2ϕ(x0)) + λϕ(x0)|ϕ(x0)|k−1 ≤ 0. (2)

hence

Sk(D2ϕ(x0)) + λϕ(x0)|ϕ(x0)|k−1 ≤ 0 (if D2ϕ(x0) ∈ Θ◦k). (3)

Θ◦k corresponds to strict k-convexity.

[Ishii-Lions, JDE’90] use the analog of (3) with D2ϕ(x0) ∈ Θk

for supersolutions to Monge-Ampère equations.

(2) also reflects duality of [Harvey-Lawson, CPAM’09].
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Remarks on the minimum principle

If k is odd, then so is Sk and one has a maximum principle
characterization for λ+

1 (Sk ,−Θk) via k-concave functions.

The minimum principle shows that λ−1 (Sk ,Θk) agrees w/ the
principal eigenvalue λ1 of Wang’94 (Lions’85 for k = N)

λk1 := inf
u∈Φk

0 (Ω)

{
−
∫

Ω
uSk(D2u) dx : ||u||Lk=1(Ω) = 1

}
– Φk

0(Ω) the set of strictly k-convex u ∈ C 2(Ω) w/ u|∂Ω = 0.

Proof Since λ1 has a k-convex principal eigenfunction ψ1 with

ψ1 < 0 in Ω and ψ1 = 0 on ∂Ω,

one has λ1 ≤ λ−1 (Sk ,Θk) by definition. If λ1 < λ−1 (Sk ,Θk), then
ψ1 would be an admissible supersolution of (1) with λ = λ1 and
hence ψ1 ≥ 0 in Ω by the minimum principle, which is absurd.
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Idea of proof for the minimum principle

Need u ≥ 0 on Ω for supersoln. with 0 < λ < λ1(Sk ,Θk) of

Sk(D2u) + λu|u|k−1 = 0 in Ω. (4)

Argue by contradiction and compare u with γψ where

ψ < 0 subsoln. of (4) ↔ λ̃ ∈ (λ, λ−1 ) and γ ∈
(

0, γ′ := sup
Ω

u

ψ

)

ψ exists: the set of λ competing for λ−1 (Sk ,Θk) is an interval.

γ′ <∞: use semicontinuity of u, ψ away from ∂Ω and
construct barriers near ∂Ω.

Find x̃ ∈ Ω such that u(x̃) < 0 and

λ|u(x̃)|k ≥ γk λ̃|ψ(x̃)|k ; i.e.
λ

λ̃
γk ≤

(
u(x̃)

ψ(x̃)

)k

≤ (γ′)k . (5)

Pick γ > γ′(λ/λ̃)1/k to contradict (5).
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Barriers for Sk

For δ > 0 small enough, there exist C1,C2 > 0 such that

ψ(x) ≤ −C1d(x) and u(x) ≥ −C2d(x),

in Ωδ := {x ∈ Ω : d(x) = dist(x , ∂Ω) < δ}.
Compare ψ to w ∈ C 2(Ω) standard radial function in an
annular region touching ∂Ω (Hopf lemma).

Easy to calculate Sk on radial functions w(x) = h(|x − x0|).

Compare u to v(x) = −M log (1 + td(x)) with t ≥ 2R where
R σk−1(κ1(y), . . . , κN−1(y),R) > 0 all y ∈ ∂Ω.

Easy to calculate Skv for v = g ◦ d in a principal coordinate
system based at y0 = y(x0) with x0 ∈ Ωd0 :

Sk(D2v(x0)) = σk

(
−κ1g

′(d)

1− κ1d
, . . . ,

−κN−1g
′(d)

1− κN−1d
, g ′′(d)

)
,

where κi = κi (y0), d = d(x0) and 1− κid > 0 for δ small.
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Ishii’s Lemma and admissibility

In order to find x̃ ∈ Ω such that (5) holds when comparing u, γψ,
look at the maximum values of

Ψj(x , y) := γψ(x)− u(y)− j

2
|x − y |2, (x , y) ∈ Ω× Ω, j ∈ N.

Ψj ≤ 0 on the complement of Ω× Ω.

Ψj(x̄ , x̄) ≥ (γ − γ′)ψ(x̄) > 0 where minΩ u = u(x̄) < 0, so Ψj

has a positive maximum in (xj , yj) ∈ Ω× Ω.

By Ishii’s lemma, ∃Xj ,Yj ∈ S(N) such that

(j(xj − yj),Xj) ∈ J
2,+
γψ(xj)) and (j(xj − yj),Yj) ∈ J

2,−
γu(yj))

(xj , yj)→ (x̃ , x̃) and Xj ≤ Yj .

Xj ∈ Θk since ψ is k-convex and hence Yk ∈ Θk , so

λ̃γk |ψ(xj)|k ≤ Sk(Xj) ≤ Sk(Yj) ≤ λ|u(yj)|k

and pass to the limit to get (5).
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Construction of a principal eigenfunction

We know that a negative k-convex eigenfunction ψ1 exists
associated to λ1 = λ−1 (Sk ,Θk), but to prepare for non variational
perturbations of Sk seek a maximum principle approach.
Idea: [Birindelli-Demengel] Pick {λn}n∈N with 0 < λn ↗ λ−1 .

Start with u0 = 0 and solve inductively{
Sk(D2un) = 1− λnun−1|un−1|k−1 := fn in Ω

u = 0 on ∂Ω
(6)

for {un}n∈N ⊂ C (Ω) a decreasing sequence of k-convex solns.

The PDE in (6) is proper as un does not appear explicitly.

A strong comparison principle shows that un < 0 in Ω.

Pass to the limit (along a subsequence) as n→ +∞ using a
uniform Hölder bound on ||un||C0,γ(Ω) for each n ∈ N and

some γ ∈ (0, 1].
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An auxilliary existence and regularity result

Theorem (Birindelli-P.’17)

Let Ω be strictly (k − 1)-convex of class C 2 and let f ∈ C (Ω) be
nonnegative and bounded. There exists a unique k-convex solution
u ∈ C (Ω) of the Dirichlet problem

Sk(D2u) = f in Ω and u = 0 on ∂Ω.

Moreover, ∀ γ ∈ (0, 1) there exists C = C (Ω, γ, ||u||∞, ||f ||∞) s.t.

|u(x)− u(x0)| ≤ C |x − x0|γ , ∀ x , x0 ∈ Ω. (7)

Existence for ∂Ω ∈ C 2 follows from the main theorem of
[Cirant-P., PM’17] since strict (k − 1)-convexity implies the

needed strict
−→
Θk and

−→
Θ̃k convexity since

−→
Θk = Θk and Θk ⊂ Θ̃k := −Θ◦k .
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Hölder regularity via Ishii-Lions technique (JDE’90)

Interior estimate: Fix d0 > 0 for the boundary estimate (nice
tubular neighbourhood) and work in

.
Bδ(x0) b Ω with 2δ < d0.

Compare u(x) with vx0(x) := u(x0) + C |x − x0|γ where
Cδγ ≥ 2||u||∞).

u ≤ vx0 on ∂
.
Bδ(x0).

Sk(D2vx0(x)) = C kγkCN,k |x − x0|k(γ−2)[(γ − 2)k + N] and u
is k-convex s.t. Sk(D2u) = f ≥ 0

Use Trudinger-Wang if (γ − 2)k + N ≤ 0 (k > N/2) and u
(sub)solution with f ≥ 0 otherwise.

Boundary estimate: In Ωd0 compare u(x) with v(x) := −Cd(x)γ

with suitable C = C (d0(Ω), γ, ||u||∞, ||f ||∞) so that v is k-convex
with

Sk(D2v) > ||f ||∞ ≥ Sk(D2v) in Ωd0 .

Apply comparison for k-convex functions (u = 0 = v on ∂Ω).
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The existence theorem for ψ1

Theorem (Birindelli-P.’17)

Let Ω be a strictly (k − 1)-convex domain of class C 2. If {un}n∈N
is the sequence of k-convex solutions to the iteration scheme (6)
with 0 < λn ↗ λ−1 , then the normalized sequence defined by

wn := un/||un||∞

admits a subsequence which converges uniformly to an
eigenfunction ψ1 < 0 of Sk associated to λ−1 .

Follow Birindelli-Demengel scheme.

Monotonicity from comparison principle for k-convex
functions.

Hölder regularity above is the key.
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Concluding remarks

Where do we go from here?

Elements of a Fredholm theory and eigenvalue estimates.

Anti-maximum principles.

Symmetry of solutions.

Non variational perturbations of Sk(D2u) like

Sk(D2u + M(x)) + λu|u|k−1 with M ∈ UC (Ω;S(N))

considered by [Cirant-P.] and [Y.Y. Li, CPAM’90].

The “general case” F (x ,D2u) + λu|u|k−1 = 0 with F (x ,A)
– continuous and F (x , 0) = 0;
– homogeneous of degree k in A ∈ S(N);
– F (x ,A) increasing in A along Θ : Ω→ E ⊂ S(N) a
uniformly continuous elliptic map;
– uniformly continuous in x ∈ Ω.
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Thanks to one and all!!
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