Principal eigenvalues for *k*-Hessian operators by maximum principle methods

Kevin R. Payne

Università di Milano

6 April 2017

Mostly Maximum Principle: BIRS Workshop, Banff

Joint work w/ Isabeau Birindelli - Sapienza Università di Roma

1. Introduction

Proposal: Study maximum principles and principal eigenvalues for

(EVP)
$$\begin{cases} F(x, D^2 u) + \lambda u |u|^{k-1} = 0 & \text{in } \Omega \Subset \mathbb{R}^N \\ u = 0 & \text{on } \partial \Omega \end{cases}$$

where F = F(x, A) is continuous with F(x, 0) = 0 and

- homogeneous of degree k in $A \in \mathcal{S}(N)$;
- elliptic in the sense of Krylov [TAMS'95]; increasing in A along Θ(x) ⊊ S(N) an elliptic set for each x ∈ Ω

Define $\lambda_1^-(F, \Theta)$ as the sup over $\lambda \in \mathbb{R}$ for which there is a negative subsolution of (EVP).

- Do suitably defined supersolutions satisfy a minimum principle for λ < λ₁⁻(F, Θ)?
- **2** Exists $\psi_1 < 0$ in Ω corresponding to $\lambda = \lambda_1^-(F, \Theta)$?

伺 と く ヨ と く ヨ と

Test case: k-Hessian operators

For k = 1, 2, ..., N consider $F(D^2u) = S_k(D^2u)$ defined by $S_k(D^2u) := \sigma_k(\lambda(D^2u))$ where $\sigma_k(\lambda(A)) := \sum_{1 \le i_1 < \cdots < i_k \le N} \lambda_{i_1} \cdots \lambda_{i_k}$ and $\lambda(A) = (\lambda_1(A), ..., \lambda_N(A))$ for $A \in S(N)$.

- $S_1(D^2u) = \operatorname{tr}(D^2u)$: "know everything" about $\lambda_1^{\pm}(\Delta u)$ -[Berestycki-Nirenberg-Varadhan, CPAM'94]
- For each k there is a variational structure [Reilly, MMJ'73]
- $S_N(D^2u) = \det(D^2u)$: variational description of $\lambda_1^-(S_k(D^2u))$ simple w/ convex eigenfunction $\psi_1 < 0$ on Ω strictly convex w/ $\partial \Omega \in C^2$ [P.L. Lions, AMPA'85]
- k = 2,..., N: similar result for Ω strictly (k 1)-convex and with k-convex ψ₁ < 0 - [X.J. Wang, IUMJ'94]

For k = 2, ..., N on $\Omega \Subset \mathbb{R}^N$ which is (k - 1)-convex and $\partial \Omega \in C^2$

- Characterize $\lambda_1^-(S_k(D^2 u))$ by the validity of a minimum principle.
- ② Capture ψ_1 by an iterative viscosity method for $\lambda_n \nearrow \lambda_1^-$ a la [Birindelli-Demengel, CPAA'07]

In order to do this, we will:

- encode the needed notions of k-convexity into the language of elliptic sets Θ ⊊ S(N);
- define suitable notions of admissible viscosity supersolutions;
- exploit the boundary convexity for constructing suitable barriers;
- follow the usual path of [BD].

同 ト イヨ ト イヨ ト

2. Notions of *k*-convexity

Consider the open convex cone (in \mathbb{R}^N) with vertex at the origin

$$\Gamma_k := \{\lambda \in \mathbb{R}^N : \sigma_j(\lambda) > 0, \ j = 1, \dots, k\}$$

and define the closed cone in $\mathcal{S}(N)$ by

$$\Theta_k := \{A \in \mathcal{S}(N) : \lambda(A) \in \overline{\Gamma}_k\}$$

where $\lambda(A) = (\lambda_1(A), \dots, \lambda_N(A)) \in \mathbb{R}^N$ are the evals of A

• Θ_k is an elliptic set; that is, $\Theta_k \subsetneq S(N)$ is closed, non empty and

 $A \in \Theta_k, P \ge 0 \Rightarrow A + P \in \Theta_k$

• S_k is increasing along Θ_k ; that is, for each $A \in \Theta_k$, $P \ge 0$

 $S_k(A+P) := \sigma_k(\lambda(A+P)) \ge \sigma_k(\lambda(A)) := S_k(A)$

where

$$\sigma_k(\lambda(A)) := \sum_{1 \le i_1 < \cdots < i_k \le N} \lambda_{i_1} \cdots \lambda_{i_k}$$

k-convex functions on Ω

• For $u \in C^2(\Omega)$ one asks that for each $x \in \Omega$,

 $S_k(D^2u(x)) \in \Theta_k \ (\Leftrightarrow \ \sigma_j(\lambda(D^2u(x))) \ge 0, \ j = 1, \dots, k)$

N.B. For k = 1, N, u is subharmonic, convex respectively.

For u ∈ USC(Ω) one uses a viscosity definition: for each x₀ ∈ Ω and for each φ ∈ C²(Ω)

 $u - \varphi$ has a local maximum in $x_0 \Rightarrow S_k(D^2\varphi(x_0)) \ge 0$;

or equivalently, if $(p, A) \in J^{2,+}u(x_0)$ then $A \in \Theta_k$.

Lemma (Trudinger-Wang AM'99)

 $u \in USC(\Omega)$ is k-convex in Ω if and only if for each $\Omega' \Subset \Omega$ and for each $v \in C^2(\Omega') \cap C(\overline{\Omega})$ such that $S_k(D^2v) \leq 0$ in Ω'

 $u \leq v \text{ on } \partial \Omega' \Rightarrow u \leq v \text{ in } \Omega'.$

(k-1)-convex domains Ω

For $\Omega \Subset \mathbb{R}^N$ with $\partial \Omega \in C^2$ denote by $(\kappa_1(y), \ldots, \kappa_{N-1}(y))$ the principal curvatures at $y \in \partial \Omega$; i.e. the eigenvalues of $D^2 \varphi(y')$ where $\varphi : B_r(y') \subset \mathbb{R}^{N-1} \to \mathbb{R}$ locally defines $\partial \Omega$ as a graph.

• Ω is strictly (k-1)-convex if

 $\sigma_{k-1}(\kappa_1(y),\ldots,\kappa_{N-1}(y))>0, \quad ext{for each} \ \ y\in\partial\Omega$

N.B. (N - 1)-strict convexity is ordinary strict convexity.

• Since $\partial \Omega$ is compact, there exists R > 0 such that

 $\sigma_k(\kappa_1(y),\ldots,\kappa_{N-1}(y),R)>0,$ for each $y\in\partial\Omega$;

i.e. $(\kappa_1(y), \ldots, \kappa_{N-1}(y), R) \in \Gamma_k$ for each $y \in \partial \Omega$.

Equivalently ∂Ω is strictly \$\vec{\Theta}_k\$-convex in the sense of [Harvey-Lawson, CPAM'09]; expressed in terms of a local defining function \$\rho: B_r(y) ⊂ \$\mathbb{R}^N → \$\mathbb{R}\$ for the boundary.

3. Minimum principle characterization of λ_1^-

With $\Phi_k^-(\Omega) := \{ \psi \in USC(\Omega) : \psi \text{ is } k \text{-convex and } \psi < 0 \text{ in } \Omega \}$ define the generalized principle eigenvalue $\lambda_1^-(S_k, \Theta_k)$ as

 $\sup\{\lambda\in\mathbb{R}: \ \exists \ \psi\in \Phi_k^-(\Omega) \ \text{with} \ S_k(D^2\psi)+\lambda\psi|\psi|^{k-1}\geq 0 \ \text{in} \ \Omega\},$

where the inequality is in the viscosity sense: $\forall x \in \Omega, \varphi \in C^2(\Omega)$:

 $\psi - \varphi \text{ w}/ \text{ local max in } x \ \Rightarrow \ S_k(D^2 \varphi(x)) + \lambda \psi(x) |\psi(x)|^{k-1} \ge 0.$

Theorem (Birindelli-P.'17)

Let Ω be a strictly (k - 1)-convex domain in \mathbb{R}^N with $k \in \{2, ..., N\}$. For every $\lambda < \lambda_1^-(S_k, \Theta_k)$ and for every $u \in LSC(\overline{\Omega})$ admissible viscosity supersolution of

$$S_k(D^2u) + \lambda u|u|^{k-1} = 0 \quad in \ \Omega \tag{1}$$

one has the following minimum principle

$$u \ge 0 \text{ on } \partial \Omega \Rightarrow u \ge 0 \text{ in } \Omega$$

Admissible supersolutions of (1)

The admissibility is in the sense of [Krylov, TAMS'95]; that is, $u \in LSC(\Omega)$ is an admissible viscosity supersolution of

 $S_k(D^2u) + \lambda u|u|^{k-1} = 0$ in Ω

if for each $x_0 \in \Omega$ and for each $\varphi \in C^2(\Omega)$ such that $u - \varphi$ has a local minimum (say zero) in x_0 then

 $D^2\varphi(x_0) \notin \Theta_k^\circ \text{ or } S_k(D^2\varphi(x_0)) + \lambda\varphi(x_0)|\varphi(x_0)|^{k-1} \le 0.$ (2)

hence

 $S_k(D^2\varphi(x_0)) + \lambda\varphi(x_0)|\varphi(x_0)|^{k-1} \le 0 \quad \text{(if } D^2\varphi(x_0) \in \Theta_k^\circ\text{)}. \tag{3}$

- Θ_k° corresponds to strict *k*-convexity.
- [Ishii-Lions, JDE'90] use the analog of (3) with $D^2\varphi(x_0) \in \Theta_k$ for supersolutions to Monge-Ampère equations.
- (2) also reflects *duality* of [Harvey-Lawson, CPAM'09].

Remarks on the minimum principle

- If k is odd, then so is S_k and one has a maximum principle characterization for λ⁺₁(S_k, −Θ_k) via k-concave functions.
- The minimum principle shows that λ₁⁻(S_k, Θ_k) agrees w/ the principal eigenvalue λ₁ of Wang'94 (Lions'85 for k = N)

$$\lambda_1^k := \inf_{u \in \Phi_0^k(\Omega)} \left\{ -\int_{\Omega} u S_k(D^2 u) \, dx : \quad ||u||_{L^{k+1}(\Omega)} = 1 \right\}$$

 $-\Phi_0^k(\Omega)$ the set of strictly k-convex $u \in C^2(\Omega)$ w/ $u_{|\partial\Omega} = 0$. **Proof** Since λ_1 has a k-convex principal eigenfunction ψ_1 with

 $\psi_1 < 0$ in Ω and $\psi_1 = 0$ on $\partial \Omega$,

one has $\lambda_1 \leq \lambda_1^-(S_k, \Theta_k)$ by definition. If $\lambda_1 < \lambda_1^-(S_k, \Theta_k)$, then ψ_1 would be an admissible supersolution of (1) with $\lambda = \lambda_1$ and hence $\psi_1 \geq 0$ in Ω by the minimum principle, which is absurd.

Idea of proof for the minimum principle

Need $u \ge 0$ on Ω for supersoln. with $0 < \lambda < \lambda_1(S_k, \Theta_k)$ of

$$S_k(D^2u) + \lambda u|u|^{k-1} = 0 \quad \text{in } \Omega. \tag{4}$$

Argue by contradiction and compare ${\it u}$ with $\gamma\psi$ where

 $\psi < 0$ subsoln. of (4) $\leftrightarrow \tilde{\lambda} \in (\lambda, \lambda_1^-)$ and $\gamma \in \left(0, \gamma' := \sup_{\Omega} \frac{u}{\psi}\right)$

- ψ exists: the set of λ competing for $\lambda_1^-(S_k, \Theta_k)$ is an interval.
- $\gamma' < \infty$: use semicontinuity of u, ψ away from $\partial \Omega$ and construct <u>barriers</u> near $\partial \Omega$.

Find $\tilde{x} \in \Omega$ such that $u(\tilde{x}) < 0$ and

$$\lambda |u(\tilde{x})|^k \ge \gamma^k \tilde{\lambda} |\psi(\tilde{x})|^k; \quad \text{i.e.} \quad \frac{\lambda}{\tilde{\lambda}} \gamma^k \le \left(\frac{u(\tilde{x})}{\psi(\tilde{x})}\right)^k \le (\gamma')^k. \tag{5}$$

Pick $\gamma > \gamma'(\lambda/\tilde{\lambda})^{1/k}$ to contradict (5).

Barriers for S_k

For $\delta > 0$ small enough, there exist $C_1, C_2 > 0$ such that

 $\psi(x) \leq -C_1 d(x)$ and $u(x) \geq -C_2 d(x)$,

in $\Omega_{\delta} := \{x \in \Omega : d(x) = \operatorname{dist}(x, \partial \Omega) < \delta\}.$

- Compare ψ to w ∈ C²(Ω) standard radial function in an annular region touching ∂Ω (Hopf lemma).
- Easy to calculate S_k on radial functions $w(x) = h(|x x_0|)$.
- Compare *u* to $v(x) = -M \log (1 + td(x))$ with $t \ge 2R$ where $R \sigma_{k-1}(\kappa_1(y), \dots, \kappa_{N-1}(y), R) > 0$ all $y \in \partial \Omega$.
- Easy to calculate S_kv for v = g ∘ d in a principal coordinate system based at y₀ = y(x₀) with x₀ ∈ Ω_{d₀}:

$$S_k(D^2v(x_0)) = \sigma_k\left(\frac{-\kappa_1g'(d)}{1-\kappa_1d}, \ldots, \frac{-\kappa_{N-1}g'(d)}{1-\kappa_{N-1}d}, g''(d)\right),$$

where $\kappa_i = \kappa_i(y_0)$, $d = d(x_0)$ and $1 - \kappa_i d > 0$ for δ small.

Ishii's Lemma and admissibility

In order to find $\tilde{x} \in \Omega$ such that (5) holds when comparing $u, \gamma \psi$, look at the maximum values of

 $\Psi_j(x,y) := \gamma \psi(x) - u(y) - \frac{j}{2}|x-y|^2, \ \ (x,y) \in \overline{\Omega} \times \overline{\Omega}, j \in \mathbb{N}.$

- $\Psi_j \leq 0$ on the complement of $\Omega \times \Omega$.
- $\Psi_j(\bar{x}, \bar{x}) \ge (\gamma \gamma')\psi(\bar{x}) > 0$ where $\min_{\Omega} u = u(\bar{x}) < 0$, so Ψ_j has a positive maximum in $(x_j, y_j) \in \Omega \times \Omega$.
- By Ishii's lemma, $\exists X_j, Y_j \in \mathcal{S}(N)$ such that

 $(j(x_j - y_j), X_j) \in \overline{J}^{2,+} \gamma \psi(x_j))$ and $(j(x_j - y_j), Y_j) \in \overline{J}^{2,-} \gamma u(y_j))$ $(x_j, y_j) \to (\tilde{x}, \tilde{x})$ and $X_j \leq Y_j$.

• $X_j \in \Theta_k$ since ψ is *k*-convex and hence $Y_k \in \Theta_k$, so

 $|\tilde{\lambda}\gamma^k|\psi(x_j)|^k \leq S_k(X_j) \leq S_k(Y_j) \leq \lambda |u(y_j)|^k$

and pass to the limit to get (5).

Construction of a principal eigenfunction

We know that a negative *k*-convex eigenfunction ψ_1 exists associated to $\lambda_1 = \lambda_1^-(S_k, \Theta_k)$, but to prepare for non variational perturbations of S_k seek a maximum principle approach. **Idea:** [Birindelli-Demengel] Pick $\{\lambda_n\}_{n\in\mathbb{N}}$ with $0 < \lambda_n \nearrow \lambda_1^-$.

• Start with $u_0 = 0$ and solve inductively

$$\begin{cases} S_k(D^2 u_n) = 1 - \lambda_n u_{n-1} |u_{n-1}|^{k-1} := f_n & \text{in } \Omega\\ u = 0 & \text{on } \partial \Omega \end{cases}$$
(6)

for $\{u_n\}_{n\in\mathbb{N}} \subset C(\overline{\Omega})$ a decreasing sequence of *k*-convex solns.

- The PDE in (6) is proper as u_n does not appear explicitly.
- A strong comparison principle shows that $u_n < 0$ in Ω .
- Pass to the limit (along a subsequence) as n → +∞ using a uniform Hölder bound on ||u_n||_{C^{0,γ}(Ω)} for each n ∈ N and some γ ∈ (0, 1].

Theorem (Birindelli-P.'17)

Let Ω be strictly (k - 1)-convex of class C^2 and let $f \in C(\Omega)$ be nonnegative and bounded. There exists a unique k-convex solution $u \in C(\overline{\Omega})$ of the Dirichlet problem

 $S_k(D^2u) = f \text{ in } \Omega$ and $u = 0 \text{ on } \partial \Omega$.

Moreover, $\forall \gamma \in (0,1)$ there exists $C = C(\Omega, \gamma, ||u||_{\infty}, ||f||_{\infty})$ s.t.

$$|u(x) - u(x_0)| \le C|x - x_0|^{\gamma}, \quad \forall \ x, x_0 \in \overline{\Omega}.$$
(7)

Existence for ∂Ω ∈ C² follows from the main theorem of [Cirant-P., PM'17] since strict (k − 1)-convexity implies the needed strict Θ_k and Θ_k convexity since

$$\overrightarrow{\Theta_k} = \Theta_k$$
 and $\Theta_k \subset \widetilde{\Theta}_k := -\Theta_k^\circ.$

Hölder regularity via Ishii-Lions technique (JDE'90)

Interior estimate: Fix $d_0 > 0$ for the boundary estimate (nice tubular neighbourhood) and work in $\dot{B}_{\delta}(x_0) \subseteq \Omega$ with $2\delta < d_0$.

- Compare u(x) with $v_{x_0}(x) := u(x_0) + C|x x_0|^{\gamma}$ where $C\delta^{\gamma} \ge 2||u||_{\infty}$).
- $u \leq v_{x_0}$ on $\partial \dot{B}_{\delta}(x_0)$.
- $S_k(D^2 v_{x_0}(x)) = C^k \gamma^k C_{N,k} |x x_0|^{k(\gamma 2)} [(\gamma 2)k + N]$ and u is k-convex s.t. $S_k(D^2 u) = f \ge 0$
- Use Trudinger-Wang if $(\gamma 2)k + N \le 0$ (k > N/2) and u (sub)solution with $f \ge 0$ otherwise.

Boundary estimate: In Ω_{d_0} compare u(x) with $v(x) := -Cd(x)^{\gamma}$ with suitable $C = C(d_0(\Omega), \gamma, ||u||_{\infty}, ||f||_{\infty})$ so that v is k-convex with

$$S_k(D^2v)>||f||_\infty\geq S_k(D^2v)$$
 in $\Omega_{d_0}.$

Apply comparison for *k*-convex functions $(u = 0 = v \text{ on } \partial \Omega)$.

Theorem (Birindelli-P.'17)

Let Ω be a strictly (k - 1)-convex domain of class C^2 . If $\{u_n\}_{n \in \mathbb{N}}$ is the sequence of k-convex solutions to the iteration scheme (6) with $0 < \lambda_n \nearrow \lambda_1^-$, then the normalized sequence defined by

 $w_n := u_n/||u_n||_{\infty}$

admits a subsequence which converges uniformly to an eigenfunction $\psi_1 < 0$ of S_k associated to λ_1^- .

- Follow Birindelli-Demengel scheme.
- Monotonicity from comparison principle for *k*-convex functions.
- Hölder regularity above is the key.

Where do we go from here?

- Elements of a Fredholm theory and eigenvalue estimates.
- Anti-maximum principles.
- Symmetry of solutions.
- Non variational perturbations of $S_k(D^2u)$ like

 $S_k(D^2u + M(x)) + \lambda u|u|^{k-1}$ with $M \in UC(\Omega; S(N))$

considered by [Cirant-P.] and [Y.Y. Li, CPAM'90].

- The "general case" $F(x, D^2u) + \lambda u|u|^{k-1} = 0$ with F(x, A)- continuous and F(x, 0) = 0;
 - homogeneous of degree k in $A \in \mathcal{S}(N)$;
 - -F(x, A) increasing in A along $\Theta : \Omega \to \mathcal{E} \subset \mathcal{S}(N)$ a uniformly continuous elliptic map;
 - uniformly continuous in $x \in \Omega$.

▲ 同 ▶ ▲ 目 ▶ ▲ 目 ▶ ……

Thanks to one and all!!

э

伺 と く ヨ と く ヨ と