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1 Overview of the Field
Stochastic processes are constructed to explore and answer key scientific questions about varied scientific
phenomena (Guttorp, 1995). These stochastic processes can capture relationships between the different
physical processes of interest on spatially and temporally varying scales, while accounting for the uncer-
tainty inherent in complex data sources or in specifying the stochastic model itself. As the science and the
corresponding stochastic process models become more complex, and are informed by richer data sources,
there is a greater need to develop robust tools for statistical inference for statistical models based on stochas-
tic processes in the natural sciences.

2 Recent Developments and Open Problems
Traditional statistical models for natural science phenomena have largely been either linear models or black
boxes. It is now recognized that stochastic models whose behaviour more closely mirrors the scientific struc-
ture of the system under study provide a more interpretable framework for analyzing data. These ideas are
now being used in such disparate fields as atmospheric science, biology, climate, environmental sciences,
geophysics, and hydrology. This diversity of applications leads, of course, to a diversity of modeling ap-
proaches. There are, however, a number of challenges common to quantifying uncertainty in data analysis
using these stochastic processes which cut across the range of applications. One example is in building
stochastic processes that respect the current known science, but also incorporate believable uncertainty quan-
tification. Another is building statistical inference tools for understanding complicated stochastic processes,
observed on potentially massive or complex datasets. Solving these problems will help scientists, for exam-
ple, understand uncertainty in forecasts of the effects of climate change, in prediction of flood risk, and in the
study of blood cell differentiation in hematology.

This workshop was dedicated to understanding what is common to the problems in all these areas, to
encouraging transmission of ideas from one application area to others, and to working towards solutions to
the problems we identify.
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3 Presentation Highlights
The workshop was constructed around a set of diverse areas in statistical science involving the use of stochas-
tic processes to analyze different areas of applications in the natural sciences. The majority of the talks at the
workshop were intended to motivate 12 breakout sessions that were held on the Tuesday and Thursday of the
week (sessions A and B were later combined). Summaries of these breakouts are provided below. Breakout
sessions were held in parallel. This guaranteed that each breakout session was of reasonable size (i.e., not
too large, but not too small) to facilitate discussion. Participants were encouraged to discuss the statistical
methods used in each topic area and also to outline open challenges as a way to motivate more general cross-
area discussion on issues in building statistical models for stochastic processes. Students were active in all
the breakout sessions. There was a report back period where all members of the workshop could comment
on what each group had discussed.

Early in the workshop, 8 poster presentations by Ph.D. students and postdoctoral researchers outlined new
research in the statistical modeling of stochastic processes, applied to problems in seismology, epidemiology,
and various aspects of the climate system (land-based, in the atmosphere, and in the oceans).

4 Scientific Progress Made
A description and summary of the scientific findings for each breakout session is presented below. Many ad-
ditional references for each breakout session can be found in the attached supplement, or at the BIRS website:

http://www.birs.ca/workshops/2017/17w5107/files/

Breakouts A. and B. Statistical parameter estimation and inference for dynamical
models and Statistical and computational challenges posed by partially observed com-
partmental models
Moderators: Jennifer Hoeting, Colorado State University and Vladimir Minin, University of Califor-
nia, Irvine

Description of the session: In the study of biological, ecological, or environmental dynamical processes,
many theoretical models have been developed but it is not common practice to estimate model parameters
using statistical functions of observed data. Often these (compartmental) models describe dynamics of pop-
ulations, where individuals can be assigned types, and individuals are allowed to switch types as time goes
by. A challenge for statisticians is to develop methods to address the issue of the computationally inten-
sive or intractable likelihoods required for these problems. This session reviewed statistical challenges that
arise when analyzing such models and highlighted how different research communities propose to tackle
these challenges. The main discussion revolved around statistical procedures in compartmental models under
realistically complicated observation schemes with noisy observations and large fractions of missing data.

Outcomes:

1. Participants discussed various ways to make stochastic compartmental models statistically and compu-
tationally tractable. Many approaches exist that approximate the state of counts with a vector of non-
negative real numbers using diffusion limit arguments. Such approximations are questionable when
some components of the vector are close to zero. It was noted that hybrid models in which only some
components of the vector are subject to the diffusion limit approximation are necessary. Sometimes it
is easier to introduce real valued latent variables for computational tractability. Other computational
methods, such as particle filters and Markov chain Monte Carlo (MCMC), were discussed.

2. Often parameters of stochastic compartmental models are only weakly identifiable from sparse data.
Bayesian statisticians should encourage practitioners to superimpose priors and posteriors for all model
parameters to catch identifiability issues. Remedies for weak identifiability offered during the discus-
sion included:
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(a) Helping scientists design better experiments or better data collection protocols;
(b) Integrating multiple sources of information (e.g., epidemiological data and sequence data during

analysis of infectious diseases outbreaks);
(c) Changing the model;
(d) Checking whether interpretable transformations of parameters make physical sense;
(e) Admitting model identifiability may be a problem and investing time into developing very infor-

mative priors for some model parameters, for which prior information exists.

3. Participants pointed out that mechanistic models may be better for inference and interpretability, but
often phenomenological models are good enough for prediction. For example, understanding dynam-
ics of cholera spread may require mechanistic models, but possibly Poisson regression may be good
enough for predicting cholera case counts.

Breakout C. Spatio-temporal modeling 1
Moderators: Michael Stein, University of Chicago and Paul Sampson, University of Washington

Description of the session: This session targeted aspects of space-time statistical modeling that have re-
ceived little attention from the statistical community. A second theme was how recent developments in
measuring processes in space-time may change the kinds of questions we might want to ask or can answer
about space-time statistical models. Michael Stein delivered the motivating presentation beginning with con-
sideration of the specification of mean and covariance function for challenging spatio-temporal datasets, and
specifically the ocean based Argo float data or anomaly field. This and a second example, the Harris, TX,
ozone dataset presented in an early JASA discussion paper on space-time modeling led to two lessons. Les-
son 1: One must consider models with space and time trend components. Lesson 2: What matters in a model
depends on the problem.

Another issue involved the estimation of a “mean” of a stationary geostatistical process. Two possible
types of “mean” arise:

(i) The expectation of the process, which is constant since the process is stationary;
(ii) The average of the process over the spatial domain (a spatial integral).
The characteristics of the process that matter differ for each problem: in case (i) the low frequency

properties of the process matter, whereas for (ii) the high frequency characteristics matter.
Later discussions involved the interaction of sources of variation in space-time data, leading to considera-

tion of the frequency or spatio-temporal resolution of observations in space and time, particularly for satellite
instruments like data from the GOES-16 geostationary satellite (https://www.nasa.gov/press-release/nasa-
successfully-launches-noaa-advanced- geostationary-weather-satellite) and then to the challenge of space-
time processes that include a vertical dimension. In both oceans and the atmosphere, the nature of circulation
patterns is fundamentally different near the Earth’s surface than away from it, so just adding the vertical as a
third spatial component to existing models will not be adequate.

Outcomes: The group discussion touched on most of the issues above and raised some new issues needing
further attention, including (1) the need to incorporate inequality constraints in models, (2) strategies for
modeling nonstationarity, and (3) statistical modeling of means versus variability in extremes for certain
problems. We also learned that (4) experience with waves leads to the requirement of combining properties
of physical processes with statistical models, and (5) there is a need for greater involvement of statisticians
in making data products that included expressions of uncertainty, possibly with the incorporation of multiple
imputation. This was part of a discussion that moved outside of the initial topics of interest to discuss
communication issues and uncertainty.

Breakout D. Non-Gaussian processes
Moderator: Alexandra Schmidt, McGill University

Description of the session: In the analysis of most spatio-temporal processes in environmental studies,
observations present skewed distributions, with a heavy right or left tail. Usually, a single transformation
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of the data is used to approximate normality, and stationary Gaussian processes are assumed to model the
transformed data. The choice of a distribution for the data is key for spatial interpolation and temporal
prediction. Initially we will discuss advantages and disadvantages of using a single transformation to model
such processes. Then we will focus on some recent advances in the modeling of non-Gaussian spatial and
spatio-temporal processes and discuss some possible avenues for research.

Outcomes: Several issues and questions were discussed and investigated during the session:

1. Why do we need models for Non-Gaussian Processes? It was noted that point predictions are quite
robust to model misspecification, but that the correct estimation of non-Gaussian processes leads to big
improvement in estimates of variability. Non-Gaussian processes are also useful in identify outlying
regions and spatial outliers (e.g., Palacios and Steel, 2006)

2. What features do you need your model to capture? Non-Gaussian and/or non-stationary; Sharp versus
smooth changes in the field over space; Low frequency versus high frequency signals; spatial interpo-
lation versus parameter (effect) inference. A complicating factor was that non-Gaussian processes can
look like Gaussian process data – this often occurs because we only have one replication.

3. Comparing approaches: stochastic partial differential equation/process convolution versus transform-
ing Gaussian processes. There is a drawback with transformed Gaussian fields in that you cannot
change the conditional distributions. We need non-Gaussian models to account for sharp transitions,
since commonly used Gaussian models are too smooth.

4. Distinguishing (if possible) between non-normal likelihood with a non-normal latent field. Participants
recognized there is a need to develop methodology to distinguish between non-Gaussian data (easier)
and non-Gaussian latent field (harder). This is especially challenging when modeling discrete data
(e.g., binary data observed over space). There is an open question of whether heavy tails are needed
for binary data.

5. Computation. Many questions in this area. First question for any new model: can you estimate the
model parameters? It was remarked that it is easy to create a new fancy model, but in practice the
model parameters are very hard to estimate. How difficult are the computations for these models? (As
the number of locations increases, analyses can get computationally intensive.) As data sizes increase,
how do we extend to big data? (For example with Markov random fields the computational complexity
jump is high as one moves move from 1 to 2 dimensions.) How do you know that you are getting the
answer correctly from a computational method if there is only one way to compute it? There was a
suggestion that we need multiple developments of a single model, or ways to verify that computational
methods are correct.

6. Diagnostics. Diagnostics are extremely difficulty in this area. We need to develop statistical methods
to assess whether we are modeling the complex dependencies reasonably. If the problem is high di-
mensional, we can try to think about conditional distributions to simplify the diagnostic problem. Also,
given the issue with distinguishing between different processes, can we find something that looks and
behaves similarly to having replicates, for model verification?

Breakout E. Spatial point processes
Moderator: Aila Särkkä, Chalmers University

Description of the session: In the early spatial point process literature, point patterns were typically small,
observed in 2D, had quite simple interaction structures, and there were no repetitions of the point patterns
available. The observed point patterns were assumed to be realizations of stationary and isotropic point pro-
cesses. Furthermore, e.g. clustered patterns were typically modelled by assuming conditional independence
between the cluster points given the Poisson distributed parents. Nowadays, large data sets (with repetitions)
observed both in 2D and in 3D have become more and more common and it is less likely that stationarity
and/or isotropy assumptions hold and that simple interaction structures are enough for realistic modelling of
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the data. Adding temporal information increases the complexity, as spatio-temporal point pattern data have
become common.

The theme of the session is to discuss the challenges of the more complicated point pattern data mentioned
above. Some possible topics for discussion are:

1. Inhomogeneous or anisotropic?

2. Different types of anisotropy. How to test anisotropy?

3. How to model dependencies in clustered point patterns?

4. Spatio-temporal point processes.

Outcomes: We discussed two particular problems related to items 3 and 4 above, namely the Hawkes
process and the Bartlett-Lewis instantaneous pulse model for rainfall. The Hawkes process is often used to
model earthquakes which cause new earthquakes in the form of aftershocks. Max Schneider is working on
these models and is especially interested in investigating how to include measurement error in the analysis.
We discussed previous work on measurement errors in the point process analysis. We also discussed the
parallels between the modeling of nerve structures in the skin, which was part of the motivating talk for the
session, and modelling earthquakes.

The pulse model for rainfall incorporates layers: a process describing storms (Poisson start times, ex-
ponential durations), a process of modelling storm cells within each storm (Poisson start times, exponential
durations), and a pulse process (rain falls) inside cells (marked Poisson process). The problem of produc-
ing useable forms of the likelihood was discussed; the dataset whose likelihood was discussed consists of 5
minute total rain falls at a station. All these discussions were very fruitful in the sense that ideas passed from
people working on one kind of model to people working on other related models.

Breakout F. Spatio-temporal modeling 2
Moderators: Finn Lindgren, University of Edinburgh, and Wendy Meiring, University of California,
Santa Barbara

Description of the session: Spatio-temporal problems often appear in contexts where the observation struc-
ture is complex at the same time as the latent or true spatio-temporal structures are non-trivial. Modern data
sets frequently are massive. Statistical study of high-dimensional nonlinear scientific processes based on di-
verse observation structures leads to numerous modelling and computational challenges. We discussed this
combination of challenges.

Outcomes:

1. We highlighted distinctions between model-development (physically based and/or statistically based),
and computationally efficient methods needed to study parameters or processes based on these high-
dimensional and complex models, using available observations. We discussed the need for scientifically
based inspiration for statistical models, such as physics inspiration in the SPDE approach presented by
Finn Lindgren.

2. We discussed multi-scale properties of the true processes and of models. Researchers need to ask
what question they want to answer in each study, since different models and methods may be appro-
priate for different space-time scales, and for different target fields and measures (e.g., temperature or
precipitation; extremes or averages).

3. In particular, space-time processes may exhibit diverse smoothness and association properties in dif-
ferent spatial and temporal dimensions/scales, requiring additional study in space-time statistics. An
illustrative example contrasted the vertical versus horizontal directions in the atmosphere or ocean.
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4. The field of space-time statistics will benefit if clear specification of the limitations of statistical models
and computational methods is valued in publications, in addition to reporting cases where good perfor-
mance was achieved. Researchers need to know when one model class/computational method may be
preferred versus another.

5. Finn Lindgren’s motivating talk concerned SPDE-based Matern fields with different operators, using
mesh based computation methods and sparse precision matrices. We discussed sensitivity to the choice
of mesh and basis function approximations in this approach. Finn mentioned choices he is finding
valuable in studying global processes with approximately 10-15 terabytes of input data. We provided
references to several other space-time methods and computational approaches.

6. We recognized the need for increased collaboration between statisticians and applied mathematicians/
computer scientists in order to benefit from many recent computational advances, in addition to collab-
orations with problem-specific scientists. We requested recommendations from participants on publi-
cally available resources for numerical analysis and computer science training for statisticians.

7. We mentioned the diversity of scientific areas of space-time study. Due to time our discussion concen-
trated on two areas: climate studies and the study of wave dynamics for risk analyses of the amount
of fatigue a ship encounters on a particular journey. In the latter, waves are inherently asymmetric and
difficult to measure and model.

8. We discussed potential sources for measurement biases, the need to understand data sources and po-
tential biases, and to assess whether the data agree with the models and vice versa.

Breakout G. Ideas in visualization
Moderator: David Bolin, Chalmers University

Description of the session: Visualising estimates of low-dimensional random variables and their uncer-
tainty is a rather straightforward problem. Also for time series and stochastic processes there are several
good options for displaying uncertainty, such as simultaneous envelopes and functional boxplots. Uncer-
tainty visualization for spatial and spatiotemporal fields is, however, not as straightforward. It is nevertheless
of great importance when communicating results in spatial statistics and related subjects, or as Brodlie et al.
(2012) writes:

We may encounter error bars on graphs, but we rarely see the equivalent on contour maps or isosurfaces.
Indeed the very crispness of an isosurface gives an impression of confidence that is frankly often an illusion.

This is a major issue when visualizations are used in decisionmaking - such as planning evacuations based
on a visualization of a predicted hurricane path. The central topics of discussion for this session are:

1. What is the best way of visualizing estimates of spatial fields and their uncertainties?

2. How should one do visualization for more complicated scenarios, such as problems in three spatial
dimensions, spatio-temporal applications, and hierarchical models?

3. How can visualization effectively be used for model validation, and also for conveying data uncer-
tainty/biases?

Outcomes: We continued discussing David Bolin’s motivating talk on visualizing uncertainty in contour
curves, including how many contours to include, contour map quality measures, and alternatives. Alterna-
tives included presenting credible intervals/regions for the contours, and fog maps using color and opacity
variation to indicate statistical measures of confidence. We discussed that the specific contours of primary sci-
entific interest may be dictated by the intended audience, and that contour maps may be most valuable when
the user cares about a specific level or very few levels. In two dimensions, contour maps can convey spatially
explicit uncertainty estimates, although substantial challenges remain in combining uncertainty visualization
from two spatial maps (such as mean and standard error), and in higher dimensions. We discussed pros and
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cons of visualizing/returning many samples from the posterior distribution in a Bayesian Analysis instead
of presenting summary contour maps. Samples from the posterior distribution may be especially valuable
when the user is most interested in functions of the field (such as flow fields), however we recognized that
substantial information needs to be provided to the user on how to interpret and use the posterior samples they
are receiving. Regarding data uncertainty, we discussed ongoing work on interactive visualization (including
Sam Shen’s presentation earlier in the workshop). Meta-data may be a valuable way to convey data represen-
tativeness or reliability when interactively mousing over a region. We also mentioned ongoing work in 3D
animation and virtual reality, including displaying neural connections from brain imaging. We are excited by
rapidly developing visual analytic techniques and computational methods that are proving valuable in diverse
areas such as neuroscience, chaos, environmental sciences, and media arts and technology. We recognize the
need for increased collaborations with visualization experts. We also discussed the need to adjust the degree
of detail depending on the target audience, and the necessity to provide all the information necessary for the
target audience to understand visualizations of the uncertainty most important for their scientific use.

Breakout H. Communicating science to decision makers
Moderator: Richard Lockhart, Simon Fraser University

Description of the session: Like all scientists, statisticians are increasingly interested in seeing their work
used in support of sound public policy. They want to communicate results while being honest about the
unavoidable uncertainty accompanying real data and do that without finding that their advice is ignored
because of that uncertainty. The session was intended to focus on the following issues:

• Who is communicating? Which expert [individual scientist or small research group, science society,
advocacy group] communicating with which policy maker [boss, government bureaucrat, politician]?

• One-way or two-way communication?

• Do people know of successful communication examples? Did those communicators use specific strate-
gies?

• How can we get trained in a hurry if need be?

• What dangers for individual scientists need to be watched out for?

• We are uncertainty quantification experts. Are we decision making experts?

• How can we elicit from policy makers what sort of questions they would really like answered? Are
they the sorts of questions we can answer?

• Are we providing information or trying to influence the decision?

Outcomes: The list of questions served to get discussion going but was naturally, and intentionally, too
long to permit discussion of every point. In the end the following major issues arose:

• There is a need for a taxonomy of this sort of communication to highlight the different types of com-
munication to decision makers. Discussants had experience in such contexts as: an advisory panel
to the EPA tasked with recommending a specific ozone standard; advisory committees to government
agencies (the EIA, Statistics Canada, and water boards in Australia), working on a large interdisci-
plinary grant studying climate impacts in Norway where part of the task was regular communication
with stakeholders, and meeting congressional staffers to communicate scientific understanding of is-
sues such as those surrounding climate change.

• We identified the issue of indirect communication. It is common for the statistician to have access to
staff in an agency or a political body. In turn the staffer communicates with senior administration or
a congressional representative and in turn those people communicate with the final decision maker.
The EPA ozone rule, 8 years in the making, provided a case study. The statistician, and her/his scien-
tific colleagues, must communicate with those staff to whom they have access in such a way that the
information finally communicated to the ultimate authority is clear, compelling, and correct.
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• We discussed the process of becoming involved in this sort of communication. It was apparent that this
is a slow, difficult process. Statisticians must first succeed in becoming involved with other scientists
who have an interest in influencing decision making. Then they must demonstrate their utility to those
other scientists. The process of establishing this reputation is long.

• There was some discussion of the issue of one-way versus two-way communication. The Norwegian
example provided a case study of the benefits of involving stakeholders. The EPA ozone example
illustrated the difficulty when communication flows through a long chain.

• We discussed at some length the danger that communicating accurately the uncertainty in scientific
conclusions can lead to policy makers ignoring advice. We also noted that advice can be ignored even
in the absence of any significant uncertainty.

Breakout I. Popular Science
Moderator: Peter Guttorp, University of Washington and Norwegian Computing Center

Description of the session: There are many outlets for statisticians to publish their work in popular science:

1. Journals for people with some statistics background (e.g., Chance, http://chance.amstat.org; Signifi-
cance; https://www.significancemagazine.com)

2. General science magazines (e.g., Popular Science; http://www.popsci.com;
Science News, https://www.sciencenews.org)

3. Blogs and online magazines (e.g., Hakai Magazine, https://www.hakaimagazine.com; PLOS Blog,
http://blogs.plos.org)

4. Tweets

This session will discuss the different ways that statisticians can communicate their research, including
building links with journals and science writers.

Outcomes: A number of different topics were covered:

1. Identifying and differentiating between the roles of statisticians and journalists. It was agreed that
working together or providing joint training was beneficial in communicating statistics to a wider audi-
ence. We noted that this may be harder for junior statisticians. We also discussed differences between
communicating a single article and a body of work (the latter is less common).

2. Where do we start? Possible outlets identified and discussed included: University/research organiza-
tion public relations office; Personal relations with journalists; Online popular science journals/blogs;
Going out to schools.

3. Misstatements and oversimplifications. It is very common to overstate or oversimplify the message of
scientific studies (e.g., The science is settled on climate change). The session identified that we were
all responsible to communicate our ideas as simply as possible, while keeping the message accurate.
There are still open questions on how to communicate uncertainty in popular science. Often this is
oversimplified.

Breakout J. Modeling in Transformed Domains: Future Directions
Moderators: Debashis Mondal, Oregon State University, and Donald Percival, University of Washing-
ton

Description of the session: Transformations are commonly used for many different reasons in statistical
analysis. In traditional regression courses students are taught to use transformations to force non-Gaussian
data into a Gaussian shoe. Transformations can make distributions more Gaussian, symmetric, can stabilize
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variance, and can be used to guard against multicollinearity in regression problems. Sometimes transfor-
mations (e.g., ranks) are used to make the inference robust or resistant to outliers, and are highly efficient
for many distributions. For time series and spatial analysis, transformations facilitate or simplify modeling,
characterize or compensate for correlation, help extract signals in the presence of noise and handle nonsta-
tionarities, by forcing data into a stationary shoe (Sampson and Guttorp, 1992). The session had a number of
aims:

1. How can we adapt existing transforms (Fourier, wavelet etc.) to handle new problems arising in envi-
ronmental data analysis: what are interesting directions to pursue?

2. Are there other transforms of interest for analysis of environmental data that have yet to be fully ex-
plored, especially for non-standard domains such as networks?

3. What is the best way to deal with transforms that help satisfy distributional problems, but at the cost of
messing up the correlation structure?

4. For transforms that do not preserve variance, are there ways in which we can do at least a quasi-
ANOVA?

Outcomes: We discussed the following:

1. For correlated spatio-temporal data, we typically use transformation to find patterns and scales on
which correlation makes sense. While certain machine learning methods (e.g., random forests) may
be easier for finding patterns, it was noted that spatially agnostic transformations, which are easy to
implement, may be harder to interpret. We agreed that there is a need to have transforms that are
spatially and temporally aware. This is a problem with empirical orthogonal functions, where it can be
hard (impossible) to compare principal components for different datasets.

2. There are many transformations for gridded data (e.g., wavelets, Fourier, and needlets on the sphere).
There are methods for wavelet-like transforms for nearest neighbors, although these cannot be inter-
preted as being on a fixed scale. For methods on graphs we can use wavelets (e.g., Sharpnack, et al.
2013) or Laplacians.

3. Often transformations of parameters are used instead of transformations of data. This can pose its own
difficulties as parameters may need to be constrained (e.g., constraining the direction of flow of a river
using directed graphs). In time series analysis reparametrization of model parameters using the partial
autocorrelation function can help immensely (similar ideas apply to imposing sparsity on spatial and
spatio-temporal data using Gaussian Markov random fields).

4. There is a need to understand how transformations are useful in modeling nonlinear dynamics (e.g.,
in climate how do we model El Nino year dependencies versus La Nina year dependencies?) This is
further complicated with teleconnections, which are easier to represent with certain transformations
(e.g., empirical orthogonal functions) compared to others. Multiscale nonstationary statistical models
can help.

5. Often transformations impose problems themselves (e.g., there is no exact analysis of variance decom-
position), or the transformation induces correlation in observations (e.g., satellite monitoring, tomog-
raphy and other medical imaging data). While there are inverse modeling techniques available, more
work is needed to build reliable statistical models for these transformation-based data products.

6. Many transformations are not explored well in the statistical literature and need further study: e.g.,
independent component analysis, random projections, empirical mode decomposition, dynamic mode
decomposition.
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Breakout K. Extremes
Moderators: Holger Rootzén, Chalmers, and Thordis Thorarinsdottir, Norwegian Computing Centre

Description of the session: In this breakout session, we will focus on the topic of multivariate extremes
and the associated risks. Atmospheric, hydrological and earth scientists spend important efforts on estimating
risk of catastrophes at a very large set of locations all over the world. Typically, this is done separately at
each single location so that one, for example, tries to estimate risks of flooding at an individual dam, and then
uses the result for design and operation at this dam. However, few tools seem to be available for estimating
joint risks, say the risk that at least one of the perhaps several thousand dams in a country is flooded during
the coming year. An accurate assessment of such risks would, in particular, provide valuable information for
national and regional authorities when planning their disaster risk management strategies. Are there methods
and data available which make it possible to make such risk estimates? In particular, how do joint risks change
if, e.g., design criteria at individual dams are changed? And, if not, could such methods be developed? These
problems seem both important and exciting, with climate change adding to their importance.

Outcomes: We identified a wide variety of problems where there is great need for understanding of poten-
tially dependent extremes. These are problems where you have many structures and are concerned about fail-
ures at any one of them. In particular we discussed bridges, wooden structures, dams, flooding (urban, caus-
ing landslides, destroying roads), dam and dike breaches; windstorms; extreme precipitation/temperatures
and storm floods. We are concerned both about extreme climate and weather events and other natural dis-
asters, and about extreme consequences in dollars, lives, or human suffering. We discussed examples where
extremes at different locations (worst cases over a period of time) would likely be independent or nearly so
and other examples (extreme cold in northern Sweden, the Calgary flood, etc) where there would clearly be
significant spatial correlation because many of the extremes would be simultaneous, or essentially so. We
discussed the role of extreme value theory in designing large structures and in setting design codes. We con-
trasted the complexity of modern theoretical analyses with a desire for extreme simplicity in codes. We asked
“Who might care about joint risks?” They should be important for emergency plans at a national/regional
level, for design codes and regulations, and for re-insurers. We discussed the role of statisticians in these
processes, the extent to which money was the driving consideration and the need to participate in discussions
with the civil engineering community. Finally we identified a number of areas needing statistical research:
we need to understand individual events better before we can think about multivariate modeling; we observed
that multivariate extreme value theory is under rapid development but is not very high dimensional yet (as
an example of the issue there are 2300 dams in Norway to be considered and assessing the risk of the worst
case over a period of time and over 2300 spatially dependent structures is hard); we likely need spatial model
development on a case-by-case basis; when we try to model joint extremes we need to cope with what is
happening at non-extreme locations (conditionally on an extreme at some location or locations); we need to
know when we can trust our models, for the questions of interest, and we need to distinguish non-human and
human causes.

Breakout L. Modern approaches to climate and hydrological data analysis and mod-
eling
Moderators: Efi Foufoula-Georgiou, University of California, Irvine, and Sam Shen, San Diego State
University

Description of the session: It is well established by now that the earth system is a highly interconnected
system across processes (atmospheric, oceanic, and eco-hydrologic) and across scales (cloud microphysics to
large scale dynamics). Improving modeling and prediction relies on using state-of-the-art methodologies for
extracting from available data relevant information and hidden relationships, merging observations at different
scales, advancing data assimilation methodologies, and identifying trends and patterns. Listed below are a
few references on topics: (i) Modern spatial data analysis and reconstruction methods: from EOF regression
to random forests, and dictionary learning; and (ii) Stochastic modeling approaches for the next generation
of climate models: from self-similarity to connections between microscopic scales and global circulations
scales.
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In the first 30-minute session, Efi Foufoula-Georgiou used the blackboard to illustrated a series of open
problems on statistical modeling and hydrology. Sam Shen supplemented three more problems on climate
data analysis, visualization and modeling.

Outcomes: This breakout parallel session was not formally held due to very few participants. However,
people discussed the topics of the session at other occasions. Efi Foufoula-Georgiou and Sam Shen invited
the participants to comment, contribute and collaborate on their proposed topics on modern approaches to
climate and hydrological data and modeling. In addition, they provided the following four concrete research
directions on these topics:

1. How to diagnose/use climate models to construct regionally relevant climate projections?

2. Using big data technology and computer visualization to create movies for the past climate.

3. Sub-seasonal-to-seasonal (S2S) forecasting needs better statistical models: This is one of the current
NOAA research foci with a goal of breaking the 4-day barrier of numerical weather forecasts by using
both statistical models and numerical weather forecast models.

4. Next generation GCMs linking 10−6 meter to 106 meter scales need nonlinear stochastic models: The
main question is whether one can use nonlinear stochastic models to link the microscopic scale dynam-
ics of atmosphere, such as the condensation process and cloud ice crystal formation, with mesoscale
and large-scale precipitation.

5 Outcome of the Meeting
There were a number of common themes that emerged from this workshop that participants of the workshop
will continue to work on:

1. In all areas of statistical modeling of stochastic processes in the natural sciences there is a need to
develop more methods for model diagnostics, verification, and validation. This is especially important
in areas where the science is not fully worked out, and statistical models are being used to assess and
validate new scientific hypotheses or statistical models are being used for out-of-sample prediction and
risk assessment. Additionally there is a need to have ways to test that complex statistical models are
being fit correctly.

2. Problems are becoming more complicated with richer data sources; this necessitates the construction
of more involved, but realistic, statistical models that capture the necessary interactions between the
scientific processes of interest. This is difficult in non-Gaussian settings (e.g., modeling precipitation,
characterizing spatio-temporal extremes, and in studying biological phenomena using complex hierar-
chical representations).

3. Uncertainty quantification is still being under-utilized in the sciences. Using statistical models is key
to making more reliable inferences using data, with realistic uncertainty assessment.

4. Clear and effective communication of our statistical results as well as the science is key. There is a
need for statisticians to collaborate more with scientists and journalists to make this happen.

Further discussions of these topics will occur in other workshops this year. For example, the Program
on Mathematical and Statistical Methods for Climate and the Earth System (CLIM), at the Statistical and
Applied Mathematical Sciences Institute.
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